892
Views
0
CrossRef citations to date
0
Altmetric
Review Article

Creep strength boosted by a high-density of stable nanoprecipitates in high-chromium steels

, , ORCID Icon, , , , , , & show all
Article: 2118082 | Received 06 Jan 2022, Accepted 23 Aug 2022, Published online: 31 May 2023

References

  • Abe, F. (2008). Effect of boron on creep deformation behavior and microstructure evolution in 9% Cr steel at 650°C. International Journal of Materials Research, 99(4), 387–394. doi:10.3139/146.101650
  • Abe, F. (2015). Creep behavior, deformation mechanisms, and creep life of Mod.9Cr-1Mo steel. Metallurgical and Materials Transactions A, 46(12), 5610–5625. doi:10.1007/s11661-015-3144-5
  • Abe, F., Horiuchi, T., Taneike, M., & Sawada, K. (2004). Stabilization of martensitic microstructure in advanced 9Cr steel during creep at high temperature. Materials Science and Engineering: A, 378(1-2), 299–303. doi:10.1016/j.msea.2003.11.073
  • Altstadt, E., Serrano, M., Houska, M., & García-Junceda, A. (2016). Effect of anisotropic microstructure of a 12Cr-ODS steel on the fracture behaviour in the small punch test. Materials Science and Engineering: A, 654, 309–316. doi:10.1016/j.msea.2015.12.055
  • Anderson, T. L. (2017). Fracture mechanics: fundamentals and applications. Boca Raton, FL, USA: CRC press, Taylor & Francis Group.
  • Balzar, D., & Ledbetter, H. (1993). Voigt-function modeling in Fourier analysis of size-and strain-broadened X-ray diffraction peaks. Journal of Applied Crystallography, 26(1), 97–103. doi:10.1107/S0021889892008987
  • Benjamin, J. S. (1970). Dispersion strengthened superalloys by mechanical alloying. Metallurgical and Materials Transactions B, 1(10), 2943–2951. doi:10.1007/BF03037835
  • Cane, B. J. (1996). Surveillance and control of damage in elevated temperature pressure parts in power and process plants. 6th Int. Conf. Creep and Fatigue, 473–489. IMechE Headquarters, London, UK 15–17 April 1996.
  • Chiba, T., Miyamoto, G., & Furuhara, T. (2012). Variant selection of lenticular martensite by ausforming. Scripta Materialia, 67(4), 324–327. doi:10.1016/j.scriptamat.2012.05.007
  • Eggeler, G., & Dlouhy, A. (2005). Boron segregation and creep in ultra-fine grained tempered martensite ferritic steels. Zeitschrift Für Metallkunde, 96(7), 743–748. doi:10.3139/146.101096
  • Ennis, P. J., & Czyrska-Filemonowicz, A. (2003). Recent advances in creep-resistant steels for power plant applications, Sadhana - Acad. Proceedings on Engineering Sciences, 28(3–4), 709–730. doi:10.1007/BF02706455
  • Futamura, Y., Tsuchiyama, T., & Takaki, S. (2001). Strengthening mechanism martensitic steels of Cu bearing heat resistant. ISIJ International, 41, 106–110.
  • Hald, J. (2008). Microstructure and long-term creep properties of 9-12% Cr steels. International Journal of Pressure Vessels and Piping, 85(1–2), 30–37. doi:10.1016/j.ijpvp.2007.06.010
  • Hasegawa, T., Tomita, Y., & Kohyama, A. (1998). Influence of tantalum and nitrogen contents, normalizing condition and TMCP process on the mechanical properties of low-activation 9Cr–2W–0.2 V–Ta steels for fusion application. Journal of Nuclear Materials., 258–263, 1153–1157. doi:10.1016/S0022-3115(98)00138-X
  • Heintze, C., Bergner, F., Ulbricht, A., Hernández-Mayoral, M., Keiderling, U., Lindau, R., & Weissgärber, T. (2011). Microstructure of oxide dispersion strengthened Eurofer and iron–chromium alloys investigated by means of small-angle neutron scattering and transmission electron microscopy. Journal of Nuclear Materials, 416(1–2), 35–39. doi:10.1016/j.jnucmat.2010.11.102
  • Helis, L., Toda, Y., Hara, T., Miyazaki, H., & Abe, F. (2009). Effect of cobalt on the microstructure of tempered martensitic 9Cr steel for ultra-supercritical power plants. Materials Science and Engineering: A, 510-511, 88–94. doi:10.1016/j.msea.2008.04.131
  • Hu, P., Yan, W., Deng, L., Sha, W., Shan, Y., & Yang, K. (2010). Nitride-strengthened reduced activation ferritic/martensitic steels. Fusion Engineering Design, 85(7-9), 1632–1637. doi:10.1016/j.fusengdes.2010.04.066
  • Klueh, R. L. (2005). Elevated temperature ferritic and martensitic steels and their application to future nuclear reactors. International Materials Reviews, 50(5), 287–310. doi:10.1179/174328005X41140
  • Klueh, R. L., & Harries, D. R. (2001). High-chromium ferritic and martensitic steels for nuclear applications. American Society for Testing and Materials.
  • Klueh, R. L., Shingledecker, J. P., Swindeman, R. W., & Hoelzer, D. T. (2005). Oxide dispersion-strengthened steels: A comparison of some commercial and experimental alloys. Journal of Nuclear Materials, 341(2–3), 103–114. http://www.sciencedirect.com/science/article/B6TXN-4FSCVJG-3/2/d76edfed584c49b2486f0272668de933. doi:10.1016/j.jnucmat.2005.01.017
  • Liu, W. B., Zhang, C., Xia, Z. X., & Yang, Z. G. (2014). Improving high temperature creep resistance of reduced activation steels by addition of nitrogen and intermediate heat treatment. Journal of Nuclear Materials, 455(1-3), 402–406. doi:10.1016/j.jnucmat.2014.07.040
  • Maruyama, K., Sawada, K., & Koike, J. (2001). Strengthening mechanisms of creep resistant tempered martensitic steel. ISIJ International, 41(6), 641–653. doi:10.2355/isijinternational.41.641
  • Masuyama, F. (2001). History of power plants and progress in heat resistant steels. ISIJ International, 41(6), 612–625. doi:10.2355/isijinternational.41.612
  • Miyamoto, G., Iwata, N., Takayama, N., & Furuhara, T. (2010). Mapping the parent austenite orientation reconstructed from the orientation of martensite by EBSD and its application to ausformed martensite. Acta Materialia, 58(19), 6393–6403. doi:10.1016/j.actamat.2010.08.001
  • Miyamoto, G., Iwata, N., Takayama, N., & Furuhara, T. (2012). Quantitative analysis of variant selection in ausformed lath martensite. Acta Materialia, 60(3), 1139–1148. doi:10.1016/j.actamat.2011.11.018
  • Miyamoto, G., Iwata, N., Takayama, N., & Furuhara, T. (2013). Variant selection of lath martensite and bainite transformation in low carbon steel by ausforming. Journal of Alloys and Compounds, 577(Suppl), S528–S532. doi:10.1016/j.jallcom.2011.12.111
  • Nedjad, S. H., Moghaddam, Y. Z., Vazirabadi, A. M., Shirazi, H., & Ahmadabadi, M. N. (2011). Grain refinement by cold deformation and recrystallization of bainite and acicular ferrite structures of C-Mn steels. Materials Science and Engineering: A, 528(3), 1521–1526. doi:10.1016/j.msea.2010.10.064
  • Norton, F. H. (1929). Creep of steel at high-temperatures. New York: Mc-Graw Hill.
  • Pasternak, J., & Dobrzanski, J. (2011). Properties of welded joints on superheater coils made from new generation high alloy martensitic steels connected to austenitic creep-resisting steels and supper alloy grades, for supercritical parameters. Advanced Materials Research, 278, 466–471. doi:10.4028/www.scientific.net/AMR.278.466
  • Plesiutschnig, E., Beal, C., Paul, S., Zeiler, G., & Sommitsch, C. (2015). Optimised microstructure for increased creep rupture strength of MarBN steels. Materials at High Temperatures, 32(3), 318–322. doi:10.1179/0960340914Z.00000000073
  • Russ, J. C. (1986). Practical stereology. doi:10.1007/978-1-4899-3533-5
  • Skelton, R. P. (1993). Damage factors during high temperature fatigue crack growth. In R. A. Ainsworth & R. P. Skelton (Eds.), Behaviour of defects at high temperatures, ESIS (vol. 15, pp. 191–218). London: Mechanical Engineering Publications.
  • Skelton, R. P., Gandy, D., (2008). Creep-fatigue damage accumulation and interaction diagram based on metallographic interpretation of mechanisms. Materials at High Temperatures, 25, 27–54. doi:10.3184/096034007X30049410.1016/j.ijpvp.2007.11.008
  • Takahashi, J., Kawakami, K., Hamada, J., & Kimura, K. (2016). Direct observation of niobium segregation to dislocations in steel. Acta Materialia, 107, 415–422. doi:10.1016/j.actamat.2016.01.070
  • Tamura, I., Tsuzaki, K., & Maki, T. (1982). Morphology of lath martensite formed from deformed austenite in 18% Ni maraging steel. Le Journal de Physique Colloques, 43(C4), C4-551–C4-556. doi:10.1051/jphyscol:1982486
  • Tan, L., Snead, L. L., & Katoh, Y. (2016). Development of new generation reduced activation ferritic-martensitic steels for advanced fusion reactors. Journal of Nuclear Materials, 478, 42–49. doi:10.1016/j.jnucmat.2016.05.037
  • Taneike, M., Abe, F., & Sawada, K. (2003). Creep-strengthening of steel at high temperatures using nano-sized carbonitride dispersions. Nature, 424(6946), 294–296. http://www.nature.com/nature/journal/v424/n6946/suppinfo/nature01740_S1.html.
  • Thompson, K., Lawrence, D., Larson, D. J., Olson, J. D., Kelly, T. F., & Gorman, B. (2007). In situ site-specific specimen preparation for atom probe tomography. Ultramicroscopy, 107(2–3), 131–139. doi:10.1016/j.ultramic.2006.06.008
  • Toualbi, L., Cayron, C., Olier, P., Malaplate, J., Praud, M., Mathon, H.,… de Carlan, Y. (2012). Assessment of a new fabrication route for Fe–9Cr–1W ODS cladding tubes. Journal of Nuclear Materials, 428(1-3), 47–53. doi:10.1016/j.jnucmat.2011.12.013
  • Vivas, J., Capdevila, C., Altstadt, E., Houska, M., Sabirov, I., & San-Martín, D. (2019). Microstructural degradation and creep fracture behavior of conventionally and thermomechanically treated 9% chromium heat resistant steel. Metals and Materials International, 25(2), 343–352. doi:10.1007/s12540-018-0192-6
  • Vivas, J., Capdevila, C., Altstadt, E., Houska, M., Serrano, M., De-Castro, D., & San-Martín, D. (2018). Effect of ausforming temperature on creep strength of G91 investigated by means of Small Punch Creep Tests. Materials Science and Engineering: A, 728, 259–265. doi:10.1016/j.msea.2018.05.023
  • Vivas, J., Capdevila, C., Jimenez, J. A., Benito-Alfonso, M., & San-Martin, D. (2017). Effect of ausforming temperature on the microstructure of G91 steel. Metals (Basel), 7(7), 236. doi:10.3390/met7070236
  • Vivas, J., De-Castro, D., Altstadt, E., Houska, M., San-Martín, D., & Capdevila, C. (2020). Design and high temperature behavior of novel heat resistant steels strengthened by high density of stable nanoprecipitates. Materials Science and Engineering: A, 793, 139799. doi:10.1016/j.msea.2020.139799
  • Vivas, J., De-Castro, D., Poplawsky, J. D., San-Martín, D., & Capdevila, C. (2019). Direct observation of creep strengthening nanoprecipitate formation in ausformed ferritic/martensitic steels. Scripta Materialia, 164, 76–81. doi:10.1016/j.scriptamat.2019.01.036
  • Vivas, J., Poplawsky, J. D., De-Castro, D., San-Martín, D., & Capdevila, C. (2021). Examining the creep strengthening nanoprecipitation in novel highly reinforced heat resistant steels. Materials Characterization, 174, 110982. doi:10.1016/j.matchar.2021.110982
  • Wang, P., Chen, J., Fu, H., Liu, S., Li, X., & Xu, Z. (2013). Effect of N on the precipitation behaviours of the reduced activation ferritic/martensitic steel CLF-1 after thermal ageing. Journal of Nuclear Materials., 442(1-3), S9–S12. doi:10.1016/j.jnucmat.2013.03.081
  • Wasilkowska, A., Bartsch, M., Messerschmidt, U., Herzog, R., & Czyrska-Filemonowicz, A. (2003). Creep mechanisms of ferritic oxide dispersion strengthened alloys. Journal of Materials Processing Technology, 133(1–2), 218–224. doi:10.1016/S0924-0136(02)00237-6
  • Zhang, M., Wang, Y. H., Zheng, C. L., Zhang, F. C., & Wang, T. S. (2014). Austenite deformation behavior and the effect of ausforming process on martensite starting temperature and ausformed martensite microstructure in medium-carbon Si–Al-rich alloy steel. Materials Science and Engineering: A, 596, 9–14. doi:10.1016/j.msea.2013.11.097