175
Views
0
CrossRef citations to date
0
Altmetric
Original Research

Effects of antimony on the soil enzymes, microbial, and rhizobial activity of legumes

, , , &
Article: 2331771 | Received 08 Jan 2024, Accepted 13 Mar 2024, Published online: 22 Mar 2024

References

  • Hu XY, He M, Li S, et al. The leaching characteristics and changes in the leached layer of antimony-bearing ores from China. J Geochem Explor. 2017;176:76–264. doi: 10.1016/j.gexplo.2016.01.009
  • Yantao D, Bo Y, Yingchao N, Research on the high quality development of China’s antimony mining resource industry. Modern Min. 2020;36(10): 19–21.
  • Wang C, Wan D, Cao X, et al. Spatial distribution characteristic of antimony in typical paddy soil of eastern Hunan province, China. Frontiers Environ Sci. 2021;9. doi: 10.3389/fenvs.2021.661148
  • Zhou S, Deng R, Hursthouse A, Risk assessment of potentially toxic elements pollution from mineral processing steps at xikuangshan antimony plant, Hunan, China. Processes, 2020. 8(1):29. doi:10.3390/pr8010029
  • Yanan W, Zaifu Y, Tao W, et al. Analysis and risk assessment of heavy metals in soils of taipu river basin. Environ Eng. 2019; 37(1): 18–22.
  • Li Y, Lin H, Gao P, et al. Variation in the diazotrophic community in a vertical soil profile contaminated with antimony and arsenic. Environ Pollut. 2021;291. doi: 10.1016/j.envpol.2021.118248
  • Fan Y, Zhu T, Li M, et al. Heavy metal contamination in soil and Brown Rice and human health risk assessment near three mining areas in Central China. J Healthc Eng. 2017;2017:1–9. doi: 10.1155/2017/4124302
  • Zhinan X, Zaifu Y, Lisha G, et al. Preliminary study of antimony freshwater sediment quality criteria. Asian J Ecotoxicol. 2020;15(4):280–287.
  • Maher WA. Antimony in the environment - the new global puzzle. Environ Chem. 2009;6(2):93–94. doi: 10.1071/EN09036
  • Ji Y, Mestrot A, Schulin R, et al. Uptake and transformation of methylated and inorganic antimony in plants. Front Plant Sci. 2018;9. doi: 10.3389/fpls.2018.00140
  • Li C, Hao C, Zhang W, et al. Highny source and geochemical behaviors in mine drainage water in China’s largest antimony mine. Polish J Environ Stud. 2020;29(5):3663–3673. doi: 10.15244/pjoes/114970
  • Wei C, Ge Z, Chu W, et al. Speciation of antimony and arsenic in the soils and plants in an old antimony mine. Environ Exp Bot. 2015;109:31–39. doi: 10.1016/j.envexpbot.2014.08.002
  • Qi C, Liu G, Kang Y, et al. Assessment and distribution of antimony in soils around three coal mines, Anhui, China. J Air Waste Manag Assoc. 2011;61(8):850–857. doi: 10.3155/1047-3289.61.8.850
  • Wang Y, Liu Z, Li Y, et al. On the concept of subcriticality and criticality and a ratio theorem for a branching process in a random environment. Stat Probab Lett. 2017;127:97–103. doi: 10.1016/j.spl.2017.02.023
  • Ren BZ, Zhou YY, Hursthouse, AS et al. Research on the Characteristics and Mechanism of the Cumulative Release of Antimony from an Antimony Smelting Slag Stacking Area under Rainfall Leaching. J Anal Chem. 1997. doi:10.1155/2017/7206876
  • Tang H, Hassan MU, Nawaz M, et al. A review on sources of soil antimony pollution and recent progress on remediation of antimony polluted soils. Ecotoxicol Environ Saf. 2023;266. doi: 10.1016/j.ecoenv.2023.115583
  • Wang WN, Xiao S, Amanze C, et al. Microbial community structures and their driving factors in a typical gathering area of antimony mining and smelting in South China. Environ Sci Pollut Res. 2022;29(33):50070–50084. doi: 10.1007/s11356-022-19394-6
  • Xiao SS, Wang W, Amanze C, et al. Antimony oxidation and whole genome sequencing of Phytobacter sp. X4 isolated from contaminated soil near a flotation site. J Hazard Mater. 2023;445:445. doi: 10.1016/j.jhazmat.2022.130462
  • Xu ZN, Yang Z, Zhu T, et al. Toxicity of soil antimony to earthworm eisenia fetida (savingy) before and after the aging process. Ecotoxicol Environ Saf. 2021;207:207. doi: 10.1016/j.ecoenv.2020.111278
  • Li TF, Chongyi L, Xumei J, et al., Effects of different cultivation strategies on soil nutrients and bacterial diversity in kiwifruit orchards. Eur J Hortic Sci, 2022. 87(1). 87 1 10.17660/eJHS.2022/005
  • Zazueta-Sandoval R, Durón-Castellanos A, Silva-Jiménez H. Peroxidases in YR-1 strain of Mucor circinelloides a potential bioremediator of petroleum-contaminated soils. Ann Microbiol. 2008;58(3):421–426. doi: 10.1007/BF03175537
  • Kozar SF, Symonenko EP, Volkohon VV, et al. Nanocarboxylates of molybdenum and of iron enhance the functional activity of rhizobium radiobacter 204. Appl Nanosci. 2019;9(5):795–800. doi: 10.1007/s13204-018-00939-6
  • Zhao PN, Wang S, Liu D, et al. Study on influence mechanism of biochar on soil nitrogen conversion. Environ Pollut Bioavailabil. 2022;34(1):419–432. doi: 10.1080/26395940.2022.2125445
  • Pereira MG, Espindula A, Valladares GS, et al. Comparison of total nitrogen methods applied for histosols and soil horizons with high organic matter content. Commun Soil Sci Plant Anal. 2006;37(7–8):939–943. doi: 10.1080/00103620600584743
  • DeSantis TZ, Hugenholtz P, Larsen N, et al. Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl environ microbiol. 2006;72(7):5069–5072. doi: 10.1128/AEM.03006-05
  • Quast C, Pruesse E, Yilmaz P, et al., The SILVA ribosomal RNA gene database project: improved data processing and web-based tools. Nucleic Acids Res. 2013;41(Database issue):D590–6. 10.1093/nar/gks1219
  • Koljalg U, Nilsson RH, Abarenkov K, et al. Towards a unified paradigm for sequence-based identification of fungi. Mol Ecol. 2013;22(21):5271–5277. doi: 10.1111/mec.12481
  • Ramette A. Multivariate analyses in microbial ecology. FEMS Microbiol Ecol. 2007;62(2):142–160. doi: 10.1111/j.1574-6941.2007.00375.x
  • Benjamini Y, Hochberg Y, Controlling the false discovery rate - a practical and powerful approach to multiple testing. J R Stat Soc Ser B Stat Methodol. 1995;57(1):289–300.10.1111/j.2517-6161.1995.tb02031.x
  • Rognes T, Flouri T, Nichols B, et al. VSEARCH: a versatile open source tool for metagenomics. PeerJ. 2016;4:4. doi: 10.7717/peerj.2584
  • Bokulich NA, Subramanian S, Faith JJ, et al., Quality-filtering vastly improves diversity estimates from Illumina amplicon sequencing. Nat Methods. 2013;10(1):57–U11. doi:10.1038/nmeth.2276
  • Nilsson RH, Ryberg M, Kristiansson E, et al., Taxonomic reliability of DNA sequences in public sequence databases: a fungal perspective. PLoS One, 2006. 1(1). doi:10.1371/journal.pone.0000059
  • Anderson MJ, Willis TJ. Canonical analysis of principal coordinates: a useful method of constrained ordination for ecology. Ecology. 2003;84(2):511–525. doi: 10.1890/0012-9658(2003)084[0511:CAOPCA]2.0.CO;2
  • Anderson MJ, Ellingsen KE, McArdle BH. Multivariate dispersion as a measure of beta diversity. Ecol Lett. 2006;9(6):683–693. doi: 10.1111/j.1461-0248.2006.00926.x
  • Chen X, Chen HYH, Chen X, et al. Soil labile organic carbon and carbon-cycle enzyme activities under different thinning intensities in Chinese fir plantations. Appl Soil Ecol. 2016;107:162–169. doi: 10.1016/j.apsoil.2016.05.016
  • Xu Z, Yang Z, Zhu T, et al. Ecological improvement of antimony and cadmium contaminated soil by earthworm eisenia fetida: soil enzyme and microorganism diversity. Chemosphere. 2021;273. doi: 10.1016/j.chemosphere.2020.129496
  • An YJ, Kim M. Effect of antimony on the microbial growth and the activities of soil enzymes. Chemosphere. 2009;74(5):654–659. doi: 10.1016/j.chemosphere.2008.10.023
  • Wyszkowska J, Kucharski M, Kucharski J, et al. Activity of dehydrogenases, catalase and urease in copper polluted soil. J Elem. 2009; 14(3):605–617.
  • Wang Y, Yan A, Wu T, et al. Accumulation and remediation of cadmium-polluted soil by a potential cadmium-hyperaccumulator Chlorophytum comosum. energy sources part a-recovery utilization and environmental effects. Energy Sources Part A. 2012;34(16):1523–1533. doi: 10.1080/15567036.2010.489100