1,634
Views
1
CrossRef citations to date
0
Altmetric
Review Article

Bibliometric review and recent advances in total scattering pair distribution function analysis: 21 years in retrospect

, , , , ORCID Icon, , , , ORCID Icon & show all
Article: 2150897 | Received 07 Feb 2022, Accepted 17 Nov 2022, Published online: 09 Dec 2022

References

  • Amann-Winkel, K., Bellissent-Funel, M.-C., Bove, L. E., Loerting, T., Nilsson, A., Paciaroni, A., … Skinner, L. (2016). X-ray and neutron scattering of water. Chemical Reviews, 116(13), 7570–7589. doi:10.1021/ACS.CHEMREV.5B00663/ASSET/IMAGES/LARGE/CR-2015-00663T_0013.JPEG
  • Amidani, L., Vaughan, G. B. M., Plakhova, T. V., Romanchuk, A. Y., Gerber, E., Svetogorov, R., … Kvashnina, K. O. (2021). The application of HEXS and HERFD XANES for accurate structural characterisation of actinide nanomaterials: The case of ThO2. Chemistry (Weinheim an Der Bergstrasse, Germany), 27(1), 5–263. doi:10.1002/CHEM.202003360
  • Bakker, H. J., & Skinner, J. L. (2010). Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chemical Reviews, 110(3), 1498–1517. doi:10.1021/CR9001879/ASSET/IMAGES/MEDIUM/CR-2009-001879_0007.GIF
  • Becker, J., Bremholm, M., Tyrsted, C., Pauw, B., Jensen, K. M. Ø., Eltzholt, J., … Iversen, B. B. (2010). Experimental setup for in situ X-ray SAXS/WAXS/PDF studies of the formation and growth of nanoparticles in near- and ­supercritical fluids. Journal of Applied Crystallography, 43(4), 729–736. doi:10.1107/S0021889810014688
  • Bello, I. T., Zhai, S., He, Q., Xu, Q., & Ni, M. (2021). Scientometric review of advancements in the development of high-performance cathode for low and intermediate temperature solid oxide fuel cells: Three decades in retrospect. International Journal of Hydrogen Energy., 46(52), 26518–26536. doi:10.1016/j.ijhydene.2021.05.134
  • Benmore, C. J. (2012). A review of high-energy X-ray diffraction from glasses and liquids. ISRN Materials Science, 2012, 1–19. doi:10.5402/2012/852905
  • Bennett, T. D., Todorova, T. K., Baxter, E. F., Reid, D. G., Gervais, C., Bueken, B., … Mellot-Draznieks, C. (2016). Connecting defects and amorphization in UiO-66 and MIL-140 metal–organic frameworks: A combined experimental and computational study. Physical Chemistry Chemical Physics, 18(3), 2192–2201. doi:10.1039/C5CP06798G
  • Bertolotti, F., Protesescu, L., Kovalenko, M. V., Yakunin, S., Cervellino, A., Billinge, S. J. L., … Guagliardi, A. (2017). Coherent nanotwins and dynamic disorder in cesium lead halide perovskite nanocrystals. ACS Nano, 11(4), 3819–3831. doi:10.1021/ACSNANO.7B00017/SUPPL_FILE/NN7B00017_SI_001.PDF
  • Billinge, S. J. L. (2004). The atomic pair distribution function: Past and present. Zeitschrift Für Kristallographie - Crystalline Materials, 219(3), 117–121. doi:10.1524/zkri.219.3.117.29094
  • Billinge, S. J. L. (2019). The rise of the X-ray atomic pair distribution function method: A series of fortunate events. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 377(2147), 20180413. doi:10.1098/rsta.018.0413
  • Billinge, S. J. L., & Kanatzidis, M. G. (2004). Beyond crystallography: The study of disorder, nanocrystallinity and crystallographically challenged materials with pair distribution functions. Chemical Communications, 4(7), 749. doi:10.1039/b309577k
  • Borbély, A., Csikor, F. F., Zabler, S., Cloetens, P., & Biermann, H. (2004). Three-dimensional characterization of the microstructure of a metal–matrix composite by holotomography. Materials Science and Engineering: A, 367(12), 40–50. doi:10.1016/j.msea.2003.09.068
  • Bove, L. E., Klotz, S., Strässle, T., Koza, M., Teixeira, J., & Saitta, A. M. (2013). Translational and Rotational Diffusion in Water in the Gigapascal Range. Physical Review Letters, 111(18), 185901. doi:10.1103/PhysRevLett.111.185901
  • Božin, E. S., Schmidt, M., DeConinck, A. J., Paglia, G., Mitchell, J. F., Chatterji, T., … Billinge, S. J. L. (2007). Understanding the insulating phase in colossal magnetoresistance manganites: Shortening of the Jahn-Teller long-bond across the phase diagram of La1-xCaxMnO3. Physical Review Letters, 98(13), 137203. doi:10.1103/PhysRevLett.98.137203
  • Bragg, W. H., Bragg Apr, B. W. H., & Bragg, C. (1913). Professor of Physics, The reflection of X-rays by crystals. Proceedings of the Royal Society of London. Series A, Containing Papers of a Mathematical and Physical Character, 88(605), 428–438. doi:10.1098/rspa.1913.0040
  • Bréger, J., Kang, K., Cabana, J., Ceder, G., & Grey, C. P. (2007). NMR, PDF and RMC study of the positive electrode material Li(Ni0.5Mn0.5)O2 synthesized by ion-exchange methods. Journal of Materials Chemistry, 17(30), 3167. doi:10.1039/b702745a
  • Bridges, F., Keiber, T., Juhas, P., Billinge, S. J. L., Sutton, L., Wilde, J., & Kowach, G. R. (2014). Local vibrations and negative thermal expansion in ZrW2O8. Physical Review Letters, 112(4), 045505. doi:10.1103/PHYSREVLETT.112.045505/FIGURES/5/MEDIUM
  • Buscaglia, V. et al. (2014). Average and local atomic-scale structure in BaZrx Ti1−x O3 (x = 0.10, 0.20, 0.40) ceramics by high-energy X-ray diffraction and Raman spectroscopy. Journal of Physics: Condensed Matter, 26, 13. doi:10.1088/0953-8984/26/6/065901
  • Chapman, K. W. (2016). Emerging operando and X-ray pair distribution function methods for energy materials development. MRS Bulletin, 41(3), 231–240. doi:10.1557/mrs.2016.26
  • Chapman, K. W., Chupas, P. J., Halder, G. J., Hriljac, J. A., Kurtz, C., Greve, B. K., … Wilkinson, A. P. (2010). Optimizing high-pressure pair distribution function measurements in diamond anvil cells. Journal of Applied Crystallography, 43(2), 297–307. doi:10.1107/S0021889810002050
  • Chapman, K. W., Chupas, P. J., & Kepert, C. J. (2005). Direct observation of a transverse vibrational mechanism for negative thermal expansion in Zn(CN)2: An atomic pair distribution function analysis. Journal of the American Chemical Society, 127(44), 15630–15636. doi:10.1021/JA055197F/SUPPL_FILE/JA055197FSI20050908_010156.PDF
  • Chen, Y., Li, C. W., & Kanan, M. W. (2012). Aqueous CO2 reduction at very low overpotential on oxide-derived au nanoparticles. Journal of the American Chemical Society, 134(49), 19969–19972. doi:10.1021/ja309317u
  • Cherukuvada, S., & Nangia, A. (2014). Eutectics as improved pharmaceutical materials: Design, properties and characterization. Chemical Communications (Cambridge, England), 50(8), 906–923. doi:10.1039/C3CC47521B
  • Deng, Q., Shen, S., Castillo-Blas, C., Moreno, J. M., Romero-Muñiz, I., & Platero-Prats, A. E. (2020). Tailoring the nanostructures of electrochemical actuators for fast response and large deformation metal-organic framework materials. Nanoscale, 12(29), 15577–15587. doi:10.1039/d0nr01673j
  • Derlet, P. M., & Van Swygenhoven, H. (2003). Atomic positional disorder in fcc metal nanocrystalline grain boundaries. Physical Review B, 67(1), 014202. doi:10.1103/PhysRevB.67.014202
  • Dhindsa, G. K., Bhowmik, D., Goswami, M., O'Neill, H., Mamontov, E., Sumpter, B. G., … Chu, X.-Q. (2016). Enhanced dynamics of hydrated tRNA on nanodiamond surfaces: A combined neutron scattering and MD simulation study. The Journal of Physical Chemistry B, 120(38), 10059–10068. doi:10.1021/ACS.JPCB.6B07511
  • Dietrich, C., Weber, D. A., Sedlmaier, S. J., Indris, S., Culver, S. P., Walter, D., … Zeier, W. G. (2017). Lithium ion conductivity in Li2S–P2S5 glasses – building units and local structure evolution during the crystallization of superionic conductors Li3PS4, Li7 P3 S11 and Li4 P2S7. Journal of Materials Chemistry A, 5(34), 18111–18119. doi:10.1039/C7TA06067J
  • Dmowski, W., Yokoyama, Y., Chuang, A., Ren, Y., Umemoto, M., Tsuchiya, K., … Egami, T. (2010). Structural rejuvenation in a bulk metallic glass induced by severe plastic deformation. Acta Materialia, 58(2), 429–438. doi:10.1016/j.actamat.2009.09.021
  • Egami, T. (1990). Atomic correlations in non-periodic matter. Materials Transactions, JIM, 31(3), 163–176. doi:10.2320/matertrans1989.31.163
  • Egami, T., & Billinge, S. J. L. (2003). Underneath the Bragg peaks: Structural analysis of complex materials, 7, 422. doi:10.1016/B978-0-08-097133-9.00013-7
  • Elisha, I. L., & Viljoen, A. (2021). Trends in Rooibos Tea (Aspalathus linearis) research (1994–2018): A scientometric assessment. South African Journal of Botany, 137, 159–170. doi:10.1016/j.sajb.2020.10.004
  • Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., Božin, E. S., Bloch, J., … Billinge, S. J. L. (2007). PDFfit2 and PDFgui: Computer programs for studying nanostructure in crystals. Journal of Physics: Condensed Matter, 19(33), 335219. doi:10.1088/0953-8984/19/33/335219
  • Fernández-García, M., Martínez-Arias, A., Hanson, J. C., & Rodriguez, J. A. (2004). Nanostructured oxides in chemistry: Characterization and properties. Chemical Reviews, 104(9), 4063–4104. doi:10.1021/CR030032F/ASSET/IMAGES/MEDIUM/CR030032FE00051.GIF
  • Frandsen, B. A., Taddei, K. M., Yi, M., Frano, A., Guguchia, Z., Yu, R., … Birgeneau, R. J. (2017). Local orthorhombicity in the magnetic C4 phase of the hole-doped iron-arsenide superconductor Sr1-xNaxFe2As2. Physical Review Letters, 119(18). doi:10.1103/PhysRevLett.119.187001
  • Friedrich, W., Knipping, P., & Laue, M. (1913). Interferenzerscheinungen bei Röntgenstrahlen. Annalen Der Physik, 346(10), 971–988. doi:10.1002/andp.19133461004
  • Fry-Petit, A. M., Rebola, A. F., Mourigal, M., Valentine, M., Drichko, N., Sheckelton, J. P., … McQueen, T. M. (2015). Direct assignment of molecular vibrations via normal mode analysis of the neutron dynamic pair distribution function technique. The Journal of Chemical Physics, 143(12), 124201. doi:10.1063/1.4930607
  • Fujishima, A., Zhang, X., & Tryk, D. A. (2008). TiO2 photocatalysis and related surface phenomena. Surface Science Reports., 63(12), 515–582. doi:10.1016/j.surfrep.2008.10.001
  • Gaillac, R., Pullumbi, P., Beyer, K. A., Chapman, K. W., Keen, D. A., Bennett, T. D., & Coudert, F.-X. (2017). Liquid metal–organic frameworks. Nature Materials, 16(11), 1149–1154. doi:10.1038/nmat4998
  • García-Negrón, V., Kizzire, D. G., Rios, O., Keffer, D. J., & Harper, D. P. (2020). Elucidating nano and meso-structures of lignin carbon composites: A comprehensive study of feedstock and temperature dependence. Carbon N Carbon, 161, 856–869. doi:10.1016/j.carbon.2020.02.010
  • Gawai, U. P., Gaikwad, D. K., Bodke, M. R., Khawal, H. A., Pandey, K. K., Yadav, A. K., … Dole, B. N. (2019). Doping effect on the local structure of metamagnetic Co doped Ni/NiO:GO core–shell nanoparticles using X-ray absorption spectroscopy and the pair distribution function. Physical Chemistry Chemical Physics, 21(3), 1294–1307. doi:10.1039/C8CP05267K
  • Gemmi, M., Campostrini, I., Demartin, F., Gorelik, T. E., & Gramaccioli, C. M. (2012). Structure of the new mineral sarrabusite, Pb5CuCl4(SeO3)4, solved by manual electron-diffraction tomography. Acta Crystallographica. Section B, Structural Science, 68(Pt 1), 15–23. doi:10.1107/S010876811104688X/DK5002ISUP2.HKL
  • Goetzee-Barral, A. J., Usher, T.-M., Stevenson, T. J., Jones, J. L., Levin, I., Brown, A. P., & Bell, A. J. (2017). Electric field dependent local structure of < span class. Physical Review B, 96(1), 014118. doi:10.1103/PhysRevB.96.014118
  • Goodwin, A. L., Michel, F. M., Phillips, B. L., Keen, D. A., Dove, M. T., & Reeder, R. J. (2010). Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate. Chemistry of Materials, 22(10), 3197–3205. doi:10.1021/CM100294D/SUPPL_FILE/CM100294D_SI_001.PDF
  • Goswami, M., Kumar, N., Li, Y., Hirschey, J., LaClair, T. J., Akamo, D. O., … Graham, S. (2021a). Understanding supercooling mechanism in sodium sulfate decahydrate phase-change material. Journal of Applied Physics., 129(24), 245109. doi:10.1063/5.0049512
  • Goswami, M., Kumar, N., Li, Y., Rios, O., Akamo, D. O., Hirschey, J., … Gluesenkamp, K. R. (2021b). Comparison of water nanodroplet properties on different graphite-based substrates. AIP Advances., 11(3), 035009. doi:10.1063/5.0042414
  • Goswami, M., Sumpter, B. G., Huang, T., Messman, J. M., Gido, S. P., Isaacs-Sodeye, A. I., & Mays, J. W. (2010). Tunable morphologies from charged block copolymers. Soft Matter, 6(24), 6146–6154. doi:10.1039/c0sm00733a
  • Grenier, A., Porras-Gutierrez, A.-G., Groult, H., Beyer, K. A., Borkiewicz, O. J., Chapman, K. W., & Dambournet, D. (2017). Electrochemical reactions in fluoride-ion batteries: Mechanistic insights from pair distribution function analysis. Journal of Materials Chemistry A, 5(30), 15700–15705. doi:10.1039/C7TA04005A
  • Gulyaev, R. V., Kardash, T. Y., Malykhin, S. E., Stonkus, O. A., Ivanova, A. S., & Boronin, A. I. (2014). The local structure of Pdx Ce1−x O2−x−δ solid solutions. Physical Chemistry Chemical Physics, 16(26), 13523–13539. doi:10.1039/C4CP01033G
  • Halavanau, A., Benediktovitch, A., Lutman, A. A., DePonte, D., Cocco, D., Rohringer, N., … Pellegrini, C. (2020). Population inversion X-ray laser oscillator. Proceedings of the National Academy of Sciences of the United States of America, 117(27), 15511–15516. doi:10.1073/pnas.2005360117
  • Head-Gordon, T., & Hura, G. (2002). Water structure from scattering experiments and simulation. Chemical Reviews, 102(8), 2651–2670. doi:10.1021/CR0006831/ASSET/IMAGES/LARGE/CR0006831F00009.JPEG
  • Hiemstra, T. (2013). Surface and mineral structure of ferrihydrite. Geochimica et Cosmochimica Acta., 105, 316–325. doi:10.1016/j.gca.2012.12.002
  • Hiley, C. I., Playford, H. Y., Fisher, J. M., Felix, N. C., Thompsett, D., Kashtiban, R. J., & Walton, R. I. (2018). Pair distribution function analysis of structural disorder by Nb5+ inclusion in ceria: Evidence for enhanced oxygen storage capacity from under-coordinated oxide. Journal of the American Chemical Society, 140(5), 1588–1591. doi:10.1021/JACS.7B12421/ASSET/IMAGES/LARGE/JA-2017-12421U_0004.JPEG
  • Ho, H. C., Goswami, M., Chen, J., Keum, J. K., & Naskar, A. K. (2018). Amending the structure of renewable carbon from biorefinery waste-streams for energy storage applications. Scientific Reports, 8(1), 81–8. doi:10.1038/s41598-018-25880-0
  • Jan van Eck, N., & Waltman, L. (2017). Citation-based clustering of publications using CitNetExplorer and VOSviewer. Scientometrics, 111(2), 1053–1070. doi:10.1007/s11192-017-2300-7
  • Jan van Eck, N., & Waltman, L. (2010). Software survey: VOSviewer, a computer program for bibliometric mapping. Scientometrics, 84(2), 523–538. doi:10.1007/s11192-009-0146-3
  • Jensen, K. M. Ø., Blichfeld, A. B., Bauers, S. R., Wood, S. R., Dooryhée, E., Johnson, D. C., … Billinge, S. J. L. (2015). Demonstration of thin film pair distribution function analysis (tfPDF) for the study of local structure in amorphous and crystalline thin films. IUCrJ, 2(Pt 5), 481–489. doi:10.1107/S2052252515012221
  • Jeong, I. K., & Lee, J. K. (2006). Local structure and medium-range ordering in relaxor ferroelectric Pb(Zn1/3Nb2/3)O3 studied using neutron pair distribution function analysis. Applied Physics Letters, 88(26), 262905. doi:10.1063/1.2217162
  • Jeong, I. K., Lee, J. K., & Heffner, R. H. (2008). Local structural view on the polarization rotation in relaxor ferroelectric (1-x)Pb(Zn1/3 Nb2/3)O3-xPbTiO3. Applied Physics Letters, 92(17), 172911. doi:10.1063/1.2919070
  • Jiang, J., Jorda, J. L., Yu, J., Baumes, L. A., Mugnaioli, E., Diaz-Cabanas, M. J., … Corma, A. (2011). Synthesis and structure determination of the hierarchical meso-microporous zeolite ITQ-43. Science (New York, N.Y.), 333(6046), 1131–1134. doi:10.1126/SCIENCE.1208652/SUPPL_FILE/JIANG.SOM.PDF
  • Keen, D. A. (2001). A comparison of various commonly used correlation functions for describing total scattering. Journal of Applied Crystallography, 34(2), 172–177. doi:10.1107/S0021889800019993
  • Keen, D. A. (2020). Total scattering and the pair distribution function in crystallography. Crystallography Reviews, 26(3), 143–201. doi:10.1080/0889311X.2020.1797708
  • Key, B., Morcrette, M., Tarascon, J. M., Grey, C. P., and Jan, J. (2011). Pair distribution function analysis and solid state NMR studies of silicon electrodes for lithium ion batteries: Understanding the (de)lithiation mechanisms. Journal of the American Chemical Society, 133(3), 503–512. doi:10.1021/ja108085d
  • Kim, Y.-I., Cadars, S., Shayib, R., Proffen, T., Feigerle, C. S., Chmelka, B. F., & Seshadri, R. (2008). Local structures of polar wurtzites Zn1-xMgxO studied by Raman and 67Zn/25Mg NMR spectroscopies and by total neutron scattering. Physical Review B, 78(19), 195205. doi:10.1103/PHYSREVB.78.195205/FIGURES/14/MEDIUM
  • Kumara, L. S. R., Sakata, O., Kobayashi, H., Song, C., Kohara, S., Ina, T., … Kitagawa, H. (2017). Hydrogen storage and stability properties of Pd-Pt solid-solution nanoparticles revealed via atomic and electronic structure. Scientific Reports, 7(1), 1–11. doi:10.1038/s41598-017-14494-7
  • Lei, Y., Zhao, H., Rivas, R. D., Lee, S., Liu, B., Lu, J., … Elam, J. W. (2014). Adsorbate-induced structural changes in 1-3 nm platinum nanoparticles. Journal of the American Chemical Society, 136(26), 9320–9326. doi:10.1021/JA4126998/SUPPL_FILE/JA4126998_SI_001.PDF
  • Li, S., Toyoda, M., Kobayashi, Y., Itoh, M., Ikeuchi, K., Yoneda, Y., … Sato, M. (2018). Local structure study of the iron-based systems of BaFe2As2 and LiFeAs by X-ray PDF and XAFS analyses. Physica C: Superconductivity and Its Applications, 555, 45–53. doi:10.1016/j.physc.2018.10.003
  • Li, W., Borkiewicz, O. J., Saubanère, M., Doublet, M.-L., Flahaut, D., Chupas, P. J., … Dambournet, D. (2018). Atomic structure of 2 nm size metallic cobalt prepared by electrochemical conversion: An in situ pair distribution function study. The Journal of Physical Chemistry C, 122(42), 23861–23866. doi:10.1021/ACS.JPCC.8B06573/ASSET/IMAGES/MEDIUM/JP-2018-06573R_M001.GIF
  • Li, W., Harrington, R., Tang, Y., Kubicki, J. D., Aryanpour, M., Reeder, R. J., … Phillips, B. L. (2011). Differential pair distribution function study of the structure of arsenate adsorbed on nanocrystalline γ-alumina. Environmental Science & Technology, 45(22), 9687–9692. doi:10.1021/ES200750B/SUPPL_FILE/ES200750B_SI_001.PDF
  • Li, X., Yu, J., Low, J., Fang, Y., Xiao, J., & Chen, X. (2015). Engineering heterogeneous semiconductors for solar water splitting. Journal of Materials Chemistry A, 3(6), 2485–2534. doi:10.1039/C4TA04461D
  • Li, Q., Zhu, H., Zheng, L., Fan, L., Wang, N., Rong, Y., … Xing, X. (2017). Local chemical ordering and negative thermal expansion in PtNi alloy nanoparticles. Nano Letters, 17(12), 7892–7896. doi:10.1021/ACS.NANOLETT.7B04219/ASSET/IMAGES/LARGE/NL-2017-04219B_0004.JPEG
  • Liu, C. H., Tao, Y., Hsu, D., Du, Q., & Billinge, S. J. L. (2019). Using a machine learning approach to determine the space group of a structure from the atomic pair distribution function. Acta Crystallographica. Section A, Foundations and Advances, 75(Pt 4), 633–643. doi:10.1107/S2053273319005606
  • Liu, J., Huq, A., Moorhead-Rosenberg, Z., Manthiram, A., & Page, K. (2016). Nanoscale Ni/Mn ordering in the high voltage spinel cathode LiNi0.5Mn1.5O4. Chemistry of Materials, 28(19), 6817–6821. doi:10.1021/ACS.CHEMMATER.6B02946/ASSET/IMAGES/LARGE/CM-2016-029466_0005.JPEG
  • Liu, Y., Zhu, S., Gu, Z., & Zhao, Y. (2021). A bibliometric analysis: Research progress and prospects on transition metal dichalcogenides in the biomedical field. Chinese Chemical Letters, 32(12), 3762–3770. doi:10.1016/j.cclet.2021.04.023
  • Loerting, T., Winkel, K., Seidl, M., Bauer, M., Mitterdorfer, C., Handle, P. H., … Bowron, D. T. (2011). How many amorphous ices are there? Physical Chemistry Chemical Physics, 13(19), 8783–8794. doi:10.1039/C0CP02600J
  • Lynch, V. E., Borreguero, J. M., Bhowmik, D., Ganesh, P., Sumpter, B. G., Proffen, T. E., & Goswami, M. (2017). An automated analysis workflow for optimization of force-field parameters using neutron scattering data. Journal of Computational Physics, 340, 128–137. doi:10.1016/j.jcp.2017.03.045
  • Mancini, A., & Malavasi, L. (2015). Recent advances in the application of total scattering methods to functional materials. Chemical Communications (Cambridge, England), 51(93), 16592–16604. doi:10.1039/c5cc07429k
  • Mao, G., Huang, N., Chen, L., & Wang, H. (2018). Research on biomass energy and environment from the past to the future: A bibliometric analysis. The Science of the Total Environment, 635, 1081–1090. doi:10.1016/j.scitotenv.2018.04.173
  • Martin, L. W., & Rappe, A. M. (2017). Thin-film ferroelectric materials and their applications. Nature Reviews Materials, 2(2), 16087. doi:10.1038/natrevmats.2016.87
  • Masadeh, A. S. (2016). Total scattering atomic pair distribution function: New methodology for nanostructure determination. Journal of Experimental Nanoscience, 11(12), 951–974. doi:10.1080/17458080.2016.1184769
  • Mauro, N. A., Vogt, A. J., Derendorf, K. S., Johnson, M. L., Rustan, G. E., Quirinale, D. G., … Kelton, K. F. (2016). Electrostatic levitation facility optimized for neutron diffraction studies of high temperature liquids at a spallation neutron source. Review of Scientific Instruments, 87(1), 013904. doi:10.1063/1.4939194
  • McNutt, N. W., Rios, O., Feygenson, M., Proffen, T. E., & Keffer, D. J. (2014). Structural analysis of lignin-derived carbon composite anodes. Journal of Applied Crystallography, 47(5), 1577–1584. doi:10.1107/S1600576714014666
  • Michel, F. M., Ehm, L., Antao, S. M., Lee, P. L., Chupas, P. J., Liu, G., … Parise, J. B. (2007). The structure of ferrihydrite, a nanocrystalline material. Science (New York, N.Y.), 316(5832), 1726–1729. doi:10.1126/science.1142525
  • Molski, A., Hofkens, J., Gensch, T., Boens, N., & Schryver, F. D. (2000). Theory of time-resolved single-molecule fluorescence spectroscopy. Chemical Physics Letters, 318(45), 325–332. doi:10.1016/S0009-2614(00)00040-3
  • Mongeon, P., & Paul-Hus, A. (2016). The journal coverage of Web of Science and Scopus: A comparative analysis. Scientometrics, 106(1), 213–228. doi:10.1007/s11192-015-1765-5
  • Mühlbauer, S., Honecker, D., Périgo, É. A., Bergner, F., Disch, S., Heinemann, A., … Michels, A. (2019). Magnetic small-angle neutron scattering. Reviews of Modern Physics, 91(1), 015004–04. doi:10.1103/RevModPhys.91.015004
  • Nygård, M. M., Sławiński, W. A., Ek, G., Sørby, M. H., Sahlberg, M., Keen, D. A., & Hauback, B. C. (2020). Local order in high-entropy alloys and associated deuterides – A total scattering and reverse Monte Carlo study. Acta Materialia, 199, 504–513. doi:10.1016/j.actamat.2020.08.045
  • Orellana-Tavra, C., Baxter, E. F., Tian, T., Bennett, T. D., Slater, N. K. H., Cheetham, A. K., & Fairen-Jimenez, D. (2015). Amorphous metal–organic frameworks for drug delivery. Chemical Communications (Cambridge, England), 51(73), 13878–13881. doi:10.1039/C5CC05237H
  • Paddison, J. A. M., Jacobsen, H., Petrenko, O. A., Fernández-Díaz, M. T., Deen, P. P., & Goodwin, A. L. (2015). Hidden order in spin-liquid Gd3Ga5O12. Science (New York, N.Y.), 350(6257), 179–181. doi:10.1126/science.aaa5326
  • Paddison, J. A. M., Ong, H. S., Hamp, J. O., Mukherjee, P., Bai, X., Tucker, M. G., … Dutton, S. E. (2016). Emergent order in the kagome Ising magnet Dy3Mg2Sb3O14. Nature Communications, 7(1), 1–8. doi:10.1038/ncomms13842
  • Page, K., Siewenie, J. E., Quadrelli, P., & Malavasi, L. (2016). Short-range order of methylammonium and persistence of distortion at the local scale in MAPbBr3 hybrid perovskite. Angewandte Chemie (International Ed. in English), 55(46), 14320–14324. doi:10.1002/ANIE.201608602
  • Peterson, P. F., Olds, D., McDonnell, M. T., & Page, K. (2021). Illustrated formalisms for total scattering data: A guide for new practitioners. Journal of Applied Crystallography, 54(1), 317–332. doi:10.1107/S1600576720015630
  • Petkov, V., Billinge, S. J. L., Larson, P., Mahanti, S. D., Vogt, T., Rangan, K. K., & Kanatzidis, M. G. (2002). Structure of nanocrystalline materials using atomic pair distribution function analysis: Study of formula presented. Physical Review B, 65(9), 1–4. doi:10.1103/PhysRevB.65.092105
  • Petkov, V., Ohta, T., Hou, Y., & Ren, Y. (2007). Atomic-scale structure of nanocrystals by high-energy X-ray diffraction and atomic pair distribution function analysis: Study of FexPd100-x(x = 0, 26, 28, 48) nanoparticles. The Journal of Physical Chemistry C, 111(2), 714–720. doi:10.1021/jp066166p
  • Petkov, V., Ren, Y., Kabekkodu, S., & Murphy, D. (2013). Atomic pair distribution functions analysis of disordered low-Z materials. Physical Chemistry Chemical Physics, 15(22), 8544–8554. doi:10.1039/c2cp43378h
  • Playford, H. Y., Owen, L. R., Levin, I., & Tucker, M. G. (2014). New insights into complex materials using reverse Monte Carlo modeling. Annual Review of Materials Research, 44(1), 429–449. doi:10.1146/annurev-matsci-071312-121712
  • Prill, D., Juhás, P., Schmidt, M. U., & Billinge, S. J. L. (2015). Modelling pair distribution functions (PDFs) of organic compounds: Describing both intra- and intermolecular correlation functions in calculated PDFs. Journal of Applied Crystallography, 48(1), 171–178. doi:10.1107/S1600576714026454
  • Proffen, T., Billinge, S. J. L., Egami, T., & Louca, D. (2003). Structural analysis of complex materials using the atomic pair distribution function - A practical guide. Zeitschrift Für Kristallographie - Crystalline Materials, 218(2), 132–143. doi:10.1524/zkri.218.2.132.20664
  • Rademacher, N., Bayarjargal, L., Morgenroth, W., Bauer, J. D., Milman, V., & Winkler, B. (2015). Study of the reaction products of SF6 and C in the laser heated diamond anvil cell by pair distribution function analysis and micro-Raman spectroscopy. Journal of Solid State Chemistry, 225, 141–148. doi:10.1016/j.jssc.2014.12.015
  • Rangwani, S., Howarth, A. J., DeStefano, M. R., Malliakas, C. D., Platero-Prats, A. E., Chapman, K. W., & Farha, O. K. (2018). Adsorptive removal of Sb(V) from water using a mesoporous Zr-based metal–organic framework. Polyhedron, 151, 338–343. doi:10.1016/j.poly.2018.05.021
  • Rocha, M. A., Petersen, P. A. D., Teixeira-Neto, E., Petrilli, H. M., Leroux, F., Taviot-Gueho, C., & Constantino, V. R. L. (2016). Layered double hydroxide and sulindac coiled and scrolled nanoassemblies for storage and drug release. RSC Advances, 6(20), 16419–16436. doi:10.1039/C5RA25814F
  • Roelsgaard, M., Dippel, A.-C., Borup, K. A., Nielsen, I. G., Broge, N. L. N., Röh, J. T., … Iversen, B. B. (2019). Time-resolved grazing-incidence pair distribution functions during deposition by radio-frequency magnetron sputtering. IUCrJ, 6(Pt 2), 299–304. doi:10.1107/S2052252519001192
  • Rong, X., Liu, J., Hu, E., Liu, Y., Wang, Y., Wu, J., … Huang, X. (2018). Structure-induced reversible anionic redox activity in Na layered oxide cathode. Joule, 2(1), 125–140. doi:10.1016/j.joule.2017.10.008
  • Samain, L., Jaworski, A., Edén, M., Ladd, D. M., Seo, D.-K., Javier Garcia-Garcia, F., & Häussermann, U. (2014). Structural analysis of highly porous γ-Al2O3. Journal of Solid State Chemistry, 217, 1–8. doi:10.1016/j.jssc.2014.05.004
  • Sanchez, S., Steiner, U., & Hua, X. (2019). Phase evolution during perovskite formation - Insight from pair distribution function analysis. Chemistry of Materials, 31(9), 3498–3506. doi:10.1021/ACS.CHEMMATER.9B00748/ASSET/IMAGES/LARGE/CM-2019-007488_0006.JPEG
  • Sava Gallis, D. F., Chapman, K. W., Rodriguez, M. A., Greathouse, J. A., Parkes, M. V., & Nenoff, T. M. (2016). Selective O2 Sorption at ambient temperatures via node distortions in Sc-MIL-100. Chemistry of Materials, 28(10), 3327–3336. doi:10.1021/ACS.CHEMMATER.6B00249/ASSET/IMAGES/LARGE/CM-2016-00249Y_0009.JPEG
  • Sellberg, J. A., Huang, C., McQueen, T. A., Loh, N. D., Laksmono, H., Schlesinger, D., … Nilsson, A. (2014). Ultrafast X-ray probing of water structure below the homogeneous ice nucleation temperature. Nature, 510(7505), 381–384. doi:10.1038/nature13266
  • Shatnawi, M., Bozin, E. S., Mitchell, J. F., & Billinge, S. J. L. (2016). Nonpercolative nature of the metal-insulator transition and persistence of local Jahn-Teller distortions in the rhombohedral regime of La1-xCaxMnO3. Physical Review B, 93(16), 165138. doi doi:10.1103/PhysRevB.93.165138
  • Shi, N., Sanson, A., Gao, Q., Sun, Q., Ren, Y., Huang, Q., … Chen, J. (2020). Strong negative thermal expansion in a low-cost and facile oxide of Cu2P2O7. Journal of the American Chemical Society, 142(6), 3088–3093. doi:10.1021/JACS.9B12442/ASSET/IMAGES/LARGE/JA9B12442_0007.JPEG
  • Shimakura, H. et al. (2001). Reverse Monte Carlo modelling. Journal of Physics: Condensed Matter, 13(46), R877. doi:10.1088/0953-8984/13/46/201
  • Simons, M. C., Vitillo, J. G., Babucci, M., Hoffman, A. S., Boubnov, A., Beauvais, M. L., … Bhan, A. (2019). Structure, dynamics, and reactivity for light alkane oxidation of Fe(II) sites situated in the nodes of a metal-organic framework. Journal of the American Chemical Society, 141(45), 18142–18151. doi:10.1021/JACS.9B08686/ASSET/IMAGES/LARGE/JA9B08686_0007.JPEG
  • Smith, M. B., Page, K., Siegrist, T., Redmond, P. L., Walter, E. C., Seshadri, R., … Steigerwald, M. L. (2008). Crystal structure and the paraelectric-to-ferroelectric phase transition of nanoscale BaTiO3. Journal of the American Chemical Society, 130(22), 6955–6963. doi:10.1021/ja0758436
  • Straus, D. B., Guo, S., Abeykoon, A. M M., & Cava, R. J. (2020). Understanding the instability of the halide perovskite CsPbI3 through temperature-dependent structural analysis. Advanced Materials, 32(32), 2001069. doi:10.1002/adma.202001069
  • Su, H. N., & Lee, P. C. (2010). Mapping knowledge structure by keyword co-occurrence: A first look at journal papers in technology foresight. Scientometrics, 85(1), 65–79. doi:10.1007/s11192-010-0259-8
  • Talaie, E., Duffort, V., Smith, H. L., Fultz, B., & Nazar, L. F. (2015). Structure of the high voltage phase of layered P2-Na2/3−z [Mn1/2 Fe1/2] O2 and the positive effect of Ni substitution on its stability. Energy & Environmental Science, 8(8), 2512–2523. doi:10.1039/C5EE01365H
  • Taylor, N. T., Davies, F. H., Hepplestone, S. P., Cheng, J., & Luo, J. (2019). Structural change in liquid sulphur from chain polymeric liquid to atomic simple liquid under high pressure. Journal of Physics: Condensed Matter, 31(21), 215101. doi:10.1088/1361-648X/AB0A35
  • Tenhaeff, W. E., Rios, O., More, K., & McGuire, M. A. (2014). Highly robust lithium ion battery anodes from lignin: An abundant, renewable, and low-cost material. Advanced Functional Materials, 24(1), 86–94. doi:10.1002/adfm.201301420
  • Terban, M. W., Johnson, M., Michiel, M. D., & Billinge, S. J. L. (2015). Detection and characterization of nanoparticles in suspension at low concentrations using the X-ray total scattering pair distribution function technique. Nanoscale, 7(12), 5480–5487. doi:10.1039/c4nr06486k
  • Terban, M. W., Shi, C., Silbernagel, R., Clearfield, A., & Billinge, S. J. L. (2017). Local environment of terbium(III) ions in layered nanocrystalline zirconium(IV) phosphonate-phosphate ion exchange materials. Inorganic Chemistry, 56(15), 8837–8846. doi:10.1021/acs.inorgchem.7b00666
  • Thygesen, P. M. M., Young, C. A., Beake, E. O. R., Romero, F. D., Connor, L. D., Proffen, T. E., … Goodwin, A. L. (2017). Local structure study of the orbital order/disorder transition in LaMnO3. Physical Review B, 95(17), 174107. doi:10.1103/PhysRevB.95.174107
  • Toby, B. H., & Egami, T. (1992). Accuracy of pair distribution function analysis applied to crystalline and non‐crystalline materials. Acta Crystallographica. Section A Foundations of Crystallography, 48(3), 336–346. doi:10.1107/S0108767391011327
  • Tucker, M. G., Dove, M. T., & Keen, D. A. (2000). Simultaneous analysis of changes in long-range and short-range structural order at the displacive phase transition in quartz. Journal of Physics: Condensed Matter, 12, 723–730.
  • Tucker, M. G., Keen, D. A., & Dove, M. T. (2001). A detailed structural characterization of quartz on heating through the α–β phase transition. Mineralogical Magazine, 65(4), 489–507. doi:10.1180/002646101750377524
  • Tucker, M. G., Keen, D. A., Dove, M. T., Goodwin, A. L., & Hui, Q. (2007). RMCProfile: Reverse Monte Carlo for polycrystalline materials. Journal of Physics: Condensed Matter, 19(33), 335218. doi:10.1088/0953-8984/19/33/335218
  • Usher, T.-M., Levin, I., Daniels, J. E., & Jones, J. L. (2015). Electric-field-induced local and mesoscale structural changes in polycrystalline dielectrics and ferroelectrics. Scientific Reports, 5(1). doi:10.1038/srep14678
  • van Eck, N. J., and L. Waltman. 2013. {VOSviewer} manual, Leiden: Univeristeit Leiden, November, 2013. http://www.vosviewer.com/documentation/Manual_VOSviewer_1.6.1.pdf
  • Wang, H.-W., Wesolowski, D. J., Proffen, T. E., Vlcek, L., Wang, W., Allard, L. F., … Paul, R. L. (2013). Structure and stability of SnO2 nanocrystals and surface-bound water species. Journal of the American Chemical Society, 135(18), 6885–6895. doi:10.1021/ja312030e
  • Wang, X., Tan, S., Yang, X.-Q., & Hu, E. (2020). Pair distribution function analysis: Fundamentals and application to battery materials. Chinese Physics B, 29(2), 028802. doi:10.1088/1674-1056/ab6656
  • Weber, T., & Simonov, A. (2012). The three-dimensional pair distribution function analysis of disordered single crystals: Basic concepts. Zeitschrift Für Kristallographie, 227(5), 238–247. doi:10.1524/zkri.2012.1504
  • Willhammar, T., Sun, J., Wan, W., Oleynikov, P., Zhang, D., Zou, X., … Corma, A. (2012). Structure and catalytic properties of the most complex intergrown zeolite ITQ-39 determined by electron crystallography. Nature Chemistry, 4(3), 188–194. doi:10.1038/nchem.1253
  • Yamakawa, N., Jiang, M., Key, B., & Grey, C. P. (2009). Identifying the local structures formed during lithiation of the conversion material, iron fluoride, in a Li ion battery: A solid-state NMR, X-ray diffraction, and pair distribution function analysis study. Journal of the American Chemical Society, 131(30), 10525–10536. doi:10.1021/ja902639w
  • Yang, Y., Reniers, G., Chen, G., & Goerlandt, F. (2019). A bibliometric review of laboratory safety in universities. Safety Science., 120, 14–24. doi:10.1016/j.ssci.2019.06.022
  • Yang, Y., Su, H., Wu, T., Jiang, Y., Liu, D., Yan, P., … Yu, H. (2019). Atomic pair distribution function research on Li2MnO3 electrode structure evolution. Science Bulletin, 64(8), 553–561. doi:10.1016/j.scib.2019.03.019
  • Young, C. A., & Goodwin, A. L. (2011). Applications of pair distribution function methods to contemporary problems in materials chemistry. Journal of Materials Chemistry, 21(18), 6464. doi:10.1039/c0jm04415f
  • Yu, R., Banerjee, S., Lei, H. C., Sinclair, R., Abeykoon, M., Zhou, H. D., … Bozin, E. S. (2018). Absence of local fluctuating dimers in superconducting Ir1-x(Pt,Rh)xTe2. Physical Review B, 97(17), 174515. doi:10.1103/PhysRevB.97.174515
  • Zhang, N., Yokota, H., Glazer, A. M., Ren, Z., Keen, D. A., Keeble, D. S., … Ye, Z.-G. (2014). The missing boundary in the phase diagram of PbZr1-xTixO3. Nature Communications, 5(1), 1–9. doi:10.1038/ncomms6231
  • Zhu, H., Huang, Y., Ren, J., Zhang, B., Ke, Y., Jen, A. K. Y., … Liu, Q. (2021). Bridging structural inhomogeneity to functionality: Pair distribution function methods for functional materials development. Advanced Science, 8(6), 2003534. doi:10.1002/advs.202003534
  • Zhu, H. et al. (2018). Twin Crystal induced near zero thermal expansion SnO2 nanowires. Journal of the American Chemical Society, 140(24), 7403–7406. doi:10.1021/jacs.8b03232.
  • Zobel, M., Neder, R. B., & Kimber, S. A. J. (2015). Universal solvent restructuring induced by colloidal nanoparticles. Science (New York, N.Y.), 347(6219), 292–294. doi:10.1126/SCIENCE.1261412/SUPPL_FILE/ZOBEL-SM.PDF