105
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Response mechanism of Pteris vittata L. under long-term combined heavy metal stress based on transcriptome analysis

, , , &
Article: 2352412 | Received 08 Jan 2024, Accepted 02 May 2024, Published online: 09 May 2024

References

  • Ali H, Khan E, Ilahi I. Environmental chemistry and ecotoxicology of hazardous heavy metals: environmental persistence, toxicity, and bioaccumulation. J Chem. 2019;2019:1–301. doi: 10.1155/2019/6730305
  • Samiksha S, Parul P, Rachana S, et al. Heavy metal tolerance in plants: role of transcriptomics, proteomics, metabolomics, and Ionomics. Front Plant Sci. 2016;6:6. doi: 10.3389/fpls.2015.01143
  • Yan H, Gao Y, Wu L, et al. Potential use of the pteris vittata arsenic hyperaccumulation-regulation network for phytoremediation. J Hazard Mater. 2019;368:386–396. doi: 10.1016/j.jhazmat.2019.01.072
  • Li XD, Xin L, Rong WT, et al. Effect of heavy metals pollution on the composition and diversity of the intestinal microbial community of a pygmy grasshopper (eucriotettix oculatus). Ecotoxicol Environ Saf. 2021;223:112582. doi: 10.1016/J.ECOENV.2021.112582
  • Bai YL, Sun WB, Li N, et al. Spatial distribution and pollution characteristics of heavy metals in soil of Diaojiang river basin based on geostatistics. J Sci Tech. 2017;2(5):409–415. doi: 10.19606/j.cnki.jmst.2017.05.001
  • Zhong XM, Yu Y, Lu SF, et al. Evaluation of heavy metal contamination in soils in mining-intensive areas of Nandan, Guangxi. J Agro-Environ Sci. 2016;35(9):1694–1702. doi: 10.11654/jaes.2016-0351
  • Sanjosé I, Navarro-Roldán F, Infante-Izquierdo MD, et al. Accumulation and effect of heavy metals on the germination and growth of salsola vermiculata L seedlings. Diversity. 2021;13(11):539. doi: 10.3390/D13110539
  • EI Rasafi T, Oukarroum A, Haddioui A, et al. Cadmium stress in plants: a critical review of the effects, mechanisms, and tolerance strategies. Critical Rev Environ Sci Technol. 2020;52(5):675–726. doi: 10.1080/10643389.2020.1835435
  • Malec P, Maleva MG, Prasad MNV, et al. Identification and characterization of Cd-induced peptides in Egeria densa (water weed): putative role in Cd detoxification. Aquatic Toxicol. 2009;95(3):213–221. doi: 10.1016/j.aquatox.2009.09.007
  • Maleva MG, Nekrasova GF, Malec P, et al. Ecophysiological tolerance of Elodea canadensis to nickel exposure. Chemosphere. 2009;77(3):392–398. doi: 10.1016/j.chemosphere.2009.07.024
  • Wan G, Najeeb U, Jilani G, et al. Calcium invigorates the cadmium-stressed brassica napus L. plants by strengthening their photosynthetic system. Environ Sci Pollut Res Int. 2011;18(9):1478–1486. doi: 10.1007/s11356-011-0509-1
  • Mwelwa S, Chungu D, Tailoka F, et al. Data to understand the biotransfer of heavy metals along the soil-plant-edible insect-human food chain in Africa. Data Brief. 2023;49:109434. doi: 10.1016/J.DIB.2023.109434
  • Song S, Wu H, Huang Z, et al. The characteristics of heavy metals in soils along Diaojiang river. Ecolo And Environ. 2005;14:34–37. doi: 10.16258/j.cnki.1674-5906.2005.01.008
  • Chen TB, Wei ZY, Huang ZC, et al. Arsenic hyperaccumulator Pteris vittata and its enrichment characteristics of arsenic. Chinese Sci Bull. 2002;47(3):207–210. doi: 10.1360/02tb9202
  • Ma LQ, Komar KM, Tu C, et al. A fern that hyperaccumulates arsenic. Nature. 2001;409(6820):579. doi: 10.1038/35054664
  • Nguyen NL, Bui VH, Pham HN, et al. Ionomics and metabolomics analysis reveal the molecular mechanism of metal tolerance of pteris vittata L. dominating in a mining site in Thai Nguyen province, Vietnam. Environ Sci Pollut Res. 2022;29(58):87268–87280. doi: 10.1007/s11356-022-21820-8
  • Cui XY, Guo WJ, Chen XJ. Enrichment characteristics of heavy metals by dominant plants in siding lead-zinc abandoned mine area. Metal Mine. 2010;4:180–182.
  • Cui SZ, Xie J, Miao DR. Analysis on characteristics of heavy metal content in soil and dominant plants in a coal mine area of Lincang, Yunnan. J Kunming Uni. 2022;44(3):65–69. doi: 10.14091/j.cnki.kmxyxb.2022.03.013
  • Pertea G, Huang X, Liang F, et al. TIGR gene indices clustering tools (TGICL): a software system for fast clustering of large EST datasets. Bioinformatics. 2003;19(5):651–652. doi: 10.1093/bioinformatics/btg034
  • Li WZ. Fast program for clustering and comparing large sets of protein or nucleotide sequences. Encyclopedia Metagenomics Springer. 2015:173–177. doi: 10.1007/978-1-4899-7478-5
  • Ali R, Madiha H, Shiva NK, et al. Phytoremediation of cadmium: physiological, biochemical, and molecular mechanisms. Biology. 2020;9(7):177. doi: 10.3390/biology9070177
  • Xu Z, Dong M, Peng X, et al. New insight into the molecular basis of cadmium stress responses of wild paper mulberry plant by transcriptome analysis. Ecotoxicol Environ Saf. 2019;171:301–312. doi: 10.1016/j.ecoenv.2018.12.084
  • Zhu H, Ai H, Hu Z, et al. Comparative transcriptome combined with metabolome analyses revealed key factors involved in nitric oxide (NO)-regulated cadmium stress adaptation in tall fescue. BMC Genomics. 2020;21(1):601. doi: 10.1186/s12864-020-07017-8
  • Dong NQ, Lin HX. Contribution of phenylpropanoid metabolism to plant development and plant-environment interactions. J Integr Plant Biol. 2020;63(1):180–209. doi: 10.1111/JIPB.13054
  • Lachman J, Dudjak J, Miholová D, et al. Effect of cadmium on flavonoid content in young barley (hordeum sativum L.) plants. Plant Soil Environ. 2011;51(11):513–516. doi: 10.17221/3625-PSE
  • Oo CW, Kassim MJ, Pizzi A. Characterization and performance of rhizophora apiculata mangrove polyflavonoid tannins in the adsorption of copper (II) and lead (II). Ind Crops Prod. 2009;30(1):152–161. doi: 10.1016/j.indcrop.2009.03.002
  • Chen O, Deng L, Ruan C, et al. Pichia galeiformis induces resistance in postharvest citrus by activating the phenylpropanoid biosynthesis pathway. J Agric Food Chemistry. 2021;69(8):2619–2631. doi: 10.1021/ACS.JAFC.0C06283
  • Fraser CM, Chapple C. The phenylpropanoid pathway in arabidopsis. Arabidopsis Book. 2011;9:e0152. doi: 10.1199/tab.0152
  • Zhang X, Liu C-J. Multifaceted regulations of gateway enzyme phenylalanine ammonia-lyase in the biosynthesis of phenylpropanoids. Mol Plant. 2015;8(1):17–27. doi: 10.1016/j.molp.2014.11.001
  • Zhang C, Wang X, Zhang F, et al. Phenylalanine ammonia-lyase2.1 contributes to the soybean response towards phytophthora sojae infection. Sci Rep. 2017;7(1):7242. doi: 10.1038/s41598-017-07832-2
  • Shi Y-Y, Zhang S-X, Zhao D-R, et al. Gene cloning and structure characterization of phenylalanine ammonia-lyase from Arisaema heterophyllum. Plant Sci J. 2019;37(2):221–229. doi: 10.11913/PSJ.2095-0837.2019.20221
  • Cheng S, Yan J, Meng X, et al. Characterization and expression patterns of a cinnamate-4-hydroxylase gene involved in lignin biosynthesis and in response to various stresses and hormonal treatments in ginkgo biloba. Acta Physiologiae Plantarum. 2018;40(1):1–15. doi: 10.1007/s11738-017-2585-4
  • Ryan KG, Swinny EE, Markham KR, et al. Flavonoid gene expression and UV photoprotection in transgenic and mutant petunia leaves. Phytochemistry. 2002;59(1):23–32. doi: 10.1016/S0031-9422(01)00404-6
  • Sewalt VJH, Ni W, Blount JW, et al. Reduced lignin content and altered lignin composition in transgenic tobacco down-regulated in expression of L-phenylalanine ammonia-lyase or cinnamate 4-hydroxylase. Plant Physiol. 1997;115(1):41–50. doi: 10.1104/PP.115.1.41
  • Millar DJ, Long M, Donovan G, et al. Introduction of sense constructs of cinnamate 4-hydroxylase (CYP73A24) in transgenic tomato plants shows opposite effects on flux into stem lignin and fruit flavonoids. Phytochemistry. 2007;68(11):1497–1509. doi: 10.1016/j.phytochem.2007.03.018
  • Vogt T. Phenylpropanoid biosynthesis. Mol Plant. 2010;3(1):2–20. doi: 10.1093/mp/ssp106
  • JańczakPieniążek M, Cichoński J, Michalik P, et al. Effect of heavy metal stress on phenolic compounds accumulation in Winter wheat plants. Molecules. 2022;28(1):241. doi: 10.3390/MOLECULES28010241
  • Park YJ, Kim NS, Sathasivam R, et al. Impact of copper treatment on phenylpropanoid biosynthesis in adventitious root culture of Althaea officinalis L. Prep Biochem Biotechnol. 2021;52(3):1–9. doi: 10.1080/10826068.2021.1934697
  • Jia X-L, Wang G-L, Xiong F, et al. De Novo assembly, transcriptome characterization, lignin accumulation and anatomic characteristics: novel insights into lignin biosynthesis during celery leaf development. Sci Rep. 2015;5(1):8259–8273. doi: 10.1038/srep08259
  • Liu Q, Luo L, Zheng L. Lignins: biosynthesis and biological functions in plants. Int J Mol Sci. 2018;19(2):335. doi: 10.3390/ijms19020335
  • Smiri M, Jelali N, El Ghoul J. Role for plant peroxiredoxin in cadmium chelation. J Plant Interactions. 2013;8(3):255–262. doi: 10.1080/17429145.2012.711489
  • Du Y, Zhao Q, Chen L, et al. Effect of drought stress during soybean R2-R6 growth stages on sucrose metabolism in leaf and seed. Int J Mol Sci. 2020;21(2):618. doi: 10.3390/ijms21020618
  • Arbona V, Manzi M, Ollas C, et al. Metabolomics as a tool to investigate abiotic stress tolerance in plants. Int J Mol Sci. 2013;14(3):4885–4911. doi: 10.3390/ijms14034885
  • Pilon-Smits EAH, Terry N, Sears T, et al. Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. J Plant Physiol. 1998;152(4–5):525–532. doi: 10.1016/S0176-1617(98)80273-3
  • Lunn JE, Delorge I, Figueroa CM, et al. Trehalose metabolism in plants. Plant J. 2014;79(4):544–567. doi: 10.1111/tpj.12509
  • Laere AV. Trehalose, reserve and/or stress metabolite? 1989. FEMS Microbiol Lett. 1989;63(3):201–209. doi: 10.1111/j.1574-6968.1989.tb03396.x
  • Wang W, Cui H, Xiao X, et al. Genome-wide identification of cotton (Gossypium spp.) trehalose-6-phosphate phosphatase (TPP) gene family members and the role of GhTPP22 in the response to drought stress. Plants. 2022;11(8):1079. doi: 10.3390/PLANTS11081079
  • Fatih D, Ahmet A, Zeki A, et al. Effects of exogenous glycinebetaine and trehalose on cadmium accumulation and biological responses of an aquatic plant (lemna gibba L.). Water Air Soil Pollut. 2011;217(1–4):545–556. doi: 10.1007/s11270-010-0608-5
  • Singer MA, Lindquist S. Multiple effects of trehalose on protein folding in vitro and in vivo. Molecular Cell. 1998;1(5):639–648. doi: 10.1016/s1097-2765(00)80064-7
  • Mostofa MG, Hossain MA, Fujita M, et al. Physiological and biochemical mechanisms associated with trehalose-induced copper-stress tolerance in rice. Sci Rep. 2015;5(1):11433. doi: 10.1038/srep11433
  • Xie Q, Cao S, Zhao C, et al. Study on the molecular mechanisms of Suaeda heteroptera in response to high salt stress. J Dalian Ocean Uni. 2019;34(2):160–167. doi: 10.16535/j.cnki.dlhyxb.2019.02.002
  • Llamas A, Ullrich CI, Sanz A. Cd2+ effects on transmembrane electrical potential difference, respiration and membrane permeability of rice (Oryza sativa L) roots. Plant Soil. 2000;219(1/2):21–28. doi: 10.1023/a:1004753521646
  • Arteca RN, Arteca JM. Heavy-metal-induced ethylene production in Arabidopsis thaliana. J Plant Physiol. 2007;164(11):1480–1488. doi: 10.1016/j.jplph.2006.09.006
  • Jonak C, Nakagami H, Hirt H. Heavy metal stress. Activation of distinct mitogen-activated protein kinase pathways by copper and cadmium. Plant Physiol. 2004;136(2):3276–3283. doi: 10.1104/pp.104.045724
  • Lei GJ, Sun L, Sun Y, et al. Jasmonic acid alleviates cadmium toxicity in Arabidopsis via suppression of cadmium uptake and translocation. J Integr Plant Biol. 2020;62(2):218–227. doi: 10.1111/jipb.12801
  • Rodríguez-Serrano M, Romero-Puertas MC, Pazmiño DM, et al. Cellular response of pea plants to cadmium toxicity: cross talk between reactive oxygen species, nitric oxide, and calcium. Plant Physiol. 2009;150(1):229–243. doi: 10.1104/pp.108.131524
  • Singh S, Singh A, Bashri G, et al. Impact of Cd stress on cellular functioning and its amelioration by phytohormones: an overview on regulatory network. Plant Growth Regul. 2016;80(3):253–263. doi: 10.1007/s10725-016-0170-2
  • Ur Rahman S, Li Y, Hussain S, et al. Role of phytohormones in heavy metal tolerance in plants: a review. Ecological Indicators. 2023;146:109844. doi: 10.1016/J.ECOLIND.2022.109844
  • Droillard M-J, Boudsocq M, Barbier-Brygoo H, et al. Different protein kinase families are activated by osmotic stresses in Arabidopsis thaliana cell suspensions. Involvement of the MAP kinases AtMPK3 and AtMPK6. FEBS Lett. 2002;527(1–3):43–50. doi: 10.1016/s0014-5793(02)03162-9
  • Liu Y, Zhang D, Wang L, et al. Genome-wide analysis of mitogen-activated protein kinase gene family in maize. Plant Mol Biol Rep. 2013;31(6):1446–1460. doi: 10.1007/s11105-013-0623-y
  • Xie G, Kato H, Sasaki K, et al. A cold-induced thioredoxin h of rice, OsTrx23, negatively regulates kinase activities of OsMPK3 and OsMPK6 in vitro. FEBS Lett. 2009;583(17):2734–2738. doi: 10.1016/j.febslet.2009.07.057
  • Yoshida T, Mogami J, Yamaguchi-Shinozaki K. Omics approaches toward defining the comprehensive abscisic acid signaling network in plants. Plant Cell Physiol. 2015;56(6):1043–1052. doi: 10.1093/pcp/pcv060
  • Cutler SR, Rodriguez PL, Finkelstein RR, et al. Abscisic acid: emergence of a core signaling network. Annu Rev Plant Biol. 2010;61(1):651–679. doi: 10.1146/annurev-arplant-042809-112122
  • Fidler J, Graska J, Gietler M, et al. PYR/PYL/RCAR receptors play a vital role in the abscisic-acid-dependent responses of plants to external or internal stimuli. Cells. 2022;11(8):1352. doi: 10.3390/CELLS11081352
  • Shang Y, Dai C, Lee MM, et al. BRI1-associated receptor kinase 1 regulates guard cell ABA signaling mediated by open stomata 1 in arabidopsis. Mol Plant. 2016;9(3):447–460. doi: 10.1016/j.molp.2015.12.014
  • Luan S, Kudla J, Rodriguez-Concepcion M, et al. Calmodulins and calcineurin B–like proteins. Plant Cell. 2002;14(suppl 1):S389–S400. doi: 10.1105/tpc.001115
  • Zhang Y, Wang Z, Liu Y, et al. Plasma membrane-associated calcium signaling modulates cadmium transport. New Phytol. 2022;238(1):313–331. doi: 10.1111/NPH.18698
  • Liu Z-C, Liu Q, Chen C-Y, et al. Twisting mode of supercoil leucine-rich domain mediates peptide sensing in FLS2–flg22–BAK1 complex. Chin Phys B. 2020;29(10):75–84. doi: 10.1088/1674-1056/abaee1
  • Zou Y, Wang S, Zhou Y, et al. Transcriptional regulation of the immune receptor FLS2 controls the ontogeny of plant innate immunity. Plant Cell. 2018;30(11):2779–2794. doi: 10.1105/tpc.18.00297
  • Lu F, Wang H, Wang S, et al. Enhancement of innate immune system in monocot rice by transferring the dicotyledonous elongation factor tu receptor EFR. J Integr Plant Biol. 2015;57(7):641–652. doi: 10.1111/jipb.12306
  • Rapala-Kozik M, Wolak N, Kujda M, et al. The upregulation of thiamine (vitamin B1) biosynthesis in Arabidopsis thaliana seedlings under salt and osmotic stress conditions is mediated by abscisic acid at the early stages of this stress response. Bmc Plant Biol. 2012;12(1):1471–2229. doi: 10.1186/1471-2229-12-2
  • Zhang Y, Lin X, Pang WQ, et al. The function of AK and AMP signaling in body energy sensing and balance. Chinese Bulletin Of Life Sci. 2011;23(5):434–439. doi: 10.13376/j.cbls/2011.05.013
  • Cordoba E, Salmi M, León P. Unravelling the regulatory mechanisms that modulate the MEP pathway in higher plants. J Exp Bot. 2009;60(10):2933–2943. doi: 10.1093/jxb/erp190
  • Enfissi EMA, Fraser PD, Lois L-M, et al. Metabolic engineering of the mevalonate and non-mevalonate isopentenyl diphosphate-forming pathways for the production of health-promoting isoprenoids in tomato. Plant Biotechnol J. 2005;3(1):17–27. doi: 10.1111/j.1467-7652.2004.00091.x
  • Gutensohn M, Hartzell E, Dudareva N. Another level of complexity: the role of metabolic channeling and metabolons in plant terpenoid metabolism. Front Plant Sci. 2022;13:954083. doi: 10.3389/FPLS.2022.954083
  • Seregin IV, Ivanov VB. Physiological aspects of cadmium and lead toxic effects on higher plants. Russ J Plant Physiol. 2001;48(4):523–544. doi: 10.1023/A:1016719901147
  • Demmig-Adams B, Cohu CM, Muller O, et al. Modulation of photosynthetic energy conversion efficiency in nature: from seconds to seasons. Photosynth Res. 2012;113(1–3):75–88. doi: 10.1007/s11120-012-9761-6
  • Murata N, Takahashi S, Nishiyama Y, et al. Photoinhibition of photosystem II under environmental stress. Biochim Biophys Acta Bioenerg. 2007;1767(6):414–421. doi: 10.1016/j.bbabio.2006.11.019
  • Silverberg BA. Cadmium-induced ultrastructural changes in mitochondria of freshwater green algae. Phycologia. 1976;15(2):155–159. doi: 10.2216/i0031-8884-15-2-155.1
  • Khan KY, Ali B, Stoffella PJ, et al. Study amino acid contents, plant growth variables and cell ultrastructural changes induced by cadmium stress between two contrasting cadmium accumulating cultivars of brassica rapa ssp. chinensis L. (pak choi). Ecotoxicol Environ Saf. 2020;200:110748. doi: 10.1016/j.ecoenv.2020.110748
  • Mwamba TM, Li L, Gill RA, et al. Differential subcellular distribution and chemical forms of cadmium and copper in Brassica napus. Ecotoxicol Environ Saf. 2016;134(1):239–249. doi: 10.1016/j.ecoenv.2016.08.021
  • Siedlecka A, Baszyńaski T. Inhibition of electron flow around photosystem I in chloroplasts of Cd-treated maize plants is due to Cd-induced iron deficiency. Physiol Plant. 1993;87(2):199–202. doi: 10.1111/j.1399-3054.1993.tb00142.x
  • Soleimannejad Z, Sadeghipour HR, Abdolzadeh A, et al. Transcriptome alterations of radish shoots exposed to cadmium can be interpreted in the context of leaf senescence. Protoplasma. 2023;260(1):35–62. doi: 10.1007/s00709-022-01758-x