2,348
Views
2
CrossRef citations to date
0
Altmetric
Review Article

Self-assembled colloidal gold nanoparticles as substrates for plasmon enhanced fluorescence

ORCID Icon, ORCID Icon & ORCID Icon
Article: 2202676 | Received 31 Jan 2023, Accepted 08 Apr 2023, Published online: 27 Apr 2023

References

  • Anger, P., Bharadwaj, P., & Novotny, L. (2006). Enhancement and quenching of single-molecule fluorescence. Physical Review Letters, 96, 1. doi:10.1103/PhysRevLett.96.113002
  • Aricò, A. S., Bruce, P., Scrosati, B., Tarascon, J. M., & Van Schalkwijk, W. (2005). Nanostructured materials for advanced energy conversion and storage devices. Nature Materials, 4, 366–38. doi:10.1038/nmat1368
  • Ashoori, R. C. (1996). Electrons in artificial atoms. Nature, 379, 413–419. doi:10.1038/379413a0
  • Asian, K., Lakowicz, J. R., Szmacinski, H., & Geddes, C. D. (2004). Metal-enhanced fluorescence solution-based sensing platform. Journal of Fluorescence, 14, 677–679. doi:10.1023/B:JOFL.0000047217.74943.5c
  • Auyeung, E., Li, T. I. N. G., Senesi, A. J., Schmucker, A. L., Pals, B. C., De La Cruz, M. O., & Mirkin, C. A. (2014). DNA-mediated nanoparticle crystallization into Wulff polyhedra. Nature, 505, 73–77. doi:10.1038/nature12739
  • Barad, H. N., Kwon, H., Alarcón-Correa, M., & Fischer, P. (2021). Large area patterning of nanoparticles and nanostructures: Current status and future prospects. ACS Nano, 15, 5861–5875. doi:10.1021/acsnano.0c09999
  • Bauch, M., Toma, K., Toma, M., Zhang, Q., & Dostalek, J. (2014). Plasmon-enhanced fluorescence biosensors: A review. Plasmonics (Norwell, Mass.), 9, 781–799. doi:10.1007/s11468-013-9660-5
  • Baumberg, J. J., Aizpurua, J., Mikkelsen, M. H., & Smith, D. R. (2019). Extreme nanophotonics from ultrathin metallic gaps. Nature Materials, 18, 668–678. doi:10.1038/s41563-019-0290-y
  • Bhaskar, S., Das, P., Moronshing, M., Rai, A., Subramaniam, C., Bhaktha, S. B. N., & Ramamurthy, S. S. (2021). Photoplasmonic assembly of dielectric-metal, Nd2O3-Gold soret nanointerfaces for dequenching the luminophore emission. Nanophotonics, 10, 3417–3431. doi:10.1515/nanoph-2021-0124
  • Bhaskar, S., Kowshik, N. C. S. S., Chandran, S. P., & Ramamurthy, S., S. (2020). Femtomolar detection of spermidine using Au decorated SiO2 nanohybrid on plasmon-coupled extended cavity nanointerface: A smartphone-based fluorescence dequenching approach. Langmuir: The ACS Journal of Surfaces and Colloids, 36, 2865–2876. doi:10.1021/acs.langmuir.9b03869
  • Bhaskar, S., Patra, R., Kowshik, N. C. S. S., Ganesh, K. M., Srinivasan, V., Chandran S, P., & Ramamurthy, S. S. (2020). Nanostructure effect on quenching and dequenching of quantum emitters on surface plasmon-coupled interface: A comparative analysis using gold nanospheres and nanostars. Physica E: Low-Dimensional Systems and Nanostructures, 124, 114276. doi:10.1016/j.physe.2020.114276
  • Bhaskar, S., Rai, A., Ganesh, K. M., Reddy, R., Reddy, N., & Ramamurthy, S. S. (2022). Sericin-based bio-inspired nano-engineering of heterometallic AgAu nanocubes for attomolar mefenamic acid sensing in the mobile phone-based surface plasmon-coupled interface. Langmuir: The ACS Journal of Surfaces and Colloids, 38, 12035–12049. doi:10.1021/acs.langmuir.2c01894
  • Bishop, K. J. M., Wilmer, C. E., Soh, S., & Grzybowski, B. A. (2009). Nanoscale forces and their uses in self-assembly. Small (Weinheim an Der Bergstrasse, Germany), 5, 1600–1630. doi:10.1002/smll.200900358
  • Boles, M. A., Engel, M., & Talapin, D. V. (2016). Self-assembly of colloidal nanocrystals: From intricate structures to functional materials. Chemical Reviews, 116, 11220–11289. doi:10.1021/acs.chemrev.6b00196
  • Boneschanscher, M. P., Evers, W. H., Qi, W., Meeldijk, J. D., Dijkstra, M., & Vanmaekelbergh, D. (2013). Electron tomography resolves a novel crystal structure in a binary nanocrystal superlattice. Nano Letters, 13, 1312–1316. doi:10.1021/nl400100c
  • Brodin, J. D., Auyeung, E., & Mirkin, C. A. (2015). DNA-mediated engineering of multicomponent enzyme crystals. Proceedings of the National Academy of Sciences of the United States of America, 112, 4564–4569. doi:10.1073/pnas.1503533112
  • Chekini, M., Filter, R., Bierwagen, J., Cunningham, A., Rockstuhl, C., & Bürgi, T. (2015). Fluorescence enhancement in large-scale self-assembled gold nanoparticle double arrays. Journal of Applied Physics, 118, 233107. doi:10.1063/1.4938025
  • Chikkaraddy, R., de Nijs, B., Benz, F., Barrow, S. J., Scherman, O. A., Rosta, E., … Baumberg, J. J. (2016). Single-molecule strong coupling at room temperature in plasmonic nanocavities. Nature, 535, 127–130. doi:10.1038/nature17974
  • Chikkaraddy, R., Turek, V. A., Kongsuwan, N., Benz, F., Carnegie, C., Van De Goor, T., … Baumberg, J. J. (2018). Mapping nanoscale hotspots with single-molecule emitters assembled into plasmonic nanocavities using DNA origami. Nano Letters, 18(1), 405–411. doi:10.1021/acs.nanolett.7b04283
  • Ciracì, C., Hill, R. T., Mock, J. J., Urzhumov, Y., Fernández-Domínguez, A. I., Maier, S. A., … Smith, D. R. (2012). Probing the ultimate limits of plasmonic enhancement. Science (New York, N.Y.), 337, 1072–1074. doi:10.1126/science.1224823
  • Cui, Y., Björk, M. T., Liddle, J. A., Sönnichsen, C., Boussert, B., & Alivisatos, A. P. (2004). Integration of colloidal nanocrystals into lithographically patterned devices. Nano Letters, 4, 1093–1098. doi:10.1021/nl049488i
  • Daniel, M. C., & Astruc, D. (2004). Gold nanoparticles: Assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chemical Reviews, 104(1), 293–346. doi:10.1021/cr030698+
  • Deegan, R. D., Bakajin, O., Dupont, T. F., Huber, G., Nagel, S. R., & Witten, T. A. (1997). Capillary flow as the cause of ring stains from dried liquid drops. Nature, 389, 827–829. doi:10.1038/39827
  • Donehue, J. E., Wertz, E., Talicska, C. N., & Biteen, J. S. (2014). Plasmon-Enhanced brightness and photostability from single fluorescent proteins coupled to gold nanorods. The Journal of Physical Chemistry C, 118, 15027–15035. doi:10.1021/jp504186n
  • Dong, J., Gao, W., Han, Q., Wang, Y., Qi, J., Yan, X., & Sun, M. (2019). Plasmon-enhanced upconversion photoluminescence: Mechanism and application. Reviews in Physics, 4, 100026. doi:10.1016/j.revip.2018.100026
  • Dong, J., Zhang, Z., Zheng, H., & Sun, M. (2015). Recent progress on plasmon-enhanced fluorescence. Nanophotonics, 4, 472–490. doi:10.1515/nanoph-2015-0028
  • Feng, A. L., Lin, M., Tian, L., Zhu, H. Y., Guo, H., Singamaneni, S., … Xu, F. (2015). Selective enhancement of red emission from upconversion nanoparticles via surface plasmon-coupled emission. RSC Advances, 5, 76825–76835. doi:10.1039/C5RA13184G
  • Feng, A. L., You, M. L., Tian, L., Singamaneni, S., Liu, M., Duan, Z., … Lin, M. (2015). Distance-dependent plasmon-enhanced fluorescence of upconversion nanoparticles using polyelectrolyte multilayers as tunable spacers. Scientific Reports, 5, 7779. doi:10.1038/srep07779
  • Flauraud, V., Mastrangeli, M., Bernasconi, G. D., Butet, J., Alexander, D. T. L., Shahrabi, E., … Brugger, J. (2017). Nanoscale topographical control of capillary assembly of nanoparticles. Nature Nanotechnology, 12(1), 73–80. doi:10.1038/nnano.2016.179
  • Fort, E., & Grésillon, S. (2008). Surface enhanced fluorescence. Journal of Physics D: Applied Physics, 41(1), 013001. doi:10.1088/0022-3727/41/1/013001
  • Fu, B., Flynn, J. D., Isaacoff, B. P., Rowland, D. J., & Biteen, J. S. (2015). Super-resolving the distance-dependent plasmon-enhanced fluorescence of single dye and fluorescent protein molecules. The Journal of Physical Chemistry C, 119, 19350–19358. doi:10.1021/acs.jpcc.5b05154
  • Gao, W., Emaminejad, S., Nyein, H. Y. Y., Challa, S., Chen, K., Peck, A., … Javey, A. (2016). Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis. Nature, 529, 509–514. doi:10.1038/nature16521
  • García-Astrain, C., Lenzi, E., Jimenez de Aberasturi, D., Henriksen-Lacey, M., Binelli, M. R., Liz-Marzán, L. M., … Binelli, M. R. (2020). 3D-printed biocompatible scaffolds with built-in nanoplasmonic sensors. Advanced Functional Materials, 30, 2005407. doi:10.1002/adfm.202005407
  • García-Lojo, D., Núñez-Sánchez, S., Gómez-Graña, S., Grzelczak, M., Pastoriza-Santos, I., Pérez-Juste, J., & Liz-Marzán, L. M. (2019). Plasmonic Supercrystals. Accounts of Chemical Research, 52, 1855–1864. doi:10.1021/acs.accounts.9b00213
  • Geddes, C. D., & Lakowicz, J. R. (2002). Metal-enhanced fluorescence. Journal of Fluorescence, 12, 121–129. doi:10.1023/A:1016875709579/METRICS
  • Goßler, F. R., Steiner, A. M., Stroyuk, O., Raevskaya, A., & König, T. A. F. (2019). Active plasmonic colloid-to-film-coupled cavities for tailored light-matter interactions. The Journal of Physical Chemistry C, 123, 6745–6752. doi:10.1021/acs.jpcc.8b12566
  • Greybush, N. J., Saboktakin, M., Ye, X., Della Giovampaola, C., Oh, S. J., Berry, N. E., … Kagan, C. R. (2014). Plasmon-enhanced upconversion luminescence in single nanophosphor-nanorod heterodimers formed through template-assisted self-assembly. ACS Nano, 8, 9482–9491. doi:10.1021/nn503675a
  • Grzelczak, M., Liz-Marzán, L. M., & Klajn, R. (2019). Stimuli-responsive self-assembly of nanoparticles. Chemical Society Reviews, 48, 1342–1361. doi:10.1039/c8cs00787j
  • Hamon, C., & Liz-Marzán, L. M. (2015). Hierarchical assembly of plasmonic nanoparticles. Chemistry (Weinheim an Der Bergstrasse, Germany), 21, 9956–9963. doi:10.1002/CHEM.201500149
  • Hanske, C., Hill, E. H., Vila-Liarte, D., González-Rubio, G., Matricardi, C., Mihi, A., & Liz-Marzán, L. M. (2019). Solvent-assisted self-assembly of gold nanorods into hierarchically organized plasmonic mesostructures. ACS Applied Materials & Interfaces, 11, 11763–11771. doi:10.1021/acsami.9b00334
  • He, J., Zheng, W., Ligmajer, F., Chan, C. F., Bao, Z., Wong, K. L., … Lei, D. Y. (2017). Plasmonic enhancement and polarization dependence of nonlinear upconversion emissions from single gold nanorod@SiO2@CaF2:Yb3+, Er3+ hybrid core-shell-satellite nanostructures. Light, Science & Applications, 6, e16217–e16217. doi:10.1038/lsa.2016.217
  • Hou, S., Chen, Y., Lu, D., Xiong, Q., Lim, Y., & Duan, H. (2020). A self-assembled plasmonic substrate for enhanced fluorescence resonance energy transfer. Advanced Materials, 32, 1906475. doi:10.1002/adma.201906475
  • Hueckel, T., Hocky, G. M., Palacci, J., & Sacanna, S. (2020). Ionic solids from common colloids. Nature, 580, 487–490. doi:10.1038/s41586-020-2205-0
  • Hueckel, T., Hocky, G. M., & Sacanna, S. (2021). Total synthesis of colloidal matter. Nature Reviews Materials, 6, 1053–1069. doi:10.1038/s41578-021-00323-x
  • Jones, M. R., Seeman, N. C., & Mirkin, C. A. (2015). Programmable materials and the nature of the DNA bond. Science (New York, N.Y.), 347, 1260901. doi:10.1126/science.1260901
  • Joyce, C., Fothergill, S. M., & Xie, F. (2020). Recent advances in gold-based metal enhanced fluorescence platforms for diagnosis and imaging in the near-infrared. Materials Today Advances, 7, 100073. doi:10.1016/j.mtadv.2020.100073
  • Kalsin, A. M., Fialkowski, M., Paszewski, M., Smoukov, S. K., Bishop, K. J. M., & Grzybowski, B. A. (2006). Electrostatic self-assembly of binary nanoparticle crystals with a diamond-like lattice. Science (New York, N.Y.), 312, 420–424. doi:10.1126/science.1125124
  • Kim, D. H., Ghaffari, R., Lu, N., & Rogers, J. A. (2012). Flexible and stretchable electronics for biointegrated devices. Annual Review of Biomedical Engineering, 14, 113–128. doi:10.1146/annurev-bioeng-071811-150018
  • Kim, Y., Macfarlane, R. J., Jones, M. R., & Mirkin, C. A. (2016). Transmutable nanoparticles with reconfigurable surface ligands. Science (New York, N.Y.), 351, 579–582. doi:10.1126/science.aad2212
  • Klajn, R., Bishop, K. J. M., Fialkowski, M., Paszewski, M., Campbell, C. J., Gray, T. P., & Grzybowski, B. A. (2007). Plastic and moldable metals by self-assembly of sticky nanoparticle aggregates. Science (New York, N.Y.), 316, 261–264. doi:10.1126/science.1139131
  • Koh, B., Li, X., Zhang, B., Yuan, B., Lin, Y., Antaris, A. L., … Dai, H. (2016). Visible to near-infrared fluorescence enhanced cellular imaging on plasmonic gold chips. Small (Weinheim an Der Bergstrasse, Germany), 12, 457–465. doi:10.1002/smll.201502182
  • Kongsuwan, N., Demetriadou, A., Chikkaraddy, R., Benz, F., Turek, V. A., Keyser, U. F., … Hess, O. (2018). Suppressed quenching and strong-coupling of purcell-enhanced single-molecule emission in plasmonic nanocavities. ACS Photonics, 5(1), 186–191. doi:10.1021/acsphotonics.7b00668
  • Kulakovich, O., Gurinovich, L., Li, H., Ramanenka, A., Trotsiuk, L., Muravitskaya, A., … Gaponenko, S. (2021). Photostability enhancement of InP/ZnSe/ZnSeS/ZnS quantum dots by plasmonic nanostructures. Nanotechnology, 32, 035204. doi:10.1088/1361-6528/abbdde
  • Kulakovich, O., Strekal, N., Yaroshevich, A., Maskevich, S., Gaponenko, S., Nabiev, I., … Artemyev, M. (2002). Enhanced luminescence of CdSe quantum dots on gold colloids. Nano Letters, 2, 1449–1452. doi:10.1021/nl025819k
  • Lakowicz, J. R., Ray, K., Chowdhury, M., Szmacinski, H., Fu, Y., Zhang, J., & Nowaczyk, K. (2008). Plasmon-controlled fluorescence: A new paradigm in fluorescence spectroscopy. The Analyst, 133, 1308–1346. doi:10.1039/B802918K
  • Laramy, C. R., O’Brien, M. N., & Mirkin, C. A. (2019). Crystal engineering with DNA. Nature Reviews Materials, 4, 201–224. doi:10.1038/s41578-019-0087-2
  • Lee, M. S., Yee, D. W., Ye, M., & MacFarlane, R. J. (2022). Nanoparticle assembly as a materials development tool. Journal of the American Chemical Society, 144, 3330–3346. doi:10.1021/jacs.1c12335
  • Lee, S., Tiara, T., Cho, G., & Lee, J. (2022). Control of the drying patterns for complex colloidal solutions and their applications. Nanomaterials, 12, 2600. doi:10.3390/nano12152600
  • Li, J. F., Li, C. Y., & Aroca, R. F. (2017). Plasmon-enhanced fluorescence spectroscopy. Chemical Society Reviews, 46, 3962–3979. doi:10.1039/c7cs00169j
  • Li, X., Kuznetsova, T., Cauwenberghs, N., Wheeler, M., Maecker, H., Wu, J. C., … Dai, H. (2017). Autoantibody profiling on a plasmonic nano-gold chip for the early detection of hypertensive. Proceedings of the National Academy of Sciences of the United States of America, 114, 7089–7094. doi:10.1073/pnas.1621457114
  • Li, X., Pomares, C., Gonfrier, G., Koh, B., Zhu, S., Gong, M., … Dai, H. (2016). Multiplexed anti-toxoplasma IgG, IgM, and IgA assay on plasmonic gold chips: Towards making mass screening possible with dye test precision. Journal of Clinical Microbiology, 54, 1726–1733. doi:10.1128/JCM.03371-15
  • Li, X., Pomares, C., Peyron, F., Press, C. J., Ramirez, R., Geraldine, G., … Dai, H. (2019). Plasmonic gold chips for the diagnosis of Toxoplasma gondii, CMV, and rubella infections using saliva with serum detection precision. European Journal of Clinical Microbiology & Infectious Diseases: Official Publication of the European Society of Clinical Microbiology, 38, 883–890. doi:10.1007/s10096-019-03487-1
  • Li, Y., Sun, J., Wu, L., Ji, J., Sun, X., & Qian, Y. (2014). Surface-enhanced fluorescence immunosensor using Au nano-crosses for the detection of microcystin-LR. Biosensors & Bioelectronics, 62, 255–260. doi:10.1016/J.BIOS.2014.06.064
  • Li, Z., Fan, Q., & Yin, Y. (2022). Colloidal self-assembly approaches to smart nanostructured materials. Chemical Reviews, 122, 4976–5067. doi:10.1021/acs.chemrev.1c00482
  • Lin, Q.-Y., Mason, J. A., Li, Z., Zhou, W., O’Brien, M. N., Brown, K. A., … Mirkin, C. A. (2018). Building superlattices from individual nanoparticles via template-confined DNA-mediated assembly. Science (New York, N.Y.), 359, 669–672. doi:10.1126/science.aaq0591
  • Liu, B., Li, Y., Wan, H., Wang, L., Xu, W., Zhu, S., … Qian, K. (2016). High performance, multiplexed lung cancer biomarker detection on a plasmonic gold chip. Advanced Functional Materials, 26, 7994–8002. doi:10.1002/adfm.201603547
  • Liu, S. F., Hou, Z. W., Lin, L., Li, F., Zhao, Y., Li, X. Z., … Sun, H. B. (2022). 3D nanoprinting of semiconductor quantum dots by photoexcitation-induced chemical bonding. Science, 377, 1112–1116. doi:10.1126/science.abo5345
  • Luan, J., Morrissey, J. J., Wang, Z., Derami, H. G., Liu, K. K., Cao, S., … Singamaneni, S. (2018). Add-on plasmonic patch as a universal fluorescence enhancer. Light: Science & Applications, 7(1), 1–13. doi:10.1038/s41377-018-0027-8
  • Macfarlane, R. J. (2021). From nano to macro: Thinking bigger in nanoparticle assembly. Nano Letters, 21, 7432–7434. doi:10.1021/acs.nanolett.1c02724
  • Macfarlane, R. J., Jones, M. R., Lee, B., Auyeung, E., & Mirkin, C. A. (2013). Topotactic interconversion of nanoparticle superlattices. Science (New York, N.Y.), 341, 1222–1225. doi:10.1126/science.1241402
  • Malikova, N., Pastoriza-Santos, I., Schierhorn, M., Kotov, N. A., & Liz-Marzán, L. M. (2002). Layer-by-layer assembled mixed spherical and planar gold nanoparticles: Control of interparticle interactions. Langmuir, 18, 3694–3697. doi:10.1021/la025563y
  • Martínez, E. D., Urbano, R. R., & Rettori, C. (2018). Thermoplasmonic enhancement of upconversion in small-size doped NaGd(Y)F4 nanoparticles coupled to gold nanostars. Nanoscale, 10, 14687–14696. doi:10.1039/C8NR01639A
  • Mei, Z., & Tang, L. (2017). Surface-plasmon-coupled fluorescence enhancement based on ordered gold nanorod array biochip for ultrasensitive DNA analysis. Analytical Chemistry, 89(1), 633–639. doi:10.1021/acs.analchem.6b02797
  • Min, Y., Akbulut, M., Kristiansen, K., Golan, Y., & Israelachvili, J. (2008). The role of interparticle and external forces in nanoparticle assembly. Nature Materials, 7, 527–538. doi:10.1038/nmat2206
  • Minopoli, A., Della Ventura, B., Campanile, R., Tanner, J. A., Offenhäusser, A., Mayer, D., & Velotta, R. (2021). Randomly positioned gold nanoparticles as fluorescence enhancers in apta-immunosensor for malaria test. Mikrochimica Acta, 188, 88. doi:10.1007/S00604-021-04746-9
  • Minopoli, A., Della Ventura, B., Lenyk, B., Gentile, F., Tanner, J. A., Offenhäusser, A., … Velotta, R. (2020). Ultrasensitive antibody-aptamer plasmonic biosensor for malaria biomarker detection in whole blood. Nature Communications, 11(1), 1–10. doi:10.1038/s41467-020-19755-0
  • Minopoli, A., Scardapane, E., Ventura, B., Della, Tanner, J. A., Offenhäusser, A., Mayer, D., & … Elotta, R. (2022). Double-resonant nanostructured gold surface for multiplexed detection. ACS Applied Materials & Interfaces, 14, 6417–6427. doi:10.1021/acsami.1c23438
  • Mock, J. J., Hill, R. T., Degiron, A., Zauscher, S., Chilkoti, A., & Smith, D. R. (2008). Distance-dependent plasmon resonant coupling between a gold nanoparticle and gold film. Nano Letters, 8, 2245–2252. doi:10.1021/nl080872f
  • Moskovits, M. (1985). Surface-enhanced spectroscopy. Reviews of Modern Physics, 57, 783–826. doi:10.1103/RevModPhys.57.783
  • Ngo, T. T., Lozano, G., & Míguez, H. (2022). Enhanced up-conversion photoluminescence in fluoride–oxyfluoride nanophosphor films by embedding gold nanoparticles. Materials Advances, 3, 4235–4242. doi:10.1039/D2MA00068G
  • Ni, S., Isa, L., & Wolf, H. (2018). Capillary assembly as a tool for the heterogeneous integration of micro- and nanoscale objects. Soft Matter, 14, 2978–2995. doi:10.1039/C7SM02496G
  • Nirmidas Biotech, I. (n.d). Nirmidas Biotech, Inc. Retrieved from https://www.nirmidas.com/
  • Park, D. J., Zhang, C., Ku, J. C., Zhou, Y., Schatz, G. C., & Mirkin, C. A. (2015). Plasmonic photonic crystals realized through DNA-programmable assembly. Proceedings of the National Academy of Sciences of the United States of America, 112, 977–981. doi:10.1073/PNAS.1422649112
  • Park, S. C., Fang, J., Biswas, S., Mozafari, M., Stauden, T., & Jacobs, H. O. (2014). A first implementation of an automated reel-to-reel fluidic self-assembly machine. Advanced Materials (Deerfield Beach, Fla.), 26, 5942–5949. doi:10.1002/adma.201401573
  • Pavelka, O., Dyakov, S., Veselý, J., Fučíková, A., Sugimoto, H., Fujii, M., & Valenta, J. (2021). Optimizing plasmon enhanced luminescence in silicon nanocrystals by gold nanorods. Nanoscale, 13, 5045–5057. doi:10.1039/D1NR00058F
  • Pelesko, J. A. (2007). Self assembly : The science of things that put themselves together. New York: Chapman & Hall/CRC. doi:10.1201/9781584886884
  • Pelton, M., Aizpurua, J., & Bryant, G. (2008). Metal-nanoparticle plasmonics. Laser & Photonics Review, 2, 136–159. doi:10.1002/lpor.200810003
  • Pomerantseva, E., Bonaccorso, F., Feng, X., Cui, Y., & Gogotsi, Y. (2019). Energy storage: The future enabled by nanomaterials. Science, 366, eean8285. doi:10.1126/science.aan8285
  • Rao, A., Roy, S., Jain, V., & Pillai, P. P. (2022). Nanoparticle self-assembly: From design principles to complex matter to functional materials. ACS Applied Materials & Interfaces. In press. doi:10.1021/acsami.2c05378
  • Saboktakin, M., Ye, X., Chettiar, U. K., Engheta, N., Murray, C. B., & Kagan, C. R. (2013). Plasmonic enhancement of nanophosphor upconversion luminescence in Au nanohole arrays. ACS Nano, 7, 7186–7192. doi:10.1021/nn402598e
  • Samanta, D., Zhou, W., Ebrahimi, S. B., Petrosko, S. H., Mirkin, C., A., Samanta, D., … Ebrahimi, S. B. (2022). Programmable matter: The nanoparticle atom and DNA bond. Advanced Materials, 34, 2107875. doi:10.1002/adma.202107875
  • Sánchez-Iglesias, A., Aldeanueva-Potel, P., Ni, W., Pérez-Juste, J., Pastoriza-Santos, I., Alvarez-Puebla, R. A., … Liz-Marzán, L. M. (2010). Chemical seeded growth of Ag nanoparticle arrays and their application as reproducible SERS substrates. Nano Today, 5(1), 21–27. doi:10.1016/j.nantod.2010.01.002
  • Santos, P. J., Gabrys, P. A., Zornberg, L. Z., Lee, M. S., & Macfarlane, R. J. (2021). Macroscopic materials assembled from nanoparticle superlattices. Nature, 591, 586–591. doi:10.1038/s41586-021-03355-z
  • Scarabelli, L., Hamon, C., & Liz-Marzán, L. M. (2017). Design and fabrication of plasmonic nanomaterials based on gold nanorod supercrystals. Chemistry of Materials, 29(1), 15–25. doi:10.1021/acs.chemmater.6b02439
  • Scarabelli, L., Vila-Liarte, D., Mihi, A., & Liz-Marzán, L. M. (2021). Templated colloidal self-assembly for lattice plasmon engineering. Accounts of Materials Research, 2, 816–827. doi:10.1021/accountsmr.1c00106
  • Scriven, L. E. (1988). Physics and applications of DIP coating and spin coating. MRS Proceedings, 121(1), 717–729. doi:10.1557/PROC-121-717
  • Semeniak, D., Cruz, D. F., Chilkoti, A., & Mikkelsen, M. H. (2022). Plasmonic fluorescence enhancement in diagnostics for clinical tests at point‐of‐care: A review of recent technologies. Advanced Materials, 2107986. doi:10.1002/adma.202107986
  • Shevchenko, E. V., Talapin, D. V., Kotov, N. A., O’Brien, S., & Murray, C. B. (2006). Structural diversity in binary nanoparticle superlattices. Nature, 439, 55–59. doi:10.1038/nature04414
  • Smith, A. M., & Nie, S. (2010). Semiconductor nanocrystals: Structure, properties, and band gap engineering. Accounts of Chemical Research, 43, 190–200. doi:10.1021/AR9001069
  • Spatz, J. P., Mössmer, S., Hartmann, C., Möller, M., Herzog, T., Krieger, M., … Kabius, B. (2000). Ordered deposition of inorganic clusters from micellar block copolymer films. Langmuir, 16, 407–415. doi:10.1021/la990070n
  • Steigerwald, M. L., & Brus, L. E. (1990). Semiconductor crystallites: A class of large molecules. Accounts of Chemical Research, 23, 183–188. doi:10.1021/ar00174a003
  • Sugimoto, H., Yashima, S., & Fujii, M. (2018). Hybridized plasmonic gap mode of gold nanorod on mirror nanoantenna for spectrally tailored fluorescence enhancement. ACS Photonics, 5, 3421–3427. doi:10.1021/acsphotonics.8b00693
  • Tabakman, S. M., Chen, Z., Casalongue, H. S., Wang, H., & Dai, H. (2011). A new approach to solution phase gold seeding for SERS substrates. Small (Weinheim an Der Bergstrasse, Germany), 7, 499–505. doi:10.1002/SMLL.201001836
  • Tabakman, S. M., Lau, L., Robinson, J. T., Price, J., Sherlock, S. P., Wang, H., … Dai, H. (2011). Plasmonic substrates for multiplexed protein microarrays with femtomolar sensitivity and broad dynamic range. Nature Communications, 2(1), 466. doi:10.1038/ncomms1477
  • Talapin, D. V., Engel, M., & Braun, P. V. (2015). Functional materials and devices by self-assembly. MRS Bulletin, 45, 799–806. doi:10.1557/mrs.2020.252
  • Talapin, D. V., & Murray, C. B. (2005). PbSe nanocrystal solids for n- and p-channel thin film field-effect transistors. Science (New York, N.Y.), 310, 86–89. doi:10.1126/science.1116703
  • Theodorou, I. G., Ruenraroengsak, P., Gonzalez-Carter, D. A., Jiang, Q., Yagüe, E., Aboagye, E. O., … Xie, F. (2019). Towards multiplexed near-infrared cellular imaging using gold nanostar arrays with tunable fluorescence enhancement. Nanoscale, 11, 2079–2088. doi:10.1039/c8nr09409h
  • Udayabhaskararao, T., Altantzis, T., Houben, L., Coronado-Puchau, M., Langer, J., Popovitz-Biro, R., … Klajn, R. (2017). Tunable porous nanoallotropes prepared by post-assembly etching of binary nanoparticle superlattices. Science (New York, N.Y.), 358, 514–518. doi:10.1126/science.aan6046
  • Ullrich, S., Scheeler, S. P., Pacholski, C., Spatz, J. P., & Kudera, S. (2013). Formation of large 2D arrays of shape-controlled colloidal nanoparticles at variable interparticle distances. Particle & Particle Systems Characterization, 30(1), 102–108. doi:10.1002/ppsc.201200065
  • Vila-Liarte, D., Feil, M. W., Manzi, A., Garcia-Pomar, J. L., Huang, H., Döblinger, M., … Mihi, A. (2020). Templated-assembly of CsPbBr3 perovskite nanocrystals into 2D photonic supercrystals with amplified spontaneous emission. Angewandte Chemie (International ed. in English), 59, 17750–17756. doi:10.1002/ANIE.202006152
  • Vogel, N., Retsch, M., Fustin, C. A., Del Campo, A., & Jonas, U. (2015). Advances in colloidal assembly: The design of structure and hierarchy in two and three dimensions. Chemical Reviews, 115, 6265–6311. doi:10.1021/cr400081d
  • Wang, J., & Jia, Z. (2018). Metal nanoparticles/porous silicon microcavity enhanced surface plasmon resonance fluorescence for the detection of DNA. Sensors, 18, 661. doi:10.3390/s18020661
  • Wang, S., Xu, J., Wang, W., Wang, G. J. N., Rastak, R., Molina-Lopez, F., … Bao, Z. (2018). Skin electronics from scalable fabrication of an intrinsically stretchable transistor array. Nature, 555, 83–88. doi:10.1038/nature25494
  • Wang, Y., & Ding, T. (2019). Optical tuning of plasmon-enhanced photoluminescence. Nanoscale, 11, 10589–10594. doi:10.1039/C9NR03725J
  • Wang, Y., Fedin, I., Zhang, H., & Talapin, D. V. (2017). Direct optical lithography of functional inorganic nanomaterials. Science (New York, N.Y.), 357, 385–388. doi:10.1126/science.aan2958
  • Whitesides, G. M., & Boncheva, M. (2002). Beyond molecules: Self-assembly of mesoscopic and macroscopic components. Proceedings of the National Academy of Sciences of the United States of America, 99, 4769–4774. doi:10.1073/PNAS.082065899/ASSET/4C112F50-DAEF-4ECA-9891-CA24D2AE82F0/ASSETS/GRAPHIC/PQ0820658002.JPEG
  • Xie, K. X., Liu, Q., Jia, S. S., & Xiao, X. X. (2021). Fluorescence enhancement by hollow plasmonic assembly and its biosensing application. Analytica Chimica Acta, 1144, 96–101. doi:10.1016/J.ACA.2020.12.008
  • Xu, W., Wang, L., Zhang, R., Sun, X., Huang, L., Su, H., … Qian, K. (2020). Diagnosis and prognosis of myocardial infarction on a plasmonic chip. Nature Communications, 11(1), 1–9. doi:10.1038/s41467-020-15487-3
  • Yi, C., Liu, H., Zhang, S., Yang, Y., Zhang, Y., Lu, Z., … Nie, Z. (2020). Self-limiting directional nanoparticle bonding governed by reaction stoichiometry. Science (New York, N.Y.), 369, 1369–1374. doi:10.1126/SCIENCE.ABA8653
  • Yin, Z., Zhou, D., Xu, W., Cui, S., Chen, X., Wang, H., … Song, H. (2016). Plasmon-enhanced upconversion luminescence on vertically aligned gold nanorod monolayer supercrystals. ACS Applied Materials & Interfaces, 8, 11667–11674. doi:10.1021/acsami.5b12075
  • Zhang, B., Jarrell, J. A., Price, J. V., Tabakman, S. M., Li, Y., Gong, M., … Dai, H. (2013). An integrated peptide-antigen microarray on plasmonic gold films for sensitive human antibody profiling. PLoS One, 8, e71043. doi:10.1371/journal.pone.0071043
  • Zhang, B., Kumar, R. B., Dai, H., & Feldman, B. J. (2014). A plasmonic chip for biomarker discovery and diagnosis of type 1 diabetes. Nature Medicine, 20, 948–953. doi:10.1038/nm.3619
  • Zhang, B., Price, J., Hong, G., Tabakman, S. M., Wang, H., Jarrell, J. A., … Dai, H. (2013). Multiplexed cytokine detection on plasmonic gold substrates with enhanced near-infrared fluorescence. Nano Research, 6, 113–120. doi:10.1007/s12274-012-0286-2
  • Zhang, W., Caldarola, M., Lu, X., & Orrit, M. (2018). Plasmonic enhancement of two-photon-excited luminescence of single quantum dots by individual gold nanorods. ACS Photonics, 5, 2960–2968. doi:10.1021/acsphotonics.8b00306
  • Zhao, H., Sen, S., Udayabhaskararao, T., Sawczyk, M., Kucanda, K., Manna, D., … Klajn, R. (2016). Reversible trapping and reaction acceleration within dynamically self-assembling nanoflasks. Nature Nanotechnology, 11(1), 82–88. doi:10.1038/nnano.2015.256
  • Zhao, J., Cheng, Y., Shen, H., Hui, Y. Y., Wen, T., Chang, H. C., … Lu, G. (2018). Light emission from plasmonic nanostructures enhanced with fluorescent nanodiamonds. Scientific Reports, 8, 1–8. doi:10.1038/s41598-018-22019-z
  • Zhao, S., Caruso, F., Dahne, L., Decher, G., De Geest, B. G., Fan, J., … Parak, W. J. (2019). The future of layer-by-layer assembly: A tribute to ACS nano Associate Editor Helmuth Mohwald. ACS Nano, 13, 6151–6169. doi:10.1021/acsnano.9b03326
  • Zhao, X., Yang, L., Guo, J., Xiao, T., Zhou, Y., Zhang, Y., … Yan, Y. (2021). Transistors and logic circuits based on metal nanoparticles and ionic gradients. Nature Electronics, 4, 109–115. doi:10.1038/s41928-020-00527-z