368
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Methane gas emission during the spontaneous combustion of sub-bituminous C coal with different organic sulfur content in the temporary stockpile

&
Article: 2334737 | Received 22 Jan 2024, Accepted 20 Mar 2024, Published online: 26 Mar 2024

References

  • Yulianto HD, Maulana FI, Wijaya DI. Performance analysis of the temporary stockpile reclaimer system in the mining industry using the Overall Throughput Effectiveness (OTE) method. E3S Web of Conf. 2023;426(2079):1–274. doi: 10.1051/e3sconf/202342602079
  • Thabari JA, Auzani AS, Nirbito W, et al. Modeling of coal spontaneous fire in a large-scale stockpile. Int J Technol. 2022;14(2):257–266. doi: 10.14716/ijtech.v14i2.5367
  • Chandralal N, Mahapatra D, Shome D, et al. Behaviour of low rank high moisture coal in large stockpile under ambient conditions. Am J Appl Sci Res Form App Nat Sci. 2014;6(1):19–26.
  • Wan-Xing R, Zeng-Hui K, De-Ming W. Causes of spontaneous combustion of coal and its prevention technology in the tunnel Fall of ground of extra-thick coal seam. Procedia Eng. 2011;26:717–724. doi: 10.1016/j.proeng.2011.11.2228
  • Govender S, du Plessis JJL, Webber-Youngman RCW. A critical investigation into spontaneous combustion in coal storage bunkers. J South Afr Inst Min Metall. 2021;121(5):251–259. doi: 10.17159/2411-9717/16-478/2021
  • Gao D, Guo L, Wang F, et al. Study on the spontaneous combustion tendency of coal based on grey relational and multiple regression analysis. ACS Omega. 2021;6(10):6736–6746. doi: 10.1021/acsomega.0c05736
  • Rendana M, Idris WMR, Rahim SA. Changes in air quality during and after large-scale social restriction periods in Jakarta city, Indonesia. Acta Geophysica. 2022;70(5):2161–2169. doi: 10.1007/s11600-022-00873-w
  • Yu Z, Xueqing Z, Wen Y, et al. Pore structure and its impact on susceptibility to coal spontaneous combustion based on multiscale and multifractal analysis. Sci Rep. 2020;10(1):1–14. doi: 10.1038/s41598-020-63715-z
  • Protasov S, Seregin E, Portola V, et al. Study of the parameters of spontaneous fire seats in coal pit rock dumps. E3S Web Of Conf. 2021;315(2007):1–8. doi: 10.1051/e3sconf/202131502007
  • Su G, Jia B, Wang P, et al. Risk identifcation of coal spontaneous combustion based on COWA modifed G1 combination weighting cloud model. Scien Rep. 2022;12(2992):1–7. doi: 10.1038/s41598-022-06972-4
  • Wang W, Liang R, Qi Y, et al. Study on the prediction model of coal spontaneous combustion limit parameters and its application. Fire. 2023;6(381):1–15. doi: 10.3390/fire6100381
  • Zhang L, Li Z, He W, et al. Study on the change of organic sulfur forms in coal during low-temperature oxidation process. Fuel. 2018;222:350–361. doi: 10.1016/j.fuel.2018.02.157
  • Onifade M, Genc B, Wagner N. Influence of organic and inorganic properties of coal-shale on spontaneous combustion liability. Int J Min Sci Technol. 2019;29(6):851–857. doi: 10.1016/j.ijmst.2019.02.006
  • Sari SL, Rahmawati MA, Triyoga A, et al. Impact of sulphur content on coal quality at delta plain depositional environment: case study in geramat district, lahat regency, South Sumatra. J Geosci Eng Environ Tech. 2017;2(03):183–190. doi: 10.24273/jgeet.2017.2.3.301
  • Leitea FFGD, Alves BJR, Nobrega GNN, et al. Checking the progress of using the static chamber method for themeasurement of greenhouse gases in Latin America. Carbon Manage. 2021;12(6):649–661. doi: 10.1080/17583004.2021.1995503
  • Ortega OAC, Beltran PEP, Pineda GSH, et al. Construction and operation of a respiration chamber of the head-box type for methane measurement from cattle. Animals. 2020;10(227):1–11. doi: 10.3390/ani10020227
  • Zhang Y, 2022. Experimental and Theoretical Investigation on the Initiation Mechanism of Low-Rank Coal’s Self-Heating Process [ Dissertation]. Department of Mining Engineering West Virginia University.
  • Gerald B, Patson TF. Parametric and nonparametric tests: a brief review. Int J Stat Distrib Appl. 2021;7(3):78–82. doi: 10.11648/j.ijsd.20210703.12
  • Rendana M, Idris WMR, Rahim SA. Atmospheric methane condition over the South Sumatera peatland during the COVID-19 pandemic. Aerosol Air Qual Res. 2021;21(10):210072. doi: 10.4209/aaqr.210072
  • Lee S, Yoo J, Umar DH. Low-rank coal and poly fatty acid distillate characterization as a preparation of coal upgrading palm oil technology. IOP conf Ser: Earth Environ Sci. 2021;882(120380):1–11. doi: 10.1088/1755-1315/882/1/012038
  • Daulay B, Santoso B, Sodikin AI. Indonesian low rank coal resources to which ubc technology is commercially applicable. Indones Min J. 10(80):18–23.
  • Schweinfurth SP. An introduction to coal quality. In: Pierce BS Dennen KO, editors Chapter C of the National Coal Resource Assessment Overview, U.S. Geological survey. Reston, Virginia; 2009.
  • Belkin HE, Tewalt SJ, Hower JC, et al. Geochemistry and petrology of selected coal samples from Sumatra, Kalimantan, Sulawesi, and Papua, Indonesia. Int J Coal Geol. 2009;77(3–4):260–268. doi: 10.1016/j.coal.2008.08.001
  • Monika I, Sulistyohadi F. Ash deposit characteristics of blended coal in coal combustion process. Indones Min J. 2019;22(1):49–60. doi: 10.30556/imj.Vol22.No1.2019.675
  • Gautama RS, Kusuma GJ, Pujiantoro E, et al., 2018. On the spatial variation of geochemical rock characteristics in coal mining: case bukit asam coal mine in South Sumatra. Indonesia, Conference: International Conference of Acid Rock Drainage & IMWA2018 Annual, Pretoria, South Africa (Tshwane University of Technology), Risk to Opportunity, II, 604–611
  • Santoso B, Daulay B. Coalification trend in South Sumatera Basin. Indones Min J. 2006;9(6):9–21.
  • Rich AL, Patel JT. Carbon disulfide (CS2) mechanisms in formation of atmospheric carbon dioxide (CO2) formation from unconventional shale gas extraction and processing operations and global climate change. Environ Health Insights. 2015;9(s1):35–39. doi: 10.4137/EHI.S15667
  • Gao F, Jia Z, Qin M, et al. Effects of organic sulfur on oxidation spontaneous combustion characteristics of coking coal. Energy Explor Exploit. 2021;40(1):193–205. doi: 10.1177/01445987211049045
  • Qu Z, Sun F, Gao J, et al. A new insight into the role of coal adsorbed water in low-temperature oxidation: enhanced OH radical generation. Combust Flame. 2019;208:27–36. doi: 10.1016/j.combustflame.2019.06.017
  • Li Z, Zhang M, Yang Z, et al. Exothermic characteristics of coal during low-temperature oxidation based on grey correlation method. Energy Rep. 2022;8:6744–6752. doi: 10.1016/j.egyr.2022.05.029
  • Naifu Cao N, Gang Wang G, Yuntao Liang Y, et al. Study on the microscopic mechanism of spontaneous combustion and oxidation kinetics of water-leached coal. J Chem. 2021;2021(5564290):1–15. doi: 10.1155/2021/5564290
  • Onifade M, Genc B. Spontaneous combustion of coals and coal-shales. Int J Min Sci Technol. 2018;28(6):933–940. doi: 10.1016/j.ijmst.2018.05.013
  • Silva J, Castro C, Teixeira S, et al. Evaluation of the gas emissions during the thermochemical conversion of eucalyptus woodchips. Processes. 2022;10(2413):1–12. doi: 10.3390/pr10112413
  • Wang JR, Chen QW, Deng CB, et al. Reaction mechanism of coal spontaneous combustion producing methane. J China Coal Soc. 2009;34(12):1660–1664.
  • Khairulin S, Kerzhentsev M, Salnikov A, et al. Direct selective oxidation of hydrogen sulfide: laboratory, pilot and industrial tests. Catalysts. 2021;11(1109):1–45. doi: 10.3390/catal11091109
  • Ma H, Sichen L, Zhou L, et al. Detailed kinetic modeling of H2S formation during fuel-rich combustion of pulverized coal. Fuel Process Technol. 2020;199(106276):1–10. doi: 10.1016/j.fuproc.2019.106276
  • Gao F, Jia Z, Shan Y, et al. Influence of organic sulfur on low-temperature oxidation of coal and its transition characteristics. ACS Omega. 2022;7(44):39830–39839. doi: 10.1021/acsomega.2c03824
  • Nelson MI, Chen XD. Survey of experimental work on the self-heating and spontaneous combustion of coal. Geol Soc Am Rev Eng Geol. 2007;XVIII:31–83.
  • Zhafira HK, Widiani AS, Nugroho YS. Control of spontaneous combustion of sub-bituminous coal by means of heat exchanger submersion inside the piles, IOP conf. Ser: J Phys Conf Ser. 2018;1107(62004):1–6. doi: 10.1088/1742-6596/1107/6/062004
  • Dong Z, Sun L, Jia T, et al. Rapid contrastive experimental study on the adiabatic spontaneous combustion period of loose lignite. ACS Omega. 2021;6(50):34989–35001. doi: 10.1021/acsomega.1c05667
  • Xi Z, Xi K, Lu L, et al. Study on oxidation characteristics and conversion of sulfur-containing model compounds in coal. Fuel. 2023;331(1):125756. doi: 10.1016/j.fuel.2022.125756
  • Zheng H, Li Y, Zhang L, et al. Study on the effect of organic sulfur on coal spontaneous combustion based on model compounds. Fuel. 2021;289(119846):1–10. doi: 10.1016/j.fuel.2020.119846
  • Yusuf M. The role of organic sulfur in the formation of methane emissions on the spontaneous combustion of coal. J Ecol Eng. 2023;24(4):192–201. doi: 10.12911/22998993/159632
  • Dong X, Wen Z, Wang F, et al. Law of gas production during coal heating oxidation. Int J Min Sci Technol. 2019;29(4):617–620. doi: 10.1016/j.ijmst.2019.06.011
  • Guo J, Quan Y, Cai G, et al. Meticulous graded and early warning system of coal spontaneous combustion based on index gases and characteristic temperature. ACS Omega. 2023;8(7):6801–6812. doi: 10.1021/acsomega.2c07401
  • Deng J, Lei C, Xiao Y, et al. Determination and prediction on “three zones” of coal spontaneous combustion in a gob of fully mechanized caving face. Fuel. 2018;211:458–470. doi: 10.1016/j.fuel.2017.09.027
  • Gui X, Xue H, Zhan X, et al. Measurement and numerical simulation of coal spontaneous combustion in goaf under Y‑type ventilation mode. ACS Omega. 2022;7(11):9406–9421. doi: 10.1021/acsomega.1c06703
  • Zhao J, Ming H, Guo T, et al. Semi‑enclosed experimental system for coal spontaneous combustion for determining regional distribution of high‑temperature zone of coal fire. Int J Coal Sci Technol. 2022;9(62):1–14. doi: 10.1007/s40789-022-00535-8
  • Marangwanda GT, Madyira DM, Babarinde TO. Coal combustion models: an overview. J Phys. 2019;1378(32070):1–13. doi: 10.1088/1742-6596/1378/3/032070
  • Armand CT, Akong O, Bonoma B. Numerical study of burning of biomass in fixed bed. Energy Power Eng. 2019;11(2):35–57. doi: 10.4236/epe.2019.112003
  • Schneider T, Muller D, Kar J. Effect of natural ilmenite on the solid biomass conversion of inhomogeneous fuels in small-scale bubbling fluidized beds. Energies. 2022;15(2747):1–21. doi: 10.3390/en15082747