644
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Comprehensive insights into water remediation: chemical, biotechnological, and nanotechnological perspectives

, , , , , & show all
Article: 2329660 | Received 01 Dec 2023, Accepted 07 Mar 2024, Published online: 20 Mar 2024

References

  • Yadav A, Chowdhary P, Kaithwas G, et al. Toxic metals in environment, threats on ecosystem and bioremediation approaches. In: Das S, Dash HR, (editors) Handbook of metal microbe interactions and bioremediation. Boca Raton, Florida: CRC Press, Taylor & Francis Group, Boca Raton 2017. p. 813.
  • Zainith S, Sandhya S, Saxena G, et al. Microbes an ecofriendly tool for the treatment of industrial wastewater. In: Singh JS, Singh DP, editors. Microbes and environmental management. New Delhi: Studium Press (India) Pvt. Ltd; 2016. p. 78–250.
  • Gricic I, Vujevic D, Sepcic J, et al. Minimization of organic content in simulated industrial a wastewater by Fenton type processes: a case study. J Hazard Mater. 2009;170(2–3):954–961. doi: 10.1016/j.jhazmat.2009.05.060
  • Narmadha D, Kavitha SVM. Treatment of domestic wastewater using natural flocculants. Int J Life Sci Biotechnol Pharma Res. 2012;1(3):206.
  • Kanagare AB, Singh K, Kumar GK, et al. Synthesis of potassium nickel hexacyanoferrate encapsulated polymeric beads for extraction of cesium. Int J Innov Res Sci Eng Technol. 2016;5:265–273. doi: 10.15680/IJIRSET.2015.0501033
  • Shivajirao AP. Treatment of distillery wastewater using membrane technologies. Int J Adv Res Stud. 2012;1(3):275–283.
  • Rajasulochana P, Preethy V. Comparison on efficiency of various techniques in treatment of waste and sewage water – a comprehensive review. Resour Efficient Technol. 2016;2(4):175–184. doi: 10.1016/j.reffit.2016.09.004
  • Kanagare AB, Ajish JK, Singh K, et al. Synthesis of ionically cross-linked N-Succinyl chitosan hydrogel beads for recovery of palladium from acidic aqueous solution. Asian J Mater Chem. 2017;2(2): 60–68. doi: 10.14233/ajmc.2017.AJMC-P39
  • Kumar BL, Gopal DS. Effective role of indigenous microorganisms for sustainable environment. 3 Biotech. 2015;5(6): 867–876. doi: 10.1007/s13205-015-0293-6
  • Prasad KS, Gandhi P, Selvaraj K. Synthesis of green nano iron particles (GnIP) and their application in adsorptive removal of As(III) and As(V) from aqueous solution. Appl Surf Sci. 2014;317:1052–1059. doi: 10.1016/j.apsusc.2014.09.042
  • Shu HY, Chang MC, Yu HH, et al. Reduction of an azo dye acid black 24 solution using synthesized nanoscale zerovalent iron particles. J Colloid Interface Sci. 2007;314(1):89–97. doi: 10.1016/j.jcis.2007.04.071
  • Shin S, Yoon H, Jang J. Polymer-encapsulated iron oxide nanoparticles as highly efficient Fenton catalysts.Catal. Commun. 2008;10(2):178–182. doi: 10.1016/j.catcom.2008.08.027
  • Xu L, Wang J. A heterogeneous Fenton-like system with nanoparticulate zero-valent iron for removal of 4-chloro-3-methyl phenol. J Hazard Mater. 2011;186(1):256–264. doi: 10.1016/j.jhazmat.2010.10.116
  • Li X, Elliot WL, Zhang W.Zero-valent iron nanoparticles for abatement of environmental pollutants: materials and engineering aspects. Crit Rev Solid State Mater Sci. 2006;31(4):111–122. doi: 10.1080/10408430601057611
  • Ajay KG, Mona G. Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications. Biomaterials. 2005;26(18):3995–4021. doi: 10.1016/j.biomaterials.2004.10.012
  • Juliane B, Julian B, Rainer UM. Iron oxide nanoparticles in geomicrobiology: from biogeochemistry to bioremediation. New Biotechnol. 2013;30(6):793–802. doi: 10.1016/j.nbt.2013.03.008
  • Chen C, Jiang X, Kaneti YV, et al. Design and construction of polymerized-glucose coated Fe3O4 magnetic nanoparticles for delivery of aspirin. Powder Technol. 2013;236:157–163. doi: 10.1016/j.powtec.2012.03.008
  • Ana LS, Riansares MO, Jon SL, et al. Nanoparticles: a global vision. Characterization, separation, and quantification methods. Potential Environ Health Impact Anal Methods. 2014;61:38–56. doi: 10.1039/C3AY40517F
  • Yin B, Ma H, Wang S, et al. Electrochemical synthesis of silver nanoparticles under protection of Poly(N-vinylpyrrolidone). J Phys Chem B. 2003;107(34):8898–8904.
  • Bagade AV, Pund SN, Nagwade PA, et al. Ni-doped Mg-zn nano-ferrites: fabrication, characterization, and visible-light-driven photocatalytic degradation of model textile dyes. Catal Commun. 2023;181:106719. doi: 10.1016/j.catcom.2023.106719
  • Smetana AB, Klabunde KJ, Sorensen CM. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation. J Colloid Interface Sci. 2005;284(2):521–526. doi: 10.1016/j.jcis.2004.10.038
  • Kuhn LT, Bojesen A, Timmermann L, et al. Structural and magnetic properties of core shell iron iron oxide nanoparticles. J Phys Condens Matter. 2002;14(49):13551–13567. doi: 10.1088/0953-8984/14/49/311
  • Jayseelan C, Ramkumar R, Rahman AA, et al. Green synthesis of gold nanoparticles using seed aqueous extract of abelmoschus esculentus and its antifungal actvity. Ind Crops Prod. 2013;45:423–429. doi: 10.1016/j.indcrop.2012.12.019
  • Hammani S, Barhoum A, Nagarajan S, et al. Toner waste powder (twp) as a filler for polymer blends (LDPE/HIPS) for enhanced electrical conductivity. Materials. 2019;12(19):3062. doi: 10.3390/ma12193062
  • Sudha PN, Sangeetha K, Vijayalakshmi K, et al. Nanomaterials history, classification, unique properties, production and market. In: Hamdy Makhlouf AS, Barhoum A, editors. Emerging applications of nanoparticles and architectural nanostructures: current prospects and future trends. Amsterdam, The Netherlands: Elsevier Inc.; 2018. pp. 341–384.
  • Liu JL, Bashir S. Advanced nanomaterials and their applications in renewable energy. Amsterdam, The Netherlands: Elsevier Science; 2015.
  • Akpan EI, Shen X, Wetzel B, et al. Design and synthesis of polymer nanocomposites. In: Pielichowski K, Majka TM editors. Polymer composites with functionalized nanoparticles: synthesis, properties, and applications. Amsterdam, The Netherlands: Elsevier; 2018. p. 47–83.
  • Ajish JK, Kanagare AB, Ajish Kumar KS, et al. Self-assembled Glycobis(acrylamide)-stabilized gold nanoparticles for fluorescent turn-on sensing of lectin and Escherichia coli. ACS Appl Nano Mater. 2020;3(2):1307–1317. doi: 10.1021/acsanm.9b02127
  • Wang Z, Hu T, Liang R, et al. Application of zero-dimensional nanomaterials in biosensing. Front Chem. 2020;8:320. doi: 10.3389/fchem.2020.00320
  • Roco MC, Bainbridge WS. Societal implications of nanoscience and nanotechnology: maximizing human benefit. J Nanopart Res. 2005;7(1):1–13. doi: 10.1007/s11051-004-2336-5
  • Albrecht MA, Evan CW, Raston CL. Green chemistry and the health implications of nanoparticles. Green Chem. 2006;8(5):417–432. doi: 10.1039/b517131h
  • Bhattacharyya D, Singh S, Satnalika N, et al. Nanotechnology, big things from a tiny world: a review. Int J U E-Serv Sci Technol. 2009;2: 229–238.
  • Kumar A, Kanagare AB, Banerjee S, et al. Synthesis of cobalt hexacyanoferrate nanoparticles and its hydrogen storage properties. Int J Hydrogen Energy. 2018;43(16):7998–8006. doi: 10.1016/j.ijhydene.2018.03.011
  • Kanagare AB, Yadav AR, Katariya AP, et al. Insights into 4,4′-arylmethylene-bis-1 H -pyrazol-5-ols scaffolds: various synthetic routes and their applications. Chem Select. 2023;8(4):e202204088. doi: 10.1002/slct.202204088
  • Jadhav PM, Kanagare AB, Dhirbassi AB, et al. Recent advances in nanocatalyzed synthesis of Triazoles and tetrazoles and their biological studies. Boca Raton, Florida: CRC Press; 2022. p. 177–200.
  • Katariya AP, Dhas AK, Kanagare AB, et al. Nano-catalyzed synthesis of pyranopyrazole and pyridine scaffolds. Nanopart Green Org Synth. 2023;485–504. doi: 10.1016/B978-0-323-95921-6.00005-6
  • Kanagare AB, Pansare DN, Dhas AK, et al. Nanocatalysis: an efficient tool for the synthesis of Triazines and Tetrazines Nanocatalysis. In: Ameta KL, Kant R, editors. Nanocatalysis -Synthesis of Bioactive Heterocycles. Boca Raton, Florida: CRC Press; 2022. p. 127–146.
  • Kane AL, Bond DR, Gralnick JA. Electrochemical analysis of Shewanella oneidensis engineered to bind gold electrodes. ACS Synth Biol. 2013;2:93–101. doi: 10.1021/sb300042w
  • Lee Y, Loew A, Sun S. Surface- and structure-dependent catalytic activity of Au nanoparticles for oxygen reduction reaction. Chem Mater. 2010;22(3):755–761. doi: 10.1021/cm9013046.
  • Marshall F, Chishala BH, Kapungwe E, et al. Contaminated irrigation water and food safety for the urban and peri urban poor: appropriate measures for monitoring and control from the field research in India and Zambia, Inception report DFID Enkar r8160. Brighton: SPRU, University of Sussex; 2007.
  • Mishra S, Bharagava RN. Toxic and genotoxic effects of hexavalent chromium in environment and its bioremediation strategies. J Environ Sci Health Part C. 2016;34(1):1–34. doi: 10.1080/10590501.2015.1096883
  • Guerra FD, Attia MF, Whitehead DC, et al. Nanotechnology for environmental remediation: materials and applications. Molecules. 2018;23(7):1760. doi: 10.3390/molecules23071760
  • Chowdhary P, More N, Raj A, et al. Characterization and identification of bacterial pathogens from treated tannery wastewater. Microbiol Res Int. 2017b;5(3):30–36. doi: 10.30918/MRI.53.17.016
  • Nandy T, Kaul SN, Shastry S, et al. Wastewater management in cluster of tanneries in Tamil Nadu through implementation of common effluent treatment plants. J Sci Ind Res. 1999;58:475–516.
  • Yadav A, Mishra S, Kaithwas G, et al. 2016a Organic pollutants and pathogenic bacteria in tannery wastewater and their removal strategies. In: Singh J, Singh D, editors Microbes and environmental management. New Delhi: Studium Press (India) Pvt. Ltd; 2016a. p. 101–127.
  • Chowdhury M, Mostafa MG, Biswas TK, et al. Treatment of leather industries effluents by filtration and coagulation process. Water Res Ind. 2013;3:11–22. doi: 10.1016/j.wri.2013.05.002
  • Kumari V, Yadav A, Haq I, et al. Genotoxicity evaluation of tannery effluent treated with newly isolated hexavalent chromium reducing Bacillus cereus. J Environ Manag. 2016;183:204–211. doi: 10.1016/j.jenvman.2016.08.017
  • Yadav A, Raj A, Bharagava RN.Detection and characterization of a multidrug and multimetal resistant enterobacterium Pantoea sp. from tannery wastewater after secondary treatment process. Int J Plant Environ. 2016b;2(2):37–42. doi: 10.18811/ijpen.v2i1-2.6616
  • Kumari V, Sharad K, Izharul H, et al. Effect of tannery effluent toxicity on seed germination á-amylase activity and early seeding growth of mung bean (Vigna Radiata) seeds. Int J Lat Res Sci Technol. 2014;3(4):165–170.
  • Saha NK, Balakrishnan M, Batra VS. Improving industrial water use: case study for an Indian distillery. Resour Conserv Recycl. 2005;43(2):163–174. doi: 10.1016/j.resconrec.2004.04.016
  • CPCB Central Pollution Control Board. Central zonal office Bhopal, a report on assessment of grain based fermentation technology. 2011.
  • Bharagava RN, Chandra R. Biodegradation of the major color containing compounds in distillery wastewater by an aerobic bacterial culture and characterization of their metabolites. Biodegradation. 2010a;21(5):703–711. doi: 10.1007/s10532-010-9336-1
  • Chowdhary P, Raj A, Bharagava RN. Environmental pollution and health hazards from distillery wastewater and treatment approaches to combat the environmental threats: a review. Chemosphere. 2017c;194:229–246. doi: 10.1016/j.chemosphere.2017.11.163
  • Pant D, Adholeya A. Biological approaches for treatment of distillery wastewater: a review. Bioresour Technol. 2007;98(12):2321–2334. doi: 10.1016/j.biortech.2006.09.027
  • Meric S, Lofrano G, Belgiorno V. Treatment of reactive dyes and textile finishing wastewater using Fenton’s oxidation for reuse. International journal of environment and pollution. 2005;23(3):248–258. doi: 10.1504/IJEP.2005.006865
  • Chen W, Westerhoff P, Leenheer JA, et al. Fluorescence excitation−emission matrix regional integration to quantify spectra for Dissolved organic matter. Environ Sci Technol. 2003;37(24):5701–5710. doi: 10.1021/es034354c
  • Mohana S, Acharya BK, Madamwar D. Distillery spent wash: treatment technologies and potential applications. J Hazard Mater. 2009;163(1):12–25. doi: 10.1016/j.jhazmat.2008.06.079
  • Mahimraja S, Bolan NS. Problems and prospects of agricultural use of distillery spent wash in India. In: Super soil, 3rd Australian New Zealand soils conference. University of Sydney, Australia; Dec 5–9, 2004.
  • Ince BK, Zeynep C, Ince O. Biotransformation of malachite green by Saccharomyces cerevisiae MTCC 463. Yeast. 2011;23(4):315–323. doi: 10.1002/yea.1356
  • Yadav BR, Garg A. Treatment of pulp and paper mill effluent using physicochemical processes. IPPTA J. 2011;23:155–160.
  • Mani S, Bharagava RN. Exposure to crystal violet, its toxic genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety. Rev Contam Toxicol. 2016;273:71–104.
  • Zhou H, Smith DW. Advanced technologies in water and wastewater treatment. J Environ Eng Sci. 2002;1(4):247–264. doi: 10.1139/s02-020
  • Chavan RB. Indian textile industry- environmental issue. Indian J Fibre Text Res. 2001;26:11–21.
  • Jayathilakan K, Sultan K, Radhakrishnan K, et al. Utilization of by products and waste material from meat, poultry and fish processing industries: a review. J Food Sci Technol. 2012; 49(3):278–293. doi: 10.1007/s13197-011-0290-7
  • Helkar PB, Sahoo AK, Patil NJ. Review: food industry by products functional food ingredients department of technology. Int J Waste Resour. 2016;6(3):3 doi: 10.4172/2252-5211.1000248
  • Pathak N, Hagare P, Guo W, et al. Australian food processing industry and environmental aspect– a review. International conference on biological civil and engineering. Bali, Indonesia. BCEE; Feb, 3-4, 2015.
  • Russ W, Pittroff RM Utilizing waste products from the food production and processing industries. Crit Rev Food Sci Nutr. 2016;44(2):57–62. doi: 10.1080/10408690490263783
  • Weiland P, Rozzi A. The start-up operation and monitoring of high-rate anaerobic treatment systems: discussion report. Water Sci Technol. 1991;24(8):257–277, 10.2166/wst.1991.0227
  • Ramirez N, Marce RM, Borrull F. Determination of volatile organic compounds in industrial wastewater plant air emission by multi-sorbent adsorption and thermal desorption-gas chromatography-mass spectrometry. Int J Environ Anal Chem. 2011;91(10):911–928. doi: 10.1080/03067310903584073
  • WHO World Health Organization. Air quality guidelines for Europe. 2nd. Copenhagen: WHO Regional Publications, 2000. European series no. 29.
  • USEPA U.S. Environmental Protection Agency. Office of air quality planning cancer risk from outdoor exposure to air toxics EPA-450/1-90-004a. Triangle Park NC: Office of Air Quality Planning and Standards Research; 1990.
  • Lofrano G, Meric S, Zengin GE, et al. Chemical and biological treatment technologies for leather tannery chemicals and wastewater: a review. Sci Total Environ. 2013;461&462:265–281. doi: 10.1016/j.scitotenv.2013.05.004
  • Worch E. Adsorption technology in water treatment fundamental processing and modelling. Berlin: Walter de Gruyter& Co. KG; 2012.p. 1–345.
  • Kurniawan TA, Babel S. A research study on Cr(VI) removal from contaminated wastewater using low cost adsorbents and commercial activated carbon. In: Second international conference on energy and technology towards clean environment (RCETE). Thailand; VI. 2. Phuket. 2003;2:1110–1117.
  • Gillion RJ. Pesticide in US streams and groundwater. Environ Sci Technol. 2007; 41(10):3408–3414. doi: 10.1021/es072531u
  • Kanagare AB, Singh K, Bairwa KK, et al. Dithiodiglycolamide impregnated XAD-16 beads for separation and recovery of palladium from acidic waste. J Env Chem Eng. 2016;4(3):3357–3363. doi: 10.1016/j.jece.2016.06.031
  • Kanagare AB, Singh K, Kumar M, et al. DTDGA impregnated XAD-16 beads for separation of gold from electronic waste. Ind Eng Chem Res. 2016;55(49):12644–12654. doi: 10.1021/acs.iecr.6b03350
  • Romo-Hualde A, Penas FJ, Isasi JR, et al. Extraction of phenols from aqueous solutions by beta-cyclodextrin polymers. Comparison of sorptive capacities with other sorbents. React Funct Polym. 2008;68(1):406–413.
  • Saleh TA, Tuzen M, Sarı A. Effective antimony removal from wastewaters using polymer modified sepiolite: isotherm kinetic and thermodynamic analysis. Chem Eng Res Des. 2022; 184: 215–223.
  • Saleh TA, Sarı A, Tuzen M. Effective adsorption of antimony (III) from aqueous solutions by polyamide-graphene composite as a novel adsorbent. Chem Eng J. 2017;307: 230–238.
  • Pedersen AJ. Characterization and electrolytic treatment of wood combustion fly ash for the removal of cadmium. Biomass Bioenergy. 2003;25(4):447–458 doi: 10.1016/S0961-9534(03)00051-5
  • Oztekin E, Atlin S. Wastewater treatment by electro dialysis system and fouling problems. Online J Sci Technol. 2016;6(1):91–99.
  • Chang DI, Chook H, Jung, et al. Foulant identification and fouling control with iron oxide adsorption in electro dialysis for the desalination of secondary effluent. Desalination. 2009;236(1–3):152–159.
  • Chen GH. Electrochemicals technologies in wastewater treatment. Sep Purif Technol. 2004;38(1):11–41. doi: 10.1016/j.seppur.2003.10.006
  • Mohammadi T, Razmi A, Sadrzadeh M. Effect of operating parameters on Pb+2 separation from wastewater using electrodialysis. Desalination. 2004;167:379–385. doi: 10.1016/j.desal.2004.06.150
  • Lee HJ, Moon SH, Tsai SP. Effects of pulsed electric field on membrane fouling in electro dialysis of NaCl solution containing humate. Sep Purif Technol. 2002;27(2):89–95. doi: 10.1016/S1383-5866(01)00167-8
  • Barakat MA. New trends in removing heavy metals from industrial wastewater. Arab J Chem. 2011;4(4):361–377. doi: 10.1016/j.arabjc.2010.07.019
  • Bose P, Bose MA, Kumar S. Critical evaluation of treatment strategies involving adsorption and chelation for wastewater containing copper, zinc, and cyanide. Adv Environ Res. 2002;7(1):179–195. doi: 10.1016/S1093-0191(01)00125-3
  • Kanagare AB, Singh K, Kumar M, et al. Synthesis of D2EHPA impregnated polymeric beads for extraction of zinc from zinc-rich waste liquor. Curr Appl Polym Sci. 2017;1 (2):193–206. doi: 10.2174/2452271601666170619125415
  • Omelia C. Coagulation and sedimentation in lakes, reservoirs and water treatment plants. Water Sci Technol. 1998;37(2):129. doi: 10.2166/wst.1998.0122
  • USEPA U.S. Environmental Protection Agency. Primer for municipal wastewater treatment systems. Document no. EPA832-R-04-001, Washington. 2004.
  • Lofrano G, Meriç S, Zengin GE, et al. Chemical and biological treatment technologies for leather tannery chemicals and wastewaters: a review. Sci Total Environ. 2013;461–462:265–281. doi: 10.1016/j.scitotenv.2013.05.004
  • Megharaj M, Ramakrishnan B, Venkateswarlu K, et al. Bioremediation approaches for organic pollutants: a critical perspective. Environ Int. 2011;37(8):1362–1375. doi: 10.1016/j.envint.2011.06.003
  • Nassef E. Removal of phosphates from industrial wastewater by chemical precipitation. Eng Sci Technol Int J. 2012;2(3):409–413.
  • Bianco B, Michelis DI, Veglio F. Fenton treatment of complex industrial wastewater: optimization of process condition by surface response method. J Hazard Mater. 2011; 186(2–3):1733–1738. doi: 10.1016/j.jhazmat.2010.12.054
  • Covinch LG, Bengoechea DI, Fenoglio RJ, et al. Advanced oxidation process for wastewater in pulp and paper industry: a review. Am J Environ Eng. 2014;4(3):56–70. doi: 10.5923/j.ajee.20140403.03
  • Gogate PR, Pandit AB. A review of imperative technologies for wastewater treatment I: oxidation technologies at ambient conditions. Adv Environ Res. 2004;8(3–4):501–551. doi: 10.1016/S1093-0191(03)00032-7
  • Krishnan S, Rawindran H, Sinnathambi CM, et al. Comparison of various advanced oxidation processes used in remediation of industrial wastewater laden with recalcitrant pollutants. 29th Symposium of Malaysian chemical engineers IOP conference. Series: Material Science and Engineering 206. Malaysia; 2016.
  • Dixit S, Yadav A, Dwivedi PD, et al. Toxic hazard of leather industry and technologies to combat threat: a review. J Clean Prod. 2015;87:39–49. doi: 10.1016/j.jclepro.2014.10.017
  • Soury R, Jabli M, Saleh TA, et al. Degradation of calmagite by dichloride (5, 10, 15, 20tetraphenylporphyrinato) antimony hexachloridoantimonate: [Sb (TPP) Cl2] SbCl6. Inorg Chem Commun. 2019;104:54–60. doi: 10.1016/j.inoche.2019.03.033
  • Srinivasam SV, Mary GPS, Kalyanaraman C, et al.Combined advanced oxidation and biological treatment of tannery effluent. Clean Tech Environ Policy. 2012; 14(2):251–256. doi: 10.1007/s10098-011-0393-x
  • Rameshraja D, Suresh S. Treatment of tannery wastewater by various oxidation and combined processes. Int J Environ Res. 2011;5(2):349–360.
  • Glaze WH, Kang JW. Advanced oxidation process. Description of a kinetic model for the oxidation of hazardous materials in aqueous media with ozone and hydrogen peroxide in a semi batch reactor. Ind Eng Chem Res. 1989;28(11):1573–1580. doi: 10.1021/ie00095a001
  • Santos WDL, Ramosa T, Pozyak I, et al. Remediation of lignin and its derivatives from pulp and paper industry wastewater by the combination of chemical precipitation and ozonation. J Hazard Mater. 2009;169(1–3):428–434. doi: 10.1016/j.jhazmat.2009.03.152
  • Ananpattarachai J, Kumket P. Chromium (VI) removal using nano-TiO2/chitosan film in photocatalytic system. Int J Environ Waste Manag. 2015;16(1):55–70. doi: 10.1504/IJEWM.2015.070481
  • Skubal LR, Meshkov NK, Rajh T, et al. Cadmium removal from water using thiolactic acid-modified titanium dioxide nanoparticles. Photochem Photobiol A Chem. 2002;148(1–3):393–397. doi: 10.1016/S1010-6030(02)00069-2
  • Van der Bruggen B, Vandecasteele C, Gastel TV, et al. A review of pressure- driven membrane processes in wastewater treatment and drinking water production. Environ Prog. 2003;22(1):46–56.
  • Zhou H, Smith DW. Advanced technologies in water and wastewater treatment. J Environ Sci. 2002;1(4):247–264. doi: 10.1139/s02-020
  • Koyuncu I. Reactive dye removal in dye/salt mixture by nanofiltration membranes containing vinyl sulphone dyes effects of food concentration and cross flow velocity. Desalination. 2002;143(3):243–253. doi: 10.1016/S0011-9164(02)00263-1
  • Frank MJW, Westerink JB, Schokker A. Recycling of industrial waste water by using a two step nanofiltration process for the removal of colour. Desalination. 2002;145(1–3):69–74. doi: 10.1016/S0011-9164(02)00388-0
  • Rao MA, Scelza R, Acevedo F, et al. Enzymes as useful tools for environmental purposes. Chemosphere. 2014;107:145–162. doi: 10.1016/j.chemosphere.2013.12.059
  • Sharma L, Kahandal A, Kanagare A, et al. The multifaceted nature of plant acid phosphatases: purification, biochemical features, and applications. J Enzyme Inhib Med Chem. 2023;38(1):2282379. doi: 10.1080/14756366.2023.2282379
  • Nicell JA. Enzymatic treatment of waters and wastes. In: Tarr MA editor. Chemical degradation methods for wastes and pollutants: environmental and industrial applications. Boca Raton: CRC Press; 2003. p. 384–428.
  • Adam W, Lazarus M, Saha-Mollera C, et al. Biotransformation with peroxidase. Adv Biochem Eng Biotechnol. 1999;63:73–107.
  • Nelson C, Cox M. Principles of biochemistry. 4th edn. New York: W. H. Freeman; 2004 p. 47–50.
  • Chandra R, Chowdhary P. Properties of bacterial laccases and their application in bioremediation of industrial wastes. Environ Sci Process Impacts. 2015;17(2):326–342. doi: 10.1039/C4EM00627E
  • Guenther T, Sack U, Hofrichter M, et al. Oxidation PAH and PAG derivatives by fungal and plant oxidoreductases. J Basic Microbiol. 1998;38(2):113–122. doi: 10.1002/(SICI)1521-4028(199805)38:2<113:AID-JOBM113>3.0.CO;2-D
  • Toumela M, Hatakka A. Oxidative fungal enzymes for bioremediation. In: Agathos A, MooYoung M editors. Comprehensive biotechnology: environmental biotechnology and safety, Vol. 2, Amsterdam: Elsevier; 2011. p. 183–196.
  • Park JW, Park BK, Kim JE. Remediation of soil contaminated with 2,4-dicholrophenol by treatment of minced shepherd’s purse roots. Arch Environ Contam Toxicol. 2006;50(2):191–195. doi: 10.1007/s00244-004-0119-8
  • Biswas MM. Removal of reactive azo dyes from water by Feo reduction followed by peroxidase catalysed polymerization. Canada: University of Windsor; 2004.
  • Barnhardt R. Cytochromes P450 as versatile biocatalyst. J Biotechnol. 2006124(1):128–145. doi: 10.1016/j.jbiotec.2006.01.026
  • Murthy PS, Naidu MM. Sustainable management of coffee industry by-products and value addition – a review. Resour Conserv Recycl. 2012;66:45–58. doi: 10.1016/j.resconrec.2012.06.005
  • Kapoor M, Rajagopal R. Enzymatic bioremediation of organophosphorus insecticides by recombinant organophosphorus hydrolase. Int Biodeter Biodegr. 2011;65(6):896–901. doi: 10.1016/j.ibiod.2010.12.017
  • Porro SC, Martin S, Mellado, et al. Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol. 2003;94(2):295–300.
  • Okonko IO. Shittu OB bioremediation of wastewater and municipal water treatment using latex exudate from calotropis procera (sodium apple). Elec J Env Agricult Food Chem. 2007;6(3):1890–1904.
  • Diez MC. Biological aspects involved in the degradation of organic pollutants. J Soil Sci Plant Nutr. 2010;10(3):244–267. doi: 10.4067/S0718-95162010000100004
  • Chaney RL, Malik M, Li YM, et al. Phytoremediation of soil metals. Curr Opin Biotechnol. 1997;8(3):279–284. doi: 10.1016/S0958-1669(97)80004-3
  • Kabra AN, Khandare RV, Govindwar SP. Development of a bioreactor for remediation of textile effluent and dye mixture: a plant–bacterial synergistic strategy. Water Res. 2012;47(3):1035–1048. doi: 10.1016/j.watres.2012.11.007
  • Oliveira H. Chromium as an environmental pollutant: insights on induced plant toxicity. J Bot. 2012;2012:1–8. Article ID 375843. doi: 10.1155/2012/375843
  • Vyzmazal J. Plants used in constructed wetlands with horizontal subsurface flow: a review. Hydrobiologia. 2011;674(1):133–156. doi: 10.1007/s10750-011-0738-9
  • Bai Y, Liang J, Liu R, et al. Metagenomic analysis reveals microbial diversity and function in the rhizosphere soil of a constructed wetland. Environ Technol. 2014;35(20):2521–2527. doi: 10.1080/09593330.2014.911361
  • Rai PK. Heavy-metal pollution in aquatic ecosystem and its phytoremediation using wetland plants: an eco-sustainable approach. Int J Phyto. 2008;10(2):133–160. doi: 10.1080/15226510801913918
  • Rathod PB, Chappa S, Ajishkumar KS, et al. Cadmium(ii)-loaded Fe3O4@MPTS nanoparticles: preparation and application as catalyst for c-n coupling reactions. ChemistrySelect. 2019;4(40):11796–11800. doi: 10.1002/slct.201902432
  • Saravanan M, Barik SK, Mubarak Ali D, et al. Synthesis of silver nanoparticles from Bacillus brevis (NCIM 2533) and their antibacterial activity against pathogenic bacteria. Microb Pathog. 2018;116:221–226. doi: 10.1016/j.micpath.2018.01.038
  • Klaus T, Joerger R, Olsson E, et al. Silver-based crystalline nanoparticles, microbially fabricated. Proc Natl Acad Sci, USA. 1999;96(24):13611–13614. doi: 10.1073/pnas.96.24.13611
  • Pugazhenthiran N, Anandan S, Kathiravan G, et al. Microbial synthesis of silver nanoparticles by bacillus sp. J Nanopart Res. 2009;11(7):1811. doi: 10.1007/s11051-009-9621-2
  • Husseiny M, El-Aziz MA, Badr Y, et al. Biosynthesis of gold nanoparticles using Pseudomonas aeruginosa. Spectrochim. Acta A Mol Biomol Spectrosc. 2007;67(3–4):1003–1006. doi: 10.1016/j.saa.2006.09.028
  • He S, Guo Z, Zhang Y, et al. Biosynthesis of gold nanoparticles using the bacteria Rhodopseudomonas capsulata. Mater Lett. 2007;61(18):3984–3987. doi: 10.1016/j.matlet.2007.01.018
  • Dhandapani P, Siddarth AS, Kamalasekaran S, et al. Bio-approach: Ureolytic bacteria mediated synthesis of ZnO nanocrystals on cotton fabric and evaluation of their antibacterial properties. Carbohydr Polym. 2014;103:448–455. doi: 10.1016/j.carbpol.2013.12.074
  • Selvarajan E, Mohanasrinivasan V. Biosynthesis and characterization of ZnO nanoparticles using lactobacillus plantarum VITES07. Mater Lett. 2013;112:180–182. doi: 10.1016/j.matlet.2013.09.020
  • Jayaseelan C, Rahuman AA, Kirthi AV, et al. Novel microbial route to synthesize ZnO nanoparticles using Aeromonas hydrophila and their activity against pathogenic bacteria and fungi. Spectrochim Acta A Mol Biomol Spectrosc. 2012;90:78–84. doi: 10.1016/j.saa.2012.01.006
  • Rad M, Taran M, Alavi M. Effect of incubation time, CuSO4 and glucose concentrations on biosynthesis of copper oxide (CuO) nanoparticles with rectangular shape and antibacterial activity: Taguchi method approach. Nano Biomed Eng. 2018;10(1):25–33. doi: 10.5101/nbe.v10i1.p25-33
  • Fatemi M, Mollania N, Momeni-Moghaddam M, et al. Extracellular biosynthesis of magnetic iron oxide nanoparticles by Bacillus cereus strain HMH1: characterization and in vitro cytotoxicity analysis on MCF-7 and 3T3 cell lines. J Biotechnol. 2018;270:1–11. doi: 10.1016/j.jbiotec.2018.01.021
  • Abdel Rahim K, Mahmoud SY, Ali AM, et al. Extracellular biosynthesis of silver nanoparticles using Rhizopus stolonifer. Saudi J Biol Sci. 2017;24(1):208–216. doi: 10.1016/j.sjbs.2016.02.025
  • Jalal M, Ansari M, Alzohairy M, et al. Biosynthesis of silver nanoparticles from Oropharyngeal Candida glabrata isolates and their antimicrobial activity against clinical strains of bacteria and fungi. Nanomaterials. 2018;8(8):586. doi: 10.3390/nano8080586
  • Kalpana V, Kataru BAS, Sravani N, et al. Biosynthesis of zinc oxide nanoparticles using culture filtrates of aspergillus niger: antimicrobial textiles and dye degradation studies. OpenNano. 2018;3:48–55. doi: 10.1016/j.onano.2018.06.001
  • Vijayanandan AS, Balakrishnan RM. Biosynthesis of cobalt oxide nanoparticles using endophytic fungus Aspergillus nidulans. J Environ Manag. 2018;218:442–450. doi: 10.1016/j.jenvman.2018.04.032
  • Nair B, Pradeep T Coalescence of nanoclusters and formation of submicron crystallites assisted by lactobacillus strains. Cryst Growth Des. 2002;2(4):293–298. doi: 10.1021/cg0255164
  • Molnár Z, Bódai V, Szakacs G, et al. Green synthesis of gold nanoparticles by thermophilic filamentous fungi. Sci Rep. 2018;8(1):3943. doi: 10.1038/s41598-018-22112-3
  • Zhang X, He X, Wang K, et al. Different active biomolecules involved in biosynthesis of gold nanoparticles by three fungus species. J Biomed Nanotechnol. 2011;7(2): 245–254. doi: 10.1166/jbn.2011.1285
  • Vahabi K, Ali MG, Sedighe K. Biosynthesis of silver nanoparticles by fungus Trichoderma Reesei (A route for large scale production of AgNPs; Insciences J. 2011;1(1): 65–79. doi: 10.5640/insc.010165
  • Feng L, Huang Z, Ren J, et al. Toward site-specific, homogeneous and highly stable fluorescent silver nanoclusters fabrication on triplex DNA scaffolds. Nucleic Acids Res. 2012;40(16):22. doi: 10.1093/nar/gks387
  • Rotaru A, Dutta S, Jentzsch E, et al. Selective dsDNA-templated formation of copper nanoparticles in solution. Angew Chem. 2010;49(33):5665–5667. doi: 10.1002/anie.200907256
  • Su Y-T, Lan G-Y, Chen W-Y, et al. Site-specific DNA-Programmed growth of fluorescent and functional silver nanoclusters. Chem – Eur J. 2011;17(13):3774–3780.
  • Su Y-T, Lan G-Y, Chen W-Y, et al. Detection of copper ions through recovery of the fluorescence of DNA-Templated copper/silver nanoclusters in the presence of mercaptopropionic AcidAnal. Anal Chem. 2010;82(20):8566–8572. doi: 10.1021/ac101659d
  • Tolaymat TM, El Badawy AM, Genaidy A, et al. An evidence-based environmental perspective of manufactured silver nanoparticle in syntheses and applications: a systematic review and critical appraisal of peer-reviewed scientific papers. Sci Total Environ. 2010;408(5):999–1006.
  • Hebeish A, Shaheen TI, Mehrez E. Solid state synthesis of starch-capped silver nanoparticles int. J Biol Macromol. 2016;87:70–76. doi: 10.1016/j.ijbiomac.2016.02.046
  • Shankar SS, Ahmad A, Pasrichaa R, et al. Bioreduction of chloroaurate ions by geranium leaves and its endophytic fungus yields gold nanoparticles of different shapes. J Mater Chem. 2003;13(7):1822–1826. doi: 10.1039/b303808b
  • Shankar SS, Rai A, Ahmad A, et al. Controlling the optical properties of lemongrass extract synthesized gold nanotriangles and potential application in infrared-absorbing optical coatings. Chem Mater. 2005;17(3):566–572. doi: 10.1021/cm048292g
  • Huang J, Li Q, Sun D, et al. Biosynthesis of silver and gold nanoparticles by novel sundried Cinnamomum camphora leaf. Nanotechnology. 2007;18(10):105104–105114. doi: 10.1088/0957-4484/18/10/105104
  • Shankar SS, Rai A, Ahmad A, et al. Rapid synthesis of Au, Ag, and bimetallic Au core–ag shell nanoparticles using neem (Azadirachta indica) leaf broth. J Colloid Interf Sci. 2004;275(2):496–502. doi: 10.1016/j.jcis.2004.03.003
  • Ankamwar B, Chaudhary M, Sastry M. Gold nanotriangles biologically synthesized using tamarind leaf extract and potential application in vapor sensing. Synth React Inorg Metal-Org Nano-Metal Chem. 2005;35(1):19–26. doi: 10.1081/SIM-200047527
  • Ankamwar B, Damle C, Ahmad A, et al. Biosynthesis of gold and silver nanoparticles using Emblica officinalis fruit extract, their phase transfer and transmetallation in an organic solution. J Nanosci Nanotechnol. 2005;5(10):1665–1671. doi: 10.1166/jnn.2005.184
  • Armendariz V, Gardea-Torresdey JL, Jose-Yacaman M, et al. Gold nanoparticles formation by oat and wheat biomasses. Proceedings – Waste Research Technology Conference. Kansas City, Missouri; 2002 July 30–Aug 1.
  • Gardea-Torresdey JL, Gomez E, Peralta-Videa JR, et al. Alfalfa sprouts: a natural source for the synthesis of silver nanoparticles. Langmuir. 2003;19(4):1357–1361. doi: 10.1021/la020835i
  • Lopeza ML, Parsonsb JG, Videab JRP, et al. An XAS study of the binding and reduction of Au(III) by hop biomass. Microchem J. 2005;81(1):50–56. doi: 10.1016/j.microc.2005.01.011
  • Ghule K, Ghule AV, Liu JY, et al. Microscale size triangular gold prisms synthesized using Bengal gram beans (Cicer arietinum L.) extract and HAuCl4·3H2O: a green biogenic approach. J Nanosci Nanotechnol. 2006;6(12):3746–3751. doi: 10.1166/jnn.2006.608
  • Gardea-Torresdey JL, Parsons JG, Gomez E, et al. Formation and growth of Au nanoparticles inside live alfalfa plants. Am Chem Soc. 2002;2:397–401.
  • Parveen K, Banse V, Ledwani L. Green synthesis of nanoparticles: their advantages and disadvantages. 2016. doi: 10.1063/1.4945168
  • Kolya H, Maiti P, Pandey A, et al. Green synthesis of silver nanoparticles with antimicrobial and azo dye (Congo red) degradation properties using amaranthus gangeticus Linn leaf extract. J Anal Sci Technol. 2015;6(1):33. doi: 10.1186/s40543-015-0074-1
  • Roy P, Das B, Mohanty A, et al. Green synthesis of silver nanoparticles using Azadirachta indica leaf extract and its antimicrobial study. Appl Nanosci. 2017;7(8):843–850. doi: 10.1007/s13204-017-0621-8
  • Kahandal A, Chaudhary S, Methe S, et al. Galactomannan polysaccharide as a biotemplate for the synthesis of zinc oxide nanoparticles with photocatalytic, antimicrobial and anticancer applications. Int j biol macromol. 2023;253:126787. doi: 10.1016/j.ijbiomac.2023.126787
  • Saha J, Begum A, Mukherjee A, et al. A novel green synthesis of silver nanoparticles and their catalytic action in reduction of methylene blue dye. Sustain Environ Res. 2017;27(5):245–250. doi: 10.1016/j.serj.2017.04.003
  • Uddin I, Ahmad K, Khan AA, et al. Synthesis of silver nanoparticles using matricaria recutita (Babunah) plant extract and its study as mercury ions sensor. Sens Biosens Res. 2017;16:62–67. doi: 10.1016/j.sbsr.2017.11.005
  • Vanaja M, Paulkumar K, Baburaja M, et al. Degradation of methylene blue using biologically synthesized silver nanoparticles. Bioinorgan Chem Appl. 2014;1–9. Article ID 742346. doi: 10.1155/2014/742346
  • Patel R, Mehta M. Green synthesis of silver nanoparticles by using fruit and vegetable waste: a review. Int J Eng Res Appl. 2019;9:78–85.
  • Khedkar MA, Nimbalkar PR, Chavan PV, et al. Cauliflower waste utilization for sustainable biobutanol production: revelation of drying kinetics and bioprocess development. Bioprocess Biosyst Eng. 2017;40(10):1493–1506. doi: 10.1007/s00449-017-1806-y
  • Cartea ME, Francisco M, Soengas P, et al. 2011Phenolic compounds in Brassica vegetables. Molecules. 16(1):251–280 doi: 10.3390/molecules16010251
  • Tamileswari R, Nisha MH, Jesurani SS. Analysis of antimicrobial activity silver nanoparticle from the Brassicaceae family vegetables. Int J Eng Sci Res Technol 2015;4:804–811.
  • Singh J, Mehta A, Rawat M, et al. Green synthesis of silver nanoparticles using sun dried tulsi leaves and its catalytic application for 4-nitrophenol reduction. J Environ Chem Eng. 2018;6(1):1468–1474. doi: 10.1016/j.jece.2018.01.054
  • Ranjitham M, Suja R, Caroling G, et al. In vitro evaluation of antioxidant, antimicrobial, anticancer activities and characterisation of Brassica oleracea. Var. Bortrytis. L synthesized silver nanoparticles. Int J Pharm Pharm Sci. 2013;5:239–251.
  • Joseph S, Mathew B. Microwave assisted biosynthesis of silver nanoparticles using the rhizome extract of Alpinia galanga and evaluation of their catalytic and antimicrobial activities. J Nanoparticles. 2014;2014:1–9. doi: 10.1155/2014/967802
  • Dhand V, Soumya L, Bharadwaj S, et al. Green synthesis of silver nanoparticles using coffea arabica seed extract and its antibacterial activity. Mater Sci Eng C Mater Biol Appl. 2016;58:36–43. doi: 10.1016/j.msec.2015.08.018
  • Mukunthan KS, Elumalai EK, Patel TN, et al. Catharanthus roseus: a natural source for the synthesis of silver nanoparticles. Asian Pacific J Trop Biomed. 2011;1(4):270–274. doi: 10.1016/S2221-1691(11)60041-5
  • Birla SS, Tiwari VV, Gade AK, et al. Fabrication of silver nanoparticles by Phoma glomerata and its combined effect against Escherichia coli, Pseudomonas aeruginosa and Staphylococcus aureus. Lett Appl Microbiol. 2009;48:173–179. doi: 10.1111/j.1472-765X.2008.02510.x
  • GnanaJobitha GD, Annadurai G, Kannan C. Green synthesis of silver nanoparticle using Elettaria cardamomom and assessment of its antimicrobial activity. Int J Pharma Sci Res. 2012; 3:323–330
  • Zhiqiang W, Cheng F, Mallavarapu M. Characterization of Iron−Polyphenol nanoparticles synthesized by three plant extracts and their Fenton oxidation of Azo Dye. ACS Sustain Chem Eng. 2014;2(4): 1022–1025 doi: 10.1021/sc500021n
  • Dodoo-Arhin D, Asiedu T, Agyei-Tuffour B, et al. Photocatalytic degradation of Rhodamine dyes using zinc oxide Nanoparticles. Mater Today Proc. 2020;38:809–815. doi: 10.1016/j.matpr.2020.04.597
  • Mariselvama R, Ranjitsingh AJA, Thamaraiselvi C, et al. Degradation of AZO dye using plants-based silver nanoparticles through ultraviolet radiation. J King Saud Univ Sci. 2019;31(4):1363–1365. doi: 10.1016/j.jksus.2019.07.001
  • Murugadoss G, Dinesh Kumar D, Rajesh Kumar M, et al. Silver decorated CeO2 nanoparticles for rapid photocatalytic degradation of textile rose bengal dye. Sci Rep. 2021;11(1):1080. doi: 10.1038/s41598-020-79993-6
  • Muhammad ID, Maria T, Zaib H, et al. Single step green synthesis of nickel and nickel oxide nanoparticles from hordeum vulgare for photocatalytic degradation of methylene blue dye. Inorg Nano-Metal Chem. 2020;50(4)292–297. doi: 10.1080/24701556.2019.1711401
  • Anshu B, Satyesh RA, Gunture K, et al. Sunlight-induced photocatalytic degradation of pollutant dye by highly fluorescent red-emitting Mg-N-embedded carbon dots. ACS Sustainable Chem Eng. 2018;6:1–26.
  • Ijaz F, Shahid S, Khan SA, et al. Green synthesis of copper oxide nanoparticles using abutilon indicum leaf extract: antimicrobial, antioxidant and photocatalytic dye degradation activitie. Trop J Pharm Res. 2017;16(4):743–753. doi: 10.4314/tjpr.v16i4.2
  • Norzahir S, Mohd AR, Muhammad HHM, et al. A novel approach of in-situ electrobiosynthesis of metal oxide nanoparticles using crude plant extract as main medium for supporting electrolyte. Mater Today Proc. 2019;19:1441–1445. doi: 10.1016/j.matpr.2019.11.166
  • Abdolhossien M, Seyedeh RM, Mina S, et al. Using biebersteinia multifida aqueous extract, and the photocatalytic activity of synthesized silver nanoparticles. Orient J Chem. 2018;34(3):1513–1517. doi: 10.13005/ojc/340342
  • Swati R, Arpita R, Navneeta B. Degradation of dyes using biologically synthesized silver and copper nanoparticles. Environ Nanotechnol Monit Manage. 2020;13:100278. doi: 10.1016/j.enmm.2019.100278
  • Ganesan S, Ganesh Babu I, Mahendran D, et al. Green engineering of titanium dioxide nanoparticles using Ageratina altissima, King L & robines HE. Medicinal plant aqueous leaf extracts for enhanced photocatalytic activity. Ann Phytomed. 2017;5(2):69–75. doi: 10.21276/ap.2016.5.2.8
  • Shakeel AK, Sammia S, Basma S, et al.Green synthesis of MnO nanoparticles using abutilon indicum leaf extract for biological, photocatalytic and adsorption activities. Biomolecules. 2020;10(5):785. doi: 10.3390/biom10050785
  • Suresh CM, Anita D, Chanda KG, et al. Green synthesis of copper nanoparticles using Celastrus paniculatus Willd. leaf extract and their photocatalytic and antifungal properties. Biotechnol Reports. 2020;27:e00518. doi: 10.1016/j.btre.2020.e00518
  • Kishore C, Dianxue C, Diaa EF, et al. Green synthesis, characterization and photocatalytic application of silver nanoparticles synthesized by various plant extracts. Arab J Chem. 2020;9:1878–5352.
  • Adeel A, Muhammad U, Qian-Ying L, et al. Plant mediated synthesis of copper nanoparticles by using camelia sinensis leaves extract and their applications in dye degradation. Ferroelectrics. 2019;549(1) 61–69. doi: 10.1080/00150193.2019.1592544
  • Luminita D, Bianca M. Green synthesis of biogenic silver nanoparticles for efficient catalytic removal of harmful organic dyes. Nanomaterials. 2020;10(2):202. doi: 10.3390/nano10020202
  • Zahra S, Mohammad S, Mohammad SA, et al. 3D printed antimicrobial PLA constructs functionalised with zinc-coated halloysite nanotubes-Ag-chitosan oligosaccharide lactate. Mater Technol. 2020;37(1):28–35. doi: 10.1080/10667857.2020.1806188
  • Abdulmohsen A, Maqsood AM, Zaheer K, et al. Biofabrication of Fe nanoparticles in aqueous extract of hibiscus sabdariffa with enhanced photocatalytic activities. Royal Soc Chem Adv. 2017;7(40):25149–25159. doi: 10.1039/C7RA01251A
  • Shahwan T, Sirriah SA, Nairat M, et al. Green synthesis of iron nanoparticles and their application as a Fenton-like catalyst for the degradation of aqueous cationic and anionic dyes. Chem Eng J. 2011;172(1):258–266. doi: 10.1016/j.cej.2011.05.103
  • Nadagouda MN, Castle AB, Murdock RC, et al. In vitro biocompatibility of nanoscale zerovalent iron particles (NZVI) synthesized using tea polyphenols. Green Chem. 2010;12(1):114–122. doi: 10.1039/B921203P
  • Mishra P, Ray S, Sinha S, et al. Facile bio-synthesis of gold nanoparticles by using extract of hibiscus sabdariffa and evaluation of its cytotoxicity against U87 glioblastoma cells under hyperglycemic condition. Biochem Eng J. 2016;105:264–272.
  • Lee SY, Kang D, Jeong S, et al. Photocatalytic degradation of rhodamine B dye by TiO2 and gold nanoparticles supported on a floating porous polydimethylsiloxane sponge under ultraviolet and visible light irradiation. ACS Omega. 2020; 5(8):4233–4241. doi: 10.1021/acsomega.9b04127
  • Singh RK, Behera SS, Singh KR, et al. Biosynthesized gold nanoparticles as photocatalysts for selective degradation of cationic dye and their antimicrobial activity. J Photochem Amp Photobiol A Chem. 2020;400:112704. doi: 10.1016/j.jphotochem.2020.112704
  • Shahana B, Aarti K, Raja S. Facile synthesis of magnetic iron oxide nanoparticles using inedible cynometra ramiflora fruit extract waste and their photocatalytic degradation of methylene blue dye. Mater Res Bull. 2017;8:040.
  • Ebrahim SM, Mina S, Ali R, et al. Plant-mediated synthesis of zinc oxide and copper oxide nanoparticles by using ferulago angulata (schlecht) boiss extract and comparison of their photocatalytic degradation of Rhodamine B (RhB) under visible light irradiation. J Mater Sci Mater Electron. 2017;29 (2):1333–1340. doi: 10.1007/s10854-017-8039-3
  • Rasheed T, Bilal M, Li C, et al. Catalytic potential of bio-synthesized silver nanoparticles using Convolvulus arvensis extract for the degradation of environmental pollutants. J Photochem Photobiol. 2018;181:44–52. doi: 10.1016/j.jphotobiol.2018.02.024
  • Tayyaba S, Maria Z, Tauheeda R, et al. Synthesis of eco-friendly cobalt nanoparticles using celosia argentea plant extract and their efficacy studies as antioxidant, antibacterial, hemolytic and catalytical agent. Arab J Sci Eng. 2019;44(7):6435–6444. 10.1007/s13369-019-03937-0
  • Singh J, Kumar V, Jolly SS, et al. Biogenic synthesis of silver nanoparticles and its photocatalytic applications for removal of organic pollutants in water. J Ind Eng Chem. 2019;80:247–257. doi: 10.1016/j.jiec.2019.08.002
  • Seerangaraj V, Selvam S, Mythili S, et al. Synthesis of eco-friendly copper oxide nanoparticles for fabrication over textile fabrics: characterization of antibacterial activity and dye degradation potential. J Photochem Photobiol, B. 2019;191:143–149. doi: 10.1016/j.jphotobiol.2018.12.026
  • Lalitha K, Jong CA, Esrat JR, et al. Synthesis of panos extract mediated ZnO nano-flowers as photocatalyst for industrial dye degradation by UV illumination. J Photochem Photobiol B Biol. 2019;199:111588. doi: 10.1016/j.jphotobiol.2019.111588
  • Khalida N, Muhammad ZUR, Awais A, et al. Plant extract induced biogenic preparation of silver nanoparticles and their potential as catalyst for degradation of toxic dyes. Coatings. 2020;10(12):1235. doi: 10.3390/coatings10121235
  • Ismat B, Nosheen N, Sadia A, et al. Green synthesis of iron oxide nanoparticles using pomegranate seeds extract and photocatalytic activity evaluation for the degradation of textile dye. 2019;8 (6):6115–6124 J Mater Res Technol 10.1016/j.jmrt.2019.10.006
  • Volesky B. In removal and recovery of heavy metals by Biosorption: Boca Raton, FL: CRC Press, 1990 Vol. 7: p. 7–43.
  • Reimann C, Banks D. Settings action levels for drinking water: are we protecting our health or our economy. Sci Total Environ. 2004;332(1–3):13–21. doi: 10.1016/j.scitotenv.2004.04.007
  • Jain CK, Ali I. Arsenic: occurrence, toxicity and speciation techniques water res. Water Res. 2000;34(17):4304–4312. doi: 10.1016/S0043-1354(00)00182-2
  • Skerfving S, Gerhardsson L, Schütz A, et al. Lead – biological monitoring of exposure and effects.J Trace Elem Exp Med 1998;11(2–3):289–301. doi: 10.1002/(SICI)1520-670X(1998)11:2/3<289:AID-JTRA17>3.0.CO;2-N
  • Soylak M, Elci L, Akkaya Y, et al. On-line preconcentration system for lead determination in water and sediment samples by flow injection-flame atomic absorption spectrometry Anal Lett. 2002;35(3):487–499. doi: 10.1081/AL-120002682
  • Gong Z, Chan HT, Chen Q, et al. Application of nanotechnology in analysis and removal of heavy metals in food and water resources. Nanomater (Basel). 2021;11(7): 1792.
  • Rathod PB, Ajish Kumar KS, Athawale Anjali A, et al. Cadmium(ii)-loaded Fe3O4@MPTS Nanoparticles: Preparation and application as catalyst for C-N coupling reactions. ChemistrySelect. 2019;4(40):11796–11800. doi: 10.1002/slct.201902432
  • Naaz S, Pandey SN. Effects of industrial waste water on heavy metal accumulation, growth and biochemical responses of lettuce (Lactuca sativa L.). J Environ Biol Growth. 2010;31: 273–276.
  • Singh A, Rajeshkumar S, Madhoolika A, et al. Risk management of heavy metal toxicity through contaminated vegetables from wastewater irrigated area of Varanasi, India. Trop Ecol. 2010;51:375–387.
  • Brynhildsen L, Rosswall T. Effects of metals on the microbial mineralization of organic acids. water, Air Soil Pollut. 1997;94(1–2):45–57. doi: 10.1007/BF02407092
  • Sterritt RM, Lester JN. Interactions of heavy metals with bacteria. Sci Tot Environ. 1980;14(1):5–17. doi: 10.1016/0048-9697(80)90122-9
  • Cu NX (2015) The effects of heavy metals, phosphate, lime and sawdust on plant growth and heavy metal accumulation by lettuce. ARPN J Agri Biol Sci. 10:241–246.
  • Aydinalp C, Marinova S. The effects of heavy metals on seed germination and plant growth on alfalfa plant (Medicago sativa). Bulg J Agri Sci. 2009;15: 347–350.
  • Nazar R, Iqbal N, Masood A, et al. Cadmium toxicity in plants and role of mineral nutrients in its alleviation. Amer J Plant Sci. 2012;3(10):1476–1489. doi: 10.4236/ajps.2012.310178
  • Mahmood T, Islam KR, Muhammad S. Toxic effects of heavy metals on growth and tolerance of cereal crops. Pak J Bot. 2007;39:451–462.
  • Rout GR, Das P.Effect of metal toxicity on plant growth and metabolism: I. Zinc Agronomie. 2003;23(1):3–11. doi: 10.1051/agro:2002073
  • Fayigaa AO, Maa LQ, Caoa X, et al. Effects of heavy metals on growth and arsenic accumulation in the arsenic hyper accumulator Pteris vittata L. Environ Pollut. 2004;132(2):289–296. doi: 10.1016/j.envpol.2004.04.020
  • Coppola S, Dumontet S, Portonio M, et al. Effect of cadmium bearing sewage sludge on crop plants and microorganisms in two different soils. Agric Ecosyst Environ. 1988;20(3):181–194. doi: 10.1016/0167-8809(88)90110-7
  • Baccouch S, Chaovi A, El Ferjani E. Nickel toxicity: effects on growth and metabolism of maize. J Plant Nutr. 1998;21(3):577–588. doi: 10.1080/01904169809365425
  • Qdais HA, Moussa H. Removal of heavy metals from wastewater by membrane processes: a comparative study. Desalination. 2004;164(2):105–110. doi: 10.1016/S0011-9164(04)00169-9
  • Doble Amin MT, Alazba AA, Manzoor U. A review of removal of pollutants from water/wastewater using different types of nanomaterials. Advances In Materials Science And Engineering. 2014;2014:1–24. doi: 10.1155/2014/825910
  • Ganzagh MAA, Yousefpour M, Taherian Z. The removal of mercury (II) from water by Ag supported on nanomesoporous silica. J Biol Chem. 2016;9(4): 127–142. doi: 10.1007/s12154-016-0157-5
  • Hashem Stietiya M, Wang JJ. Zinc and cadmium adsorption to aluminum oxide nanoparticles affected by naturally occurring ligands. J Environ Quality. 2016;43(2):498–506. doi: 10.2134/jeq2013.07.0263
  • Wu N, Wei H, Zhang L. Efficient removal of heavy metal ions with biopolymer template synthesized mesoporous titania beads of hundreds of micrometers size. Environ Sci Technol. 2011;46(1):419–425. doi: 10.1021/es202043u
  • Kadirvelu K, Thamaraiselvi K, Namasivayam C. Removal of heavy metals from industrial wastewaters by adsorption onto activated carbon prepared from an agricultural solid waste. Biores Technol. 2001;76(1):63–65. doi: 10.1016/S0960-8524(00)00072-9
  • Kobya M, Demirbas E, Senturk E, et al. Adsorption of heavy metal ions from aqueous solutions by activated carbon prepared from apricot stone. Biores Technol. 2005;96(13):1518–1521. doi: 10.1016/j.biortech.2004.12.005
  • Lin S-H, Juang R-S. Heavy metal removal from water by sorption using surfactant-modified montmorillonite. J Hazard Mater. 2002;92(3):315–326. doi: 10.1016/S0304-3894(02)00026-2
  • Abollino O, Aceto M, Malandrino M, et al. Adsorption of heavy metals on na-montmorillonite. Effect of pH and organic substances. Water Res. 2003;37(7):1619–1627. doi: 10.1016/S0043-1354(02)00524-9
  • Šćiban M, Radetić B, Kevrešan Ž, et al. Adsorption of heavy metals from electroplating wastewater by wood sawdust. Biores Technol. 2007;98(2):402–409. doi: 10.1016/j.biortech.2005.12.014
  • Munaf E, Zein R. The use of rice husk for removal of toxic metals from waste water. Environ Technol. 1997;18(3):359–362. doi: 10.1080/09593331808616549
  • Srinivasan K, Balasubramanian N, Ramakrishna TV. Studies on chromium removal by rice husk carbon. Indian J Environ Health. 1988;30: 376–387.
  • Suemitsu R, Uenishi R, Akashi I, et al. The use of dyestuff-treated rice hulls for removal of heavy metals from waste water. J Appl Polym Sci. 1986;31(1):75–83. doi: 10.1002/app.1986.070310108
  • Tan WT, Ooi ST, Lee CK. Removal of chromium (VI) from solution by coconut husk and palm pressed fibres. Environ Technol. 1993;14(3):277–282. doi: 10.1080/09593339309385290
  • Mohan D, Singh KP. Single- and multi-component adsorption of cadmium and zinc using activated carbon derived from bagasse – an agricultural waste. Water Res. 2002;36(9):2304–2318. doi: 10.1016/S0043-1354(01)00447-X
  • Ayub S, Ali SI, Khan NA, et al. Treatment of wastewater by agricultural waste. Environ Prot Control J. 1998;2:5–8.
  • Lesmana SO, Febriana N, Soetaredjo FE, et al. Studies on potential applications of biomass for the separation of heavy metals from water and wastewater. Biochem Eng J. 2009;44(1):19–41. doi: 10.1016/j.bej.2008.12.009
  • Ahluwalia SS, Goyal D. Microbial and plant derived biomass for removal of heavy metals from wastewater. Biores Technol. 2007;98(12):2243–2257. doi: 10.1016/j.biortech.2005.12.006
  • Srivastava SK, Tyagi R, Pant N. Adsorption of heavy metal ions on carbonaceous material developed from the waste slurry generated in local fertilizer plants. Water Res. 1989;23(9):1161–1165. doi: 10.1016/0043-1354(89)90160-7
  • Kapoor A, Viraraghavan T. Fungal biosorption – an alternative treatment option for heavy metal bearing wastewaters: a review. Bioresource Technology. 1995;53(3):195–206. doi: 10.1016/0960-8524(95)00072-M
  • Li J, Wang X, Zhao G, et al. Metal–organic framework-based materials: superior adsorbents for the capture of toxic and radioactive metal ions. Chem Soc Rev. 2018;47(7):2322–2356. doi: 10.1039/C7CS00543A
  • Singh J, Dutta T, Kim KH, et al. ‘Green’ synthesis of metals and their oxide nanoparticles: applications for environmental remediation. J Nanobiotechnol. 2018;16(84). doi: 10.1186/s12951-018-0408-4
  • Arthiga D, Anthony SP. Selective colorimetric sensing of toxic metal cations by green synthesized silver nanoparticles over a wide pH range. RSC Adv. 2013;3(37):16765–167174. doi: 10.1039/c3ra42308e
  • Abegunde S, Idowu K, Sulaimon A. Plant-mediated iron nanoparticles and their applications as adsorbents for water treatment – A review. J Chem Rev. 2020;2(2): 103–113. doi: 10.33945/SAMI/JCR.2020.2.3
  • Herlekar M, Barve S, Kumar R. Plant-mediated green synthesis of iron. Nanopart J Nanopart. 2014;2014:1–9. doi: 10.1155/2014/140614
  • Rao A, Bankar A, Kumar AR, et al. Removal of hexavalent chromium ions by yarrowia lipolytica cells modified with phyto-inspired FeO/Fe3O4 nanoparticles. J Contam Hydrol. 2013;146:63–73. doi: 10.1016/j.jconhyd.2012.12.008
  • Madhavi V, Prasad TN, Reddy AV, et al. Application of phytogenic zerovalent iron nanoparticles in the adsorption of hexavalent chromium. Spectrochim Acta A. 2013;116:17–25. doi: 10.1016/j.saa.2013.06.045
  • Savasari M, Emadi M, Bahmanyar MA, et al. Optimization of Cd(II) removal from aqueous solution by ascorbic acid-stabilized zero valent iron nanoparticles using response surface methodology. J Ind Eng Chem. 2015;21:1403–1409. doi: 10.1016/j.jiec.2014.06.014
  • Mystrioti C, Xenidis A, Papassiopi N. Reduction of hexavalent chromium with polyphenol-coated nano zero-valent iron: column studies. Desalin Water Treat. 2014;56(5):1162–1170. doi: 10.1080/19443994.2014.941298
  • Shaidatul M, Mohammad Hilni H, Ai Ling T, et al. Plant-extract-mediated SnO2 nanoparticles: synthesis and applications. ACS Sustainable Chem Eng. 2020;8(8):3040–3054.
  • Nikam A, Pagar T, Ghotekar S, et al.A review on plant extract mediated green synthesis of zirconia nanoparticles and their miscellaneous applications. J Chem Rev. 2019;1(3):154–163.
  • Pirtarighat S, Ghannadnia M, Baghshahi S. Green synthesis of silver nanoparticles using the plant extract of Salvia spinosa grown in vitro and their antibacterial activity assessment. J Nanostruct Chem. 2019;9(1):1–9. doi: 10.1007/s40097-018-0291-4
  • Önal ES, Yatkın T, Aslanov T, et al. Biosynthesis and characterization of iron nanoparticles for effective adsorption of Cr (VI). Int J Chem Eng. 2019;2019:1–13. Article ID 2716423. doi: 10.1155/2019/2716423
  • Badruddoza AZM, Shawon ZBZ, Rahman MT, et al. Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem Eng J. 2013;225:607–615. doi: 10.1016/j.cej.2013.03.114
  • Badruddoza AZM, Shawon ZBZ, Rahman MT. Ionically modified magnetic nanomaterials for arsenic and chromium removal from water. Chem Eng J. 2013;225:607–615. doi: 10.1016/j.cej.2013.03.114
  • Ngomsik A, Bee A, Talbot D, et al. Magnetic solid–liquid extraction of Eu(III), La(III), Ni(II) and Co(II) with maghemite nanoparticles. Sep Purif Technol. 2012;86:1–8. doi: 10.1016/j.seppur.2011.10.013
  • Tan L, Xu J, Xue X, et al., (2014) Multifunctional nanocomposite Fe3O4@SiO2–mPD/SP for selective removal of Pb(ii) and Cr(vi) from aqueous solutions. RSC Adv. 4: 45920–45929. 10.1039/C4RA08040H 86
  • Ehrampoush MH, Miria M, Salmani MH, et al. Cadmium removal from aqueous solution by green synthesis iron oxide nanoparticles with tangerine peel extract. J Environ Health Sci Eng. 2015;13(84):1–7. PMID: 26682059; PMCID: PMC4682273. doi: 10.1186/s40201-015-0237-4.
  • Rathod Prakash B, Ajish Kumar KS, Athawale Anjali A, et al. Poly(ethylenimine) functionalized magnetic nanoparticles for sorption of Pb, Cu, and Ni: potential application in catalysis. Separation Sci Technol. 2018;54(10) : 1588–1598. doi: 10.1080/01496395.2018.1520731
  • Nithya K, Sathish A, Kumar PS, et al. Fast kinetics and high adsorption capacity of green extract capped superparamagnetic iron oxide nanoparticles for the adsorption of Ni (II) ions. J Ind Eng Chem. 2018;59:230–241. doi: 10.1016/j.jiec.2017.10.028
  • Gupta VK, Nayak A. Cadmium removal and recovery from aqueous solutions by novel adsorbents prepared from orange peel and Fe2O3 nanoparticles. Chem Eng J. 2012;180:81–90. doi: 10.1016/j.cej.2011.11.006
  • Mahmoud ME, El-Sharkawy RM Promoted adsorptive removal of chromium(vi) ions from water by a green-synthesized hybrid magnetic nanocomposite (NFe3O4Starch-Glu-NFe3O4ED), RSC Adv. 2021;11(24):14829–14843. doi: 10.1039/D1RA00961C