1,414
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Engineered polylactide (PLA)–polyamide (PA) blends for durable applications: 1. PLA with high crystallization ability to tune up the properties of PLA/PA12 blends

, , , , &
Pages 1-36 | Received 24 Jan 2022, Accepted 12 Aug 2022, Published online: 30 Sep 2022

References

  • Ageyeva, T., Kovács, J. G., & Tábi, T. (2022). Comparison of the efficiency of the most effective heterogeneous nucleating agents for poly(lactic acid). Journal of Thermal Analysis and Calorimetry, 147(15), 8199–8211. https://doi.org/10.1007/s10973-021-11145-y
  • Auras, R., Harte, B., & Selke, S. (2004). An overview of polylactides as packaging materials. Macromolecular Bioscience, 4(9), 835–864. https://doi.org/10.1002/mabi.200400043
  • Babu, R. P., O’Connor, K., & Seeram, R. (2013). Current progress on bio-based polymers and their future trends. Progress in Biomaterials, 2(1), 8. https://doi.org/10.1186/2194-0517-2-8.
  • Battegazzore, D., Bocchini, S., & Frache, A. (2011). Crystallization kinetics of poly(lactic acid)-talc composites. Express Polymer Letters, 5(10), 849–858. https://doi.org/10.3144/expresspolymlett.2011.84
  • Carrasco, F., Pagès, P., Gámez-Pérez, J., Santana, O. O., & Maspoch, M. L. (2010). Processing of poly(lactic acid): Characterization of chemical structure, thermal stability and mechanical properties. Polymer Degradation and Stability, 95(2), 116–125. https://doi.org/10.1016/j.polymdegradstab.2009.11.045
  • Chanda, M., & Roy, S. (2008). 1 – Industrial Polymers. In M. Chanda & S. Roy (Eds), Industrial polymers, specialty polymers, and their applications (1st ed., pp. 1–159). CRC Press. https://doi.org/10.1201/9781420080599
  • Chen, P., Zhou, H., Liu, W., Zhang, M., Du, Z., & Wang, X. (2015). The synergistic effect of zinc oxide and phenylphosphonic acid zinc salt on the crystallization behavior of poly (lactic acid). Polymer Degradation and Stability, 122, 25–35. https://doi.org/10.1016/j.polymdegradstab.2015.10.014
  • Degli Esposti, M., Morselli, D., Fava, F., Bertin, L., Cavani, F., Viaggi, D., & Fabbri, P. (2021). The role of biotechnology in the transition from plastics to bioplastics: An opportunity to reconnect global growth with sustainability. FEBS Open Bio, 11(4), 967–983. https://doi.org/10.1002/2211-5463.13119.
  • Drumright, R. E., Gruber, P. R., & Henton, D. E. (2000). Polylactic acid technology. Advanced Materials, 12(23), 1841–1846. https://doi.org/10.1002/1521-4095(200012)12:23<1841::AID-ADMA1841>3.0.CO;2-E
  • Feng, F., & Ye, L. (2010). Structure and property of polylactide/polyamide blends. Journal of Macromolecular Science, Part B, 49(6), 1117–1127. https://doi.org/10.1080/00222341003609179
  • Fenni, S. E., Cavallo, D., & Müller, A. J. (2019). Nucleation and crystallization in bio-based immiscible polyester blends. In M. L. Di Lorenzo & R. Androsch (Eds.), Thermal properties of bio-based polymers (pp. 219–256). Springer International Publishing.
  • Gonzalez-Garzon, M., Shahbikian, S., & Huneault, M. A. (2018). Properties and phase structure of melt-processed PLA/PMMA blends. Journal of Polymer Research, 25(2), 1–13. https://doi.org/10.1007/s10965-018-1438-1
  • Gug, J., & Sobkowicz, M. J. (2016). Improvement of the mechanical behavior of bioplastic poly(lactic acid)/polyamide blends by reactive compatibilization. Journal of Applied Polymer Science, 133(45). https://doi.org/10.1002/app.43350
  • Gupta, B., Revagade, N., & Hilborn, J. (2007). Poly(lactic acid) fiber: An overview. Progress in Polymer Science, 32(4), 455–482. https://doi.org/10.1016/j.progpolymsci.2007.01.005
  • Halley, P. J., & Dorgan, J. R. (2011). Next-generation biopolymers: Advanced functionality and improved sustainability. MRS Bulletin, 36(9), 687–691. https://doi.org/10.1557/mrs.2011.180
  • Harris, A. M., & Lee, E. C. (2008). Improving mechanical performance of injection molded PLA by controlling crystallinity. Journal of Applied Polymer Science, 107(4), 2246–2255. https://doi.org/10.1002/app.27261
  • Hashima, K., Nishitsuji, S., & Inoue, T. (2010). Structure-properties of super-tough PLA alloy with excellent heat resistance. Polymer, 51(17), 3934–3939. https://doi.org/10.1016/j.polymer.2010.06.045
  • Hassan, A., Balakrishnan, H., & Akbari, A. (2013). Polylactic acid based blends, composites and nanocomposites. In S. Thomas, P. M. Visakh, & A. P. Mathew (Eds.), Advances in natural polymers: Composites and nanocomposites (pp. 361–396). Springer Berlin Heidelberg.
  • Jalali Dil, E., Carreau, P. J., & Favis, B. D. (2015). Morphology, miscibility and continuity development in poly(lactic acid)/poly(butylene adipate-co-terephthalate) blends. Polymer, 68, 202–212. https://doi.org/10.1016/j.polymer.2015.05.012
  • Jamshidian, M., Tehrany, E. A., Imran, M., Jacquot, M., & Desobry, S. (2010). Poly-lactic acid: Production, applications, nanocomposites, and release studies. Comprehensive Reviews in Food Science and Food Safety, 9(5), 552–571. https://doi.org/10.1111/j.1541-4337.2010.00126.x.
  • Jiang, L., Shen, T., Xu, P., Zhao, X., Li, X., Dong, W., … Chen, M. (2016). Crystallization modification of poly(lactide) by using nucleating agents and stereocomplexation. e-Polymers, 16(1), 1–13. https://doi.org/10.1515/epoly-2015-0179
  • Jo, M. Y., Ryu, Y. J., Ko, J. H., & Yoon, J.-S. (2012). Effects of compatibilizers on the mechanical properties of abs/PLA composites. Journal of Applied Polymer Science, 125(S2), E231–E238. https://doi.org/10.1002/app.36732
  • Koronis, G., Silva, A., & Fontul, M. (2013). Green composites: A review of adequate materials for automotive applications. Composites Part B: Engineering, 44(1), 120–127. https://doi.org/10.1016/j.compositesb.2012.07.004
  • Kusumi, R., Teranishi, S., Kimura, F., Wada, M., Kimura, T., Horikawa, Y., & Kawai, T. (2018). Crystal orientation of poly(l-lactic acid) induced by magnetic alignment of a nucleating agent. Polymers, 10(6), 653. https://doi.org/10.3390/polym10060653
  • Lasprilla, A. J. R., Martinez, G. A. R., Lunelli, B. H., Jardini, A. L., & Filho, R. M. (2012). Poly-lactic acid synthesis for application in biomedical devices – A review. Biotechnology Advances, 30(1), 321–328. https://doi.org/10.1016/j.biotechadv.2011.06.019.
  • Li, H., & Huneault, M. A. (2007). Effect of nucleation and plasticization on the crystallization of poly(lactic acid). Polymer, 48(23), 6855–6866. https://doi.org/10.1016/j.polymer.2007.09.020
  • Lim, L. T., Auras, R., & Rubino, M. (2008). Processing technologies for poly(lactic acid). Progress in Polymer Science, 33(8), 820–852. https://doi.org/10.1016/j.progpolymsci.2008.05.004
  • Luo, F., Fortenberry, A., Ren, J., & Qiang, Z. (2020). Recent progress in enhancing poly(lactic acid) stereocomplex formation for material property improvement. Frontiers in Chemistry, 8, 688. https://doi.org/10.3389/fchem.2020.00688
  • Ma, N., Liu, W., Ma, L., He, S., Liu, H., Zhang, Z., … Zhu, C. (2020). Crystal transition and thermal behavior of nylon 12. e-Polymers, 20(1), 346–352. https://doi.org/10.1515/epoly-2020-0039
  • McLauchlin, A. R., & Ghita, O. R. (2016). Studies on the thermal and mechanical behavior of PLA-PET blends. Journal of Applied Polymer Science, 133(43), Article ID 44147, 1–11. https://doi.org/10.1002/app.44147
  • Morão, A., & de Bie, F. (2019). Life cycle impact assessment of polylactic acid (PLA) produced from sugarcane in Thailand. Journal of Polymers and the Environment, 27(11), 2523–2539. https://doi.org/10.1007/s10924-019-01525-9
  • Murariu, M., Bonnaud, L., Yoann, P., Fontaine, G., Bourbigot, S., & Dubois, P. (2010). New trends in polylactide (PLA)-based materials: “Green” PLA–calcium sulfate (nano)composites tailored with flame retardant properties. Polymer Degradation and Stability, 95(3), 374–381. https://doi.org/10.1016/j.polymdegradstab.2009.11.032
  • Murariu, M., & Dubois, P. (2016). PLA composites: From production to properties. Advanced Drug Delivery Reviews, 107, 17–46. https://doi.org/10.1016/j.addr.2016.04.003.
  • Murariu, M., Dechief, A.-L., Ramy-Ratiarison, R., Paint, Y., Raquez, J.-M., & Dubois, P. (2015). Recent advances in production of poly(lactic acid) (PLA) nanocomposites: A versatile method to tune crystallization properties of PLA. Nanocomposites, 1(2), 71–82. https://doi.org/10.1179/2055033214Y.0000000008
  • Murariu, M., Doumbia, A., Bonnaud, L., Dechief, A. L., Paint, Y., Ferreira, M., … Dubois, P. (2011). High-performance polylactide/ZnO nanocomposites designed for films and fibers with special end-use properties. Biomacromolecules, 12(5), 1762–1771. https://doi.org/10.1021/bm2001445.
  • Murariu, M., Laoutid, F., Dubois, P., Fontaine, G., Bourbigot, S., Devaux, E., … Solarski, S. (2014). Chapter 21 – Pathways to biodegradable flame retardant polymer (nano)composites. In C. D. Papaspyrides & P. Kiliaris (Eds.), Polymer green flame retardants (pp. 709–773). Elsevier.
  • Murariu, M., Paint, Y., Murariu, O., Raquez, J.-M., Bonnaud, L., & Dubois, P. (2015). Current progress in the production of PLA–ZnO nanocomposites: Beneficial effects of chain extender addition on key properties. Journal of Applied Polymer Science, 132(48), Article ID 42480, 1–11. https://doi.org/10.1002/app.42480
  • Nagarajan, V., Mohanty, A. K., & Misra, M. (2016). Perspective on polylactic acid (PLA) based sustainable materials for durable applications: Focus on toughness and heat resistance. ACS Sustainable Chemistry & Engineering, 4(6), 2899–2916. https://doi.org/10.1021/acssuschemeng.6b00321
  • Nam, B.-U., & Son, Y. (2020). Enhanced impact strength of compatibilized poly(lactic acid)/polyamide 11 blends by a crosslinking agent. Journal of Applied Polymer Science, 137(35), 49011. https://doi.org/10.1002/app.49011
  • Pantani, R., Gorrasi, G., Vigliotta, G., Murariu, M., & Dubois, P. (2013). PLA-ZnO nanocomposite films: Water vapor barrier properties and specific end-use characteristics. European Polymer Journal, 49(11), 3471–3482. https://doi.org/10.1016/j.eurpolymj.2013.08.005
  • Patel, R., Ruehle, D. A., Dorgan, J. R., Halley, P., & Martin, D. (2014). Biorenewable blends of polyamide-11 and polylactide. Polymer Engineering & Science, 54(7), 1523–1532. https://doi.org/10.1002/pen.23692
  • Penco, M., Spagnoli, G., Peroni, I., Rahman, M. A., Frediani, M., Oberhauser, W., & Lazzeri, A. (2011). Effect of nucleating agents on the molar mass distribution and its correlation with the isothermal crystallization behavior of poly(l-lactic acid). Journal of Applied Polymer Science, 122(6), 3528–3536. https://doi.org/10.1002/app.34761
  • Qu, Z., Bu, J., Pan, X., & Hu, X. (2018). Probing the nanomechanical properties of PLA/PC blends compatibilized with compatibilizer and nucleation agent by AFM. Journal of Polymer Research, 25(6), 138. https://doi.org/10.1007/s10965-018-1529-z
  • Raj, A., Samuel, C., Malladi, N., & Prashantha, K. (2020). Enhanced (thermo)mechanical properties in biobased poly(l-lactide)/poly(amide-12) blends using high shear extrusion processing without compatibilizers. Polymer Engineering & Science, 60(8), 1902–1916. https://doi.org/10.1002/pen.25426
  • Raj, A., Samuel, C., & Prashantha, K. (2020). Role of compatibilizer in improving the properties of PLA/PA12 blends. Frontiers in Materials, 7, Article ID 193, 1–12. https://doi.org/10.3389/fmats.2020.00193
  • Raquez, J.-M., Habibi, Y., Murariu, M., & Dubois, P. (2013). Polylactide (PLA)-based nanocomposites. Progress in Polymer Science, 38(10–11), 1504–1542. https://doi.org/10.1016/j.progpolymsci.2013.05.014
  • Rasal, R. M., Janorkar, A. V., & Hirt, D. E. (2010). Poly(lactic acid) modifications. Progress in Polymer Science, 35(3), 338–356. https://doi.org/10.1016/j.progpolymsci.2009.12.003
  • Rasselet, D., Caro-Bretelle, A.-S., Taguet, A., & Lopez-Cuesta, J.-M. (2019). Reactive compatibilization of PLA/PA11 blends and their application in additive manufacturing. Materials, 12(3), 485. https://doi.org/10.3390/ma12030485
  • Rezvani Ghomi, E., Khosravi, F., Saedi Ardahaei, A., Dai, Y., Neisiany, R. E., Foroughi, F., … Ramakrishna, S. (2021). The life cycle assessment for polylactic acid (PLA) to make it a low-carbon material. Polymers, 13(11), 1854. https://doi.org/10.3390/polym13111854
  • Rydz, J., Sikorska, W., Kyulavska, M., & Christova, D. (2014). Polyester-based (bio)degradable polymers as environmentally friendly materials for sustainable development. International Journal of Molecular Sciences, 16(1), 564–596. https://doi.org/10.3390/ijms16010564
  • Saeidlou, S., Huneault, M. A., Li, H., & Park, C. B. (2012). Poly(lactic acid) crystallization. Progress in Polymer Science, 37(12), 1657–1677. https://doi.org/10.1016/j.progpolymsci.2012.07.005
  • Saini, P., Arora, M., & Kumar, M. N. V. R. (2016). Poly(lactic acid) blends in biomedical applications. Advanced Drug Delivery Reviews, 107, 47–59. https://doi.org/10.1016/j.addr.2016.06.014.
  • Samuel, C., Raquez, J.-M., & Dubois, P. (2013). PLLA/PMMA blends: A shear-induced miscibility with tunable morphologies and properties? Polymer, 54(15), 3931–3939. https://doi.org/10.1016/j.polymer.2013.05.021
  • Sangroniz, L., Gancheva, T., Favis, B. D., Müller, A. J., & Santamaria, A. (2021). Rheology of complex biobased quaternary blends: Poly(lactic acid) [poly(ethylene oxide)]/poly(ether-b-amide)/poly(amide 11). Journal of Rheology, 65(3), 437–451. https://doi.org/10.1122/8.0000202
  • Shaghaleh, H., Xu, X., & Wang, S. (2018). Current progress in production of biopolymeric materials based on cellulose, cellulose nanofibers, and cellulose derivatives. RSC Advances, 8(2), 825–842. https://doi.org/10.1039/C7RA11157F.
  • Shakoor, A., & Thomas, N. L. (2014). Talc as a nucleating agent and reinforcing filler in poly(lactic acid) composites. Polymer Engineering & Science, 54(1), 64–70. https://doi.org/10.1002/pen.23543
  • Silva, T. F. d., Menezes, F., Montagna, L. S., Lemes, A. P., & Passador, F. R. (2019). Preparation and characterization of antistatic packaging for electronic components based on poly(lactic acid)/carbon black composites. Journal of Applied Polymer Science, 136(13), 47273. https://doi.org/10.1002/app.47273
  • Stoclet, G., Seguela, R., & Lefebvre, J. M. (2011). Morphology, thermal behavior and mechanical properties of binary blends of compatible biosourced polymers: Polylactide/polyamide11. Polymer, 52(6), 1417–1425. https://doi.org/10.1016/j.polymer.2011.02.002
  • Suryanegara, L., Okumura, H., Nakagaito, A. N., & Yano, H. (2011). The synergetic effect of phenylphosphonic acid zinc and microfibrillated cellulose on the injection molding cycle time of PLA composites. Cellulose, 18(3), 689–698. https://doi.org/10.1007/s10570-011-9515-1
  • Teixeira, S., Eblagon, K. M., Miranda, F. R., Pereira, M. F., & Figueiredo, J. L. (2021). Towards controlled degradation of poly(lactic) acid in technical applications. Journal of Carbon Research, 7(2), 42. https://doi.org/10.3390/c7020042
  • Tejada-Oliveros, R., Gomez-Caturla, J., Sanchez-Nacher, L., Montanes, N., & Quiles-Carrillo, L. (2021). Improved toughness of polylactide by binary blends with polycarbonate with glycidyl and maleic anhydride-based compatibilizers. Macromolecular Materials and Engineering, 306(12), 2100480. https://doi.org/10.1002/mame.202100480
  • Tomita, K., Hayashi, N., Ikeda, N., & Kikuchi, Y. (2003). Isolation of a thermophilic bacterium degrading some nylons. Polymer Degradation and Stability, 81(3), 511–514. https://doi.org/10.1016/S0141-3910(03)00151-4
  • Tripathi, N., Misra, M., & Mohanty, A. K. (2021). Durable polylactic acid (PLA)-based sustainable engineered blends and biocomposites: Recent developments, challenges, and opportunities. ACS Engineering Au, 1(1), 7–38. https://doi.org/10.1021/acsengineeringau.1c00011
  • Ucpinar Durmaz, B., & Aytac, A. (2022). Investigation of the mechanical, thermal, morphological and rheological properties of bio-based polyamide11/poly(lactic acid) blend reinforced with short carbon fiber. Materials Today Communications, 30, 103030. https://doi.org/10.1016/j.mtcomm.2021.103030
  • Walha, F., Lamnawar, K., Maazouz, A., & Jaziri, M. (2016). Rheological, morphological and mechanical studies of sustainably sourced polymer blends based on poly(lactic acid) and polyamide 11. Polymers, 8(3), 61. https://doi.org/10.3390/polym8030061
  • Wei, X.-F. D., Vico, L., Larroche, P., Kallio, K. J., Bruder, S., Bellander, M., … Edenqvist, M. S. (2019). Ageing properties and polymer/fuel interactions of polyamide 12 exposed to (bio)diesel at high temperature. Npj Materials Degradation, 3(1) https://doi.org/10.1038/s41529-018-0065-y
  • Wu, N., & Wang, H. (2013). Effect of zinc phenylphosphonate on the crystallization behavior of poly(l-lactide). Journal of Applied Polymer Science, 130(4), 2744–2752. https://doi.org/10.1002/app.39471
  • Wypych, A., & Wypych, G. (2021). 3 – Nucleating agents. In A. Wypych & G. Wypych (Eds.), Databook of nucleating agents (2nd ed., pp. 17–376). ChemTec Publishing.
  • Yemisci, F., & Aytac, A. (2017). Compatibilization of poly(lactic acid)/polycarbonate blends by different coupling agents. Fibers and Polymers, 18(8), 1445–1451. https://doi.org/10.1007/s12221-017-6671-4
  • Yoo, H. M., Jeong, S.-Y., & Choi, S.-W. (2021). Analysis of the rheological property and crystallization behavior of polylactic acid (Ingeo™ biopolymer 4032D) at different process temperatures. e-Polymers, 21(1), 702–709. https://doi.org/10.1515/epoly-2021-0071
  • Zhang, J., Yan, D.-X., Xu, J.-Z., Huang, H.-D., Lei, J., & Li, Z.-M. (2012). Highly crystallized poly (lactic acid) under high pressure. AIP Advances, 2(4), 042159. https://doi.org/10.1063/1.4769351
  • Zhao, X., Hu, H., Wang, X., Yu, X., Zhou, W., & Peng, S. (2020). Super tough poly(lactic acid) blends: A comprehensive review. RSC Advances, 10(22), 13316–13368. https://doi.org/10.1039/D0RA01801E.