1,965
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Copper alloys for additive manufacturing: Laser powder bed fusion of CuCr1Zr by using a green qcw-laser

, , , &
Article: 2115945 | Received 01 Dec 2021, Accepted 12 Aug 2022, Published online: 13 Oct 2022

References

  • Artzt, K., Siggel, M., Kleinert, J., Riccius, J., Requena, G., & Haubrich, J. (2020). Pyrometric-based melt pool monitoring study of CuCr1Zr processed using L-PBF. Materials 13(20), 4626. doi:10.3390/ma13204626
  • Becker, D. (2014). Selektives Laserschmelzen von Kupfer und Kupferlegierungen (PhD thesis), RWTH Aachen, Germany.
  • Bergström, D., Powell, J., & Kaplan, A. (2007). The absorptance of steels to Nd:YLF and Nd:YAG laser light at room temperature. Applied Surface Science, 253(11), 5017–5028. doi:10.1016/j.apsusc.2006.11.018
  • Blom, A., Dunias, P., van Engen, P., Hoving, W., & Kramer, J. d. (2003). Process spread reduction of laser microspot welding of thin copper parts using real-time control. Paper presentated at the High-Power Lasers and Applications, San Jose, CA, 25 January 2003, p. 493. doi:10.1117/12.478612
  • Caiazzo, F., Alfieri, V., & Casalino, G. (2020). On the relevance of volumetric energy density in the investigation of Inconel 718 laser powder bed fusion. Materials, 13(3), 538. doi:10.3390/ma13030538
  • Cline, H. E., & Anthony, T. R. (1977). Heat treating and melting material with a scanning laser or electron beam. Journal of Applied Physics, 48(9), 3895–3900. doi:10.1063/1.324261
  • Colopi, M., Caprio, L., Demir, A. G., & Previtali, B. (2018). Selective laser melting of pure Cu with a 1 kW single mode fiber laser. Procedia CIRP, 74, 59–63. doi:10.1016/j.procir.2018.08.030
  • Colopi, M., Demir, A. G., Caprio, L., & Previtali, B. (2019). Limits and solutions in processing pure Cu via selective laser melting using a high-power single-mode fiber laser. The International Journal of Advanced Manufacturing Technology, 104(5–8), 2473–2486. doi:10.1007/s00170-019-04015-3
  • Deutsches Kupfer Institut Berufsverband e.V. (2005). ‘CuCr1Zr: Werkstoff-Datenblatt’
  • Deutsches Kupfer Institut Berufsverband e.V. (2012). ed.: ‘Niedriglegierte Kupferwerkstoffe: Eigenschaften, Verarbeitung, Verwendung’
  • Dies, K. (1967). Kupfer und Kupferlegierungen in der Technik. Heidelberg, Berlin: Springer.
  • Gokcekaya, O., Ishimoto, T., Hibino, S., Yasutomi, J., Narushima, T., & Nakano, T. (2021). Unique crystallographic texture formation in Inconel 718 by laser powder bed fusion and its effect on mechanical anisotropy. Acta Materialia, 212, 116876. doi:10.1016/j.actamat.2021.116876
  • Graf, T., Berger, P., Weber, R., Hügel, H., Heider, A., & Stritt, P. (2015). Analytical expressions for the threshold of deep-penetration laser welding. Laser Physics Letters, 12(5), 056002. doi:10.1088/1612-2011/12/5/056002
  • Guan, P., Chen, X., Liu, P., Sun, F., Zhu, C., Zhou, H., … Zhu, Y. (2019). Effect of selective laser melting process parameters and aging heat treatment on properties of CuCrZr alloy. Materials Research Express, 6(11), 1165c1. doi:10.1088/2053-1591/ab4e2f
  • Guschlbauer, R., Momeni, S., Osmanlic, F., & Körner, C. (2018). Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties. Materials Characterization, 143, 163–170. doi:10.1016/j.matchar.2018.04.009
  • Haase, C., Tang, F., Wilms, M. B., Weisheit, A., & Hallstedt, B. (2017). Combining thermodynamic modeling and 3D printing of elemental powder blends for high-throughput investigation of high-entropy alloys – Towards rapid alloy screening and design. Materials Science and Engineering A, 688, 180–189. doi:10.1016/j.msea.2017.01.099
  • Heider, A., Weber, R., Herrmann, D., Herzog, P., & Graf, T. (2015). Power modulation to stabilize laser welding of copper. Journal of Laser Applications, 27(2), 022003. doi:10.2351/1.4906127
  • Ikeshoji, T.-T., Nakamura, K., Yonehara, M., Imai, K., & Kyogoku, H. (2018). Selective Laser Melting of Pure Copper. Jom Journal of the Minerals Metals and Materials Society, 70(3), 396–400. doi:10.1007/s11837-017-2695-x
  • Jahns, K., Bappert, R., Böhlke, P., & Krupp, U. (2020). Additive manufacturing of CuCr1Zr by development of a gas atomization and laser powder bed fusion routine. The International Journal of Advanced Manufacturing Technology, 107(5–6), 2151–2161. doi:10.1007/s00170-020-04941-7
  • Mishurova, T., Artzt, K., Haubrich, J., Requena, G., & Bruno, G. (2019). Exploring the correlation between subsurface residual stresses and manufacturing parameters in laser powder bed fused Ti-6Al-4V. Metals, 9(2), 261. doi:10.3390/met9020261
  • Stocker, T. C., & Steinke, I. (2017). Statistik. Grundlagen und Methodik. Berlin, Germany; Boston, Massachusetts: De Gruyter Oldenbourg.
  • Sugioka, K., Meunier, M., & Piqué, A. (2010). Laser precision microfabrication. Heidelberg, Berlin: Springer.
  • Tenwick, M. J., & Davies, H. A. (1988). Enhanced strength in high conductivity copper alloys. Materials Science and Engineering, 98, 543–546. doi:10.1016/0025-5416(88)90226-1
  • Uhlmann, E., Tekkaya, A. E., Kashevko, V., Gies, S., Reimann, R., & John, P. (2016). Qualification of CuCr1Zr for the SLM process (pp. 173–182). Germany: Dortmund.
  • Wallis, C., & Buchmayr, B. (2019). Effect of heat treatments on microstructure and properties of CuCrZr produced by laser-powder bed fusion. Materials Science and Engineering A, 744, 215–223. doi:10.1016/j.msea.2018.12.017
  • Yusuf, S. M., & Gao, N. (2017). Influence of energy density on metallurgy and properties in metal additive manufacturing. Materials Science and Technology, 33(11), 1269–1289. doi:10.1080/02670836.2017.1289444