289
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Remediation and environmental safety of paddy soil temporarily polluted by heavy metals from acid mine drainage

, , &
Article: 2323689 | Received 23 Oct 2023, Accepted 21 Feb 2024, Published online: 04 Mar 2024

References

  • Jiao Y, Zhang C, Su P, et al. A review of acid mine drainage: formation mechanism, treatment technology, typical engineering cases and resource utilization. Process Saf Environ Prot. 2023;170:1240–212. doi: 10.1016/j.psep.2022.12.083
  • Daraz U, Li Y, Ahmad I, et al. Remediation technologies for acid mine drainage: recent trends and future perspectives. Chemosphere. 2022;311:137089. doi: 10.1016/j.chemosphere.2022.137089
  • Anekwe IMS, Isa YM. Bioremediation of acid mine drainage–review. Alexandria Eng J. 2023;65:1047–1075. doi: 10.1016/j.aej.2022.09.053
  • Zaynab M, Al-Yahyai R, Ameen A, et al. Health and environmental effects of heavy metals. J King Saud Univ Sci. 2022;34(1):101653. doi: 10.1016/j.jksus.2021.101653
  • Zang F, Wang S, Nan Z, et al. Accumulation, spatio-temporal distribution, and risk assessment of heavy metals in the soil-corn system around a polymetallic mining area from the Loess Plateau, northwest China. Geoderma. 2017;305:188–196. doi: 10.1016/j.geoderma.2017.06.008
  • Abdu N, Abdullahi AA, Abdulkadir A. Heavy metals and soil microbes. Environ Chem Lett. 2017;15(1):65–84. doi: 10.1007/s10311-016-0587-x
  • Xu D-M, Fu R-B, Liu H-Q, et al. Current knowledge from heavy metal pollution in Chinese smelter contaminated soils, health risk implications and associated remediation progress in recent decades: A critical review. J Clean Prod. 2021;286:124989. doi: 10.1016/j.jclepro.2020.124989
  • Abbasi S, Lamb DT, Kader M, et al. The influence of long-term ageing on arsenic ecotoxicity in soil. J Hazard Mater. 2021;407:124819. doi: 10.1016/j.jhazmat.2020.124819
  • Shen Z, Pan S, Hou D, et al. Temporal effect of MgO reactivity on the stabilization of lead contaminated soil. Environ Int. 2019;131:104990. doi: 10.1016/j.envint.2019.104990
  • Igalavithana AD, Kwon EE, Vithanage M, et al. Soil lead immobilization by biochars in short-term laboratory incubation studies. Environ Int. 2019;127:190–198. doi: 10.1016/j.envint.2019.03.031
  • Pan Y, Chen J, Gao K, et al. Spatial and temporal variations of Cu and Cd mobility and their controlling factors in pore water of contaminated paddy soil under acid mine drainage: a laboratory column study. Sci Total Environ. 2021;792:148523. doi: 10.1016/j.scitotenv.2021.148523
  • Perlatti F, Martins E, De Oliveira D, et al. Copper release from waste rocks in an abandoned mine (NE, Brazil) and its impacts on ecosystem environmental quality. Chemosphere. 2021;262:127843. doi: 10.1016/j.chemosphere.2020.127843
  • Kuppusamy S, Palanisami T, Megharaj M, et al. In-situ remediation approaches for the management of contaminated sites: a comprehensive overview. Rev Environ Contam Toxicol. 2016;236:1–115. doi: 10.1007/978-3-319-20013-2_1
  • Liu L, Li W, Song W, et al. Remediation techniques for heavy metal-contaminated soils: principles and applicability. Sci Total Environ. 2018;633:206–219. doi: 10.1016/j.scitotenv.2018.03.161
  • Tomei MC, Daugulis AJ. Ex situ bioremediation of contaminated soils: an overview of conventional and innovative technologies. Crit Rev Environ Sci Technol. 2013;43(20):2107–2139. doi: 10.1080/10643389.2012.672056
  • Palansooriya KN, Shaheen SM, Chen SS, et al. Soil amendments for immobilization of potentially toxic elements in contaminated soils: a critical review. Environ Int. 2020;134:105046. doi: 10.1016/j.envint.2019.105046
  • Wang Y, Zheng K, Zhan W, et al. Highly effective stabilization of Cd and Cu in two different soils and improvement of soil properties by multiple-modified biochar. Ecotoxicol Environ Saf. 2021;207:111294. doi: 10.1016/j.ecoenv.2020.111294
  • Yang W, Wang S, Zhou H, et al. Combined amendment reduces soil Cd availability and rice Cd accumulation in three consecutive rice planting seasons. J Environ Sci. 2022;111:141–152. doi: 10.1016/j.jes.2021.03.027
  • Huang Y, Sheng H, Zhou P, et al. Remediation of Cd-contaminated acidic paddy fields with four-year consecutive liming. Ecotoxicol Environ Saf. 2020;188:109903. doi: 10.1016/j.ecoenv.2019.109903
  • O’Connor J, Nguyen TBT, Honeyands T, et al. Production, characterisation, utilisation, and beneficial soil application of steel slag: a review. J Hazard Mater. 2021;419:126478. doi: 10.1016/j.jhazmat.2021.126478
  • Gao W, Zhou W, Lyu X, et al. Comprehensive utilization of steel slag: a review. Powder Technol. 2023;422:118449. doi: 10.1016/j.powtec.2023.118449
  • He H, Tam NF, Yao A, et al. Growth and Cd uptake by rice (Oryza sativa) in acidic and Cd-contaminated paddy soils amended with steel slag. Chemosphere. 2017;189:247–254. doi: 10.1016/j.chemosphere.2017.09.069
  • Lee S-H, Kim E-Y, Hyun S, et al. Metal availability in heavy metal-contaminated open burning and open detonation soil: assessment using soil enzymes, earthworms, and chemical extractions. J Hazard Mater. 2009;170(1):382–388. doi: 10.1016/j.jhazmat.2009.04.088
  • Xian Y, Wang M, Chen W. Quantitative assessment on soil enzyme activities of heavy metal contaminated soils with various soil properties. Chemosphere. 2015;139:604–608. doi: 10.1016/j.chemosphere.2014.12.060
  • Grandy AS, Daly AB, Bowles TM, et al. The nitrogen gap in soil health concepts and fertility measurements. Soil Biol Biochem. 2022;175:108856. doi: 10.1016/j.soilbio.2022.108856
  • Khaitan S, Dzombak DA, Lowry GV. Chemistry of the acid neutralization capacity of bauxite residue. Environ Eng Sci. 2009;26(5):873–881. doi: 10.1089/ees.2007.0228
  • Liao B, Huang L, Ye Z, et al. Cut‐off net acid generation pH in predicting acid‐forming potential in mine spoils. J Env Quality. 2007;36(3):887–891. doi: 10.2134/jeq2006.0420
  • Stewart W, Miller S, Smart R, et al. Evaluation of the net acid generation (NAG) test for assessing the acid generating capacity of sulfide minerals. 2003. doi: 10.7939/r3-cf1f-cd19
  • Jin J, Fang Y, He S, et al. Improved phosphorus availability and reduced degree of phosphorus saturation by biochar-blended organic fertilizer addition to agricultural field soils. Chemosphere. 2023;317:137809. doi: 10.1016/j.chemosphere.2023.137809
  • Ochieno DM. Comparative effects of nitrogen, phosphorus and potassium on Radopholus similis infection in east African highland banana plants as influenced by rhizosphere biota. Sci Afr. 2022;17:e01320. doi: 10.1016/j.sciaf.2022.e01320
  • Sui L, Tang C, Cheng K, et al. Biochar addition regulates soil phosphorus fractions and improves release of available phosphorus under freezing-thawing cycles. Sci Total Environ. 2022;848:157748. doi: 10.1016/j.scitotenv.2022.157748
  • Ning N, Yuan X, Dong S, et al. Grain yield and quality of foxtail millet (Setaria italica L.) in response to tribenuron-methyl. PloS One. 2015;10(11):e0142557. doi: 10.1371/journal.pone.0142557
  • Teodoro MT, Dias FDS, da Silva DG, et al. Determination of copper total and speciation in food samples by flame atomic absorption spectrometry in association with solid-phase extraction with bamboo (Bambusa vulgaris) fiber loaded with bathocuproine. Microchem J. 2017;132:351–357. doi: 10.1016/j.microc.2017.01.033
  • Halim CE, Amal R, Beydoun D, et al. Evaluating the applicability of a modified toxicity characteristic leaching procedure (TCLP) for the classification of cementitious wastes containing lead and cadmium. J Hazard Mater. 2003;103(1–2):125–140. doi: 10.1016/S0304-3894(03)00245-0
  • Tabatabai M. Soil enzymes. Methods Soil Anal Part 2 Microbiol Biochem Prop. 1994;5:775–833. doi: 10.2136/sssabookser5.2.c37
  • Li Y, Fang F, Wei J, et al. Humic acid fertilizer improved soil properties and soil microbial diversity of continuous cropping peanut: A three-year experiment. Sci Rep. 2019;9(1):12014. doi: 10.1038/s41598-019-48620-4
  • Cai K, Yu Y, Zhang M, et al. Concentration, source, and total health risks of cadmium in multiple media in densely populated areas, China. IJERPH. 2019;16(13):2269. doi: 10.3390/ijerph16132269
  • Zhang K, Shi Y, Lu H, et al. Soil bacterial communities and co-occurrence changes associated with multi-nutrient cycling under rice-wheat rotation reclamation in coastal wetland. Ecol Indic. 2022a;144:109485. doi: 10.1016/j.ecolind.2022.109485
  • Xiao X, Chen B, Zhu L. Transformation, morphology, and dissolution of silicon and carbon in rice straw-derived biochars under different pyrolytic temperatures. Environ Sci Technol. 2014;48(6):3411–3419. doi: 10.1021/es405676h
  • Cheraghi M, Lorestani B, Merrikhpour H. Investigation of the effects of phosphate fertilizer application on the heavy metal content in agricultural soils with different cultivation patterns. Biol Trace Elem Res. 2012;145(1):87–92. doi: 10.1007/s12011-011-9161-3
  • Lekfeldt JDS, Holm PE, Kjærgaard C, et al. Heavy metal leaching as affected by long‐time organic waste fertilizer application. J Env Quality. 2017;46(4):871–878. doi: 10.2134/jeq2016.11.0458
  • Khaliq MA, James B, Chen YH, et al. Uptake, translocation, and accumulation of Cd and its interaction with mineral nutrients (fe, Zn, Ni, Ca, Mg) in upland rice. Chemosphere. 2019;215:916–924. doi: 10.1016/j.chemosphere.2018.10.077
  • Feng X, Han L, Chao D, et al. Ionomic and transcriptomic analysis provides new insight into the distribution and transport of cadmium and arsenic in rice. J Hazard Mater. 2017;331:246–256. doi: 10.1016/j.jhazmat.2017.02.041
  • Wang Y, Zhang K, Lu L, et al. Novel insights into effects of silicon-rich biochar (sichar) amendment on cadmium uptake, translocation and accumulation in rice plants. Environ Pollut. 2020;265:114772. doi: 10.1016/j.envpol.2020.114772
  • Król A, Mizerna K, Bożym M. An assessment of pH-dependent release and mobility of heavy metals from metallurgical slag. J Hazard Mater. 2020;384:121502. doi: 10.1016/j.jhazmat.2019.121502
  • Hamid Y, Tang L, Yaseen M, et al. Comparative efficacy of organic and inorganic amendments for cadmium and lead immobilization in contaminated soil under rice-wheat cropping system. Chemosphere. 2019;214:259–268. doi: 10.1016/j.chemosphere.2018.09.113
  • Zheng X, Zou M, Zhang B, et al. Remediation of Cd-, Pb-, Cu-, and Zn-contaminated soil using cow bone meal and oyster shell meal. Ecotoxicol Environ Saf. 2022;229:113073. doi: 10.1016/j.ecoenv.2021.113073
  • Huang M, Zhu Y, Li Z, et al. Compost as a soil amendment to remediate heavy metal-contaminated agricultural soil: mechanisms, efficacy, problems, and strategies. Water Air Soil Pollut. 2016;227(10):1–18. doi: 10.1007/s11270-016-3068-8
  • Wang Y, Xu Y, Li D, et al. Vermicompost and biochar as bio-conditioners to immobilize heavy metal and improve soil fertility on cadmium contaminated soil under acid rain stress. Sci Total Environ. 2018;621:1057–1065. doi: 10.1016/j.scitotenv.2017.10.121
  • Karaca A, Cetin SC, Turgay OC, et al. Soil enzymes as indication of soil quality. Soil Enzymol. 2011;119–148. doi: 10.1007/978-3-642-14225-3_7
  • Khalid S, Shahid M, Niazi NK, et al. A comparison of technologies for remediation of heavy metal contaminated soils. J Geochem Explor. 2017;182:247–268. doi: 10.1016/j.gexplo.2016.11.021
  • Wu M, Ye X, Chen K, et al. Bacterial community shift and hydrocarbon transformation during bioremediation of short-term petroleum-contaminated soil. Environ Pollut. 2017;223:657–664. doi: 10.1016/j.envpol.2017.01.079
  • Zhang R-H, Xie Y, Zhou G, et al. The effects of short-term, long-term, and reapplication of biochar on the remediation of heavy metal-contaminated soil. Ecotoxicol Environ Saf. 2022b;248:114316. doi: 10.1016/j.ecoenv.2022.114316
  • Shu W, Ye Z, Lan C, et al. Acidification of lead/zinc mine tailings and its effect on heavy metal mobility. Environ Int. 2001;26(5–6):389–394. doi: 10.1016/S0160-4120(01)00017-4
  • Yang S-X, Liao B, Li J-T, et al. Acidification, heavy metal mobility and nutrient accumulation in the soil–plant system of a revegetated acid mine wasteland. Chemosphere. 2010;80(8):852–859. doi: 10.1016/j.chemosphere.2010.05.055
  • Yang SX, Liao B, Yang ZH, et al. Revegetation of extremely acid mine soils based on aided phytostabilization: a case study from southern China. Sci Total Environ. 2016;562:427–434. doi: 10.1016/j.scitotenv.2016.03.208