238
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Single and combined effects of Ni and Cr on the freshwater ostracod Cypridopsis vidua

, , , , &
Article: 2311676 | Received 27 Nov 2023, Accepted 24 Jan 2024, Published online: 09 Feb 2024

References

  • Horai S, Murakami S, Sakoda A, et al. Environmental monitoring of trace elements and evaluation of environmental impacts to organisms near a former uranium mining site in Nigyo-toge, Japan. Environ Monit Assess. 2022;194:415. doi: 10.1007/s10661-022-10034-7
  • Carvalho PCS, Antunes IMHR, Albuquerque MTD, et al. Stream sediments as a repository of U, Th and as around abandoned uranium mines in central Portugal: implications for water quality management. Environ Earth Sci. 2022;81(6):175. doi: 10.1007/s12665-022-10275-2
  • Wang Z, Liu Z, Yu J, et al. Release behavior uranium and thorium in soil from a decommissioned uranium tailings in Jiangxi Province, China. J Radioanal Nucl Chem. 2021;330(3):833–134. doi: 10.1007/s10967-021-08030-1
  • Dudar TV, Titarenko OV, Nekos AN, et al. Some aspects of environmental hazard due to uranium mining in Ukraine. J Geol Geogr Geoecol. 2021;30(1):34–42. doi: 10.15421/112104
  • Wang XM, Zhang RL, Wang YM, et al. Ecological risk of heavy metals in farmland soils near a coal mine in Huainan. J Ecol Environ. 2016;25(5):877–884. doi: 10.16258/j.cnki.1674-5906.2016.05.022
  • Yue YC, Li MH, Wang HB, et al. The toxicological mechanisms and detoxification of depleted uranium exposure. Environ Health Prev Med. 2018;23(1):1–9. doi: 10.1186/s12199-018-0706-3
  • Gloaguen C, Raimundo AF, Elie C, et al. Passage of uranium through human cerebral microvascular endothelial cells: influence of time exposure in mono-and co-culture in vitro models. Int J Radiat Biol. 2020;96(12):1597–1607. doi: 10.1080/09553002.2020.1828655
  • El Hayek E, Medina S, Guo J, et al. Uptake and toxicity of respirable carbon-rich uranium-bearing particles: insights into the role of particulates in uranium toxicity. Environ Sci Technol. 2021;55(14):9949–9957. doi: 10.1021/acs.est.1c01205
  • Mahamood M, Khan FR, Zahir F, et al. Bagarius bagarius, and Eichhornia crassipes are suitable bioindicators of heavy metal pollution, toxicity, and risk assessment. Sci Rep. 2023;13(1):1824. doi: 10.1038/s41598-023-28313-9
  • Santana CS, Olivares DMM, Silva VHC, et al. Assessment of water resources pollution associated with mining activity in a semi-arid region. J Environ Manage. 2020;273:111148. doi: 10.1016/j.jenvman.2020.111148
  • Naz A, Chowdhury A, Mishra BK, et al. Distribution of heavy metals and associated human health risk in mine, agricultural and roadside soils at the largest chromite mine of India. Environ Geochem Health. 2018;40(5):2155–2175. doi: 10.1007/s10653-018-0090-3
  • Chen L, Huo Z, Zhou X, et al. Evaluation of ecotoxicity of uranium smelting area receiving effluent using ostracods. J Radioanal Nucl Chem. 2022;331(9):3427–3437. doi: 10.1007/s10967-022-08404-z
  • Liao TC, Yin JQ, Li KZ, et al. Research progress on the diversity and ecology of Marine plankton ostracoids. Ecol Sci. 2019;38(6):190–198. doi: 10.14108/j.cnki.1008-8873.2019.06.028
  • Khanal R, Furumai H, Nakajima F, et al. Carcinogenic profile, toxicity and source apportionment of polycyclic aromatic hydrocarbons accumulated from urban road dust in Tokyo, Japan. Ecotoxicol Environ Saf. 2018;165:440–449. doi: 10.1016/j.ecoenv.2018.08.095
  • Chen SM, Yu N, Zhou YY, et al. Acute toxicity of Cd2+, Zn2+ and Cu2+ to physocypria kraepelini. J Micropaleontol. 2010;27(2):118–124.
  • Niyommaneerat W, Nakajima F, Tobino T, et al. Development of a chronic sediment toxicity test using the benthic ostracod heterocypris incongruens and their application to toxicity assessments of urban road dust. Ecotoxicol Environ Saf. 2017;143(September):266–274. doi: 10.1016/j.ecoenv.2017.05.011
  • Kudłak B, Wolska L, Namieśnik J. Determination of EC50 toxicity data of selected heavy metals toward heterocypris incongruens and their comparison to “direct-contact” and microbiotests. Environ Monit Assess. 2011;174(1–4):509–516. doi: 10.1007/s10661-010-1474-8
  • Wróbel M, Rybak J, Rogula-Kozłowska W. The application of OSTRACODTOXKIT F™ test to assess metals contamination in road dust in Wrocław agglomeration. Sci Rev Eng Environ Sci. 2020;29(1):27–36. doi: 10.22630/PNIKS.2020.29.1.3
  • Sivalingam P, Al Salah DMM, Poté J. Sediment heavy metal contents, ostracod toxicity and risk assessment in tropical freshwater lakes, Tamil Nadu, India. Soil Sediment Contam An Int J. 2021;30(2):231–252. doi: 10.1080/15320383.2020.1835822
  • Ruiz F, Abad M, Bodergat AM, et al. Freshwater ostracods as environmental tracers. Int J Environ Sci Technol. 2013;10(5):1115–1128. doi: 10.1007/s13762-013-0249-5
  • Oleszczuk P. Heterocypris incongruens as a tool to estimate sewage sludge toxicity. Enviro Toxic Chem. 2008;27(4):864–872. doi: 10.1897/07-234.1
  • Chial B, Persoone G. Cyst‐based toxicity tests XIV—application of the ostracod solid‐phase microbiotest for toxicity monitoring of river sediments in Flanders (Belgium). Environ Toxicol. 2002;17(6):533–537. doi: 10.1002/tox.10087
  • Shuhaimi-Othman M, Yakub N, Ramle NA, et al. Toxicity of metals to a freshwater ostracod: stenocypris major. J Toxicol. 2011;2011:1–8. doi: 10.1155/2011/136104
  • Kudłak B, Wolska L, Namieśnik J. Determination of EC 50 toxicity data of selected heavy metals toward heterocypris incongruens and their comparison to “direct-contact” and microbiotests. Environ Monit Assess. 2011;174(1–4):509–516. doi: 10.1007/s10661-010-1474-8
  • Zhou Y, Zhu L, Feng JF, et al. Study of combined toxicity of lead and cadmium and their mixtures by using biological ligand model. J Ecotoxicol. 2015;10(4):47–54. doi: 10.7524/AJE.1673-5897.20150313004
  • Deng Y, Tan A, Zeng HH, et al. Prediction of toxicity of heavy metal mixtures by integrated model based on principal component regression. Environ Sci China. 2018;38(5):1970–1978. doi: 10.19674/j.cnki.issn1000-6923.20180323.001
  • Wang X, Meng X, Ma Y, et al. The prediction of combined toxicity of Cu–ni for barley using an extended concentration addition model. Environ Pollut. 2018;242:136–142. doi: 10.1016/j.envpol.2018.06.070
  • Wang YS, Xia ST. A review of random forest algorithms for ensemble learning. Inf Commun Technol. 2018;12(1):49–55. doi: 10.3969/j.issn.1674-1285.2018.01.009
  • Song ZT, Zhao YJ, Zhou QW, et al. Analysis of heavy metal sources in soil of Wuqing District, Tianjin based on geostatistics and random simulation techniques. Environ Sci. 2016;7:2756–2762. doi: 10.13227/j.hjkx.2016.07.044
  • Trinh TX, Seo M, Yoon TH, et al. Developing random forest based QSAR models for predicting the mixture toxicity of TiO2 based nano-mixtures to Daphnia magna. NanoImpact. 2022;25:100383. doi: 10.1016/j.impact.2022.100383
  • Brooks A, White RM, Paton DC. Effects of heavy metals on the survival of Diacypris compacta (Herbst)(ostracoda) from the Coorong, South Australia. Int J Salt Lake Res. 1995;4(2):133–163. doi: 10.1007/BF01990800
  • Zhu XW, Ge HL, Cao YB. Mixture cytotoxicity assessment of ionic liquids and heavy metals in MCF-7 cells using mixtox. Chemosphere. 2016;163:544–551. doi: 10.1016/j.chemosphere.2016.08.064
  • Dou RN, Liu SS, Mo LY, et al. A novel direct equipartition ray design (eq) procedure for toxicity interaction between ionic liquid and dichlorvos. Environ Sci Pollut Res. 2011;18(5):734–742. doi: 10.1007/s11356-010-0419-7
  • Borgert CJ, Quill TF, McCarty LS, et al. Can mode of action predict mixture toxicity for risk assessment? Toxicol Appl Pharmacol. 2004;201(2):85–96. doi: 10.1016/j.taap.2004.05.005
  • Otitoloju AA. Evaluation of the joint-action toxicity of binary mixtures of heavy metals against the mangrove periwinkle tympanotonus fuscatus var radula (L.). Ecotoxicol Environ Saf. 2002;53(3):404–415. doi: 10.1016/S0147-6513(02)00032-5
  • Tuulaikhuu BA, Guasch H, García-Berthou E. Examining predictors of chemical toxicity in freshwater fish using the random forest technique. Environ Sci Pollut Res. 2017;24(11):10172–10181. doi: 10.1007/s11356-017-8667-4
  • Genuer R, Poggi JM, Tuleau-Malot C. Variable selection using random forests. Pattern Recognit Lett. 2010;31(14):2225–2236. doi: 10.1016/j.patrec.2010.03.014
  • Liaw A, Wiener M. Classification and regression by randomForest. R News. 2002;2(3):18–22.
  • Altenburger R, Nendza M, Schüürmann G. Mixture toxicity and its modeling by quantitative structure‐activity relationships. Enviro Toxic Chem. 2003;22(8):1900–1915. doi: 10.1897/01-386
  • Bliss CI. The toxicity of poisons applied jointly 1. Annals Appl Biol. 1939;26(3):585–615. doi: 10.1111/j.1744-7348.1939.tb06990.x
  • Zhu XW, Liu SS, Qin LT, et al. Modeling non-monotonic dose–response relationships: Model evaluation and emetic quantities exploration. Ecotoxicol Environ Saf. 2013;89:130–136. doi: 10.1016/j.ecoenv.2012.11.022
  • Chen L, Huo Z, Su C, et al. Sensitivity of Ostracods to U, Cd and Cu: the case of cypridopsis vidua. Toxics. 2022;10(7):349. doi: 10.3390/toxics10070349
  • Guoming H, Guoqiang Z. Cud of interval estimation accuracy and confidence. J Math Med J. 2014;2014(1):1–10. doi: 10.1155/2014/231925
  • Zhao W, Huo Y, Zhang T, et al. Effects of lithium on the survival, growth, and reproduction of daphniopsis tibetana sars (Crustacea: cladocera). Chin J Ocean Limnol. 2017;35:754–762. doi: 10.1007/s00343-017-6047-z
  • Chen S. Toxic effects of cadmium ions on paracypris andersoni (Ostracoda: podocopida). East China Normal University; 2012.
  • Xin BP, Qi S. Toxicity test of chromium to Aeolosomaheadleyi. J Environ Sci. 1996;16:184–189. doi: 10.3969/j.issn.1673-9353.2009.06.003
  • Yang DD. Freshwater water quality standard study of chromium and nickel in China. Beijing: China University of Geosciences; 2012.
  • Fargasova A. Toxicity of metals on daphnia magna and Tubifex tubifex. Ecotoxicol Environ Saf. 1994;27(2):210–213. doi: 10.1006/eesa.1994.1017
  • Schaefer ED, Pipes WO. Temperature and the toxicity of chromate and arsenate to the rotifer, Philodina roseola. Water Res. 1973;7(12):1781–1790. doi: 10.1016/0043-1354(73)90033-X
  • Kazlauskiene N, Burba A, Svecevicius G. Acute toxicity of five galvanic heavy metals to hydrobionts. Ecology Vilnius. 1994;1:33–36.
  • Rehwoldt R, Bida G, Nerrie B. Acute toxicity of copper, nickel and zinc ions to some Hudson River fish species. Bull Environ Contam Toxicol. 1971;6(5):445–448. doi: 10.1007/BF01684366
  • Wu DX, Hong WS. Toxicity of four heavy metals to embryos and pups of the otolithic yellow goby (Sciaenidae). Taiwan Strait. 1999;18(2):186–1.
  • Pickering QH, Henderson C. The acute toxicity of some heavy metals to different species of warm water fishes. Air And Water Pollution. 1966;10(6):453.
  • Virk S, Sharma R. Effect of nickel and chromium on various life stages of Cyprinus carpio Linn. Indian Journal Of Ecol. 1995;22(2):77–81.
  • Zhao Y, Kong Q, Fu RS. Single and joint toxicity of Cu2+, Cd2+ and Cr6+ on Poecilia reticulata. Water Technol. 2009;3:10–1220. doi: 10.3969/j.issn.1673-9353.2009.06.003
  • United Nations. Economic commission for Europe. Secretariat. In: Globally harmonized system of classification and labelling of chemicals (GHS). Newyork: United Nations Publications; 2013.
  • Huo Z. Sensitivity of uranium, cadmium and copper stress ostracoids and evaluation of ecotoxic effects of uranium mine wastewater. University of south China; 2022. doi: 10.27234/d.cnki.gnhuu.2022.000532
  • Gupta AD, Karthikeyan S. Individual and combined toxic effect of nickel and chromium on biochemical constituents in E. coli using FTIR spectroscopy and principal component analysis. Ecotoxicol Environ Saf. 2016;130:289–294. doi: 10.1016/j.ecoenv.2016.04.025
  • Kardas M, Gozen AG, Severcan F. FTIR spectroscopy offers hints towards widespread molecular changes in cobalt-acclimated freshwater bacteria. Aquatic Toxicol. 2014;155:15–23. doi: 10.1016/j.aquatox.2014.05.027
  • Quintelas C, Rocha Z, Silva B, et al. Biosorptive performance of an Escherichia coli biofilm supported on zeolite NaY for the removal of Cr (VI), Cd (II), Fe (III) and Ni (II). Chem Eng J. 2009;152(1):110–115. doi: 10.1016/j.cej.2009.03.039
  • Santore RC, Ryan AC. Development and application of a multimetal multibiotic ligand model for assessing aquatic toxicity of metal mixtures. Environ Toxicol Chem. 2015;34(4):777–787. doi: 10.1002/etc.2869
  • Verriopoulos G, Dimas S. Combined toxicity of copper, cadmium, zinc, lead, nickel, and chrome to the copepod Tisbe holothuriae. Bull Environ Contam Toxicol. 1988;41(3):378–384. doi: 10.1007/BF01688882