854
Views
1
CrossRef citations to date
0
Altmetric
Research Article

Mechanical properties of sinter hardened sintered steels prepared by hybrid alloying

, &
Article: 2202714 | Received 01 Nov 2022, Accepted 08 Apr 2023, Published online: 15 May 2023

References

  • Albano-Müller, L., Thümmler, F., & Zapf, G. (1973). High-strengh sintered iron-base alloys by using transition metal carbides. Powder Metallurgy, 16(32), 1–23. doi:10.1179/pom.1973.16.32.006
  • ASM International. Handbook Committee. (1990). Properties and selection: Irons, Steels, and high-performance alloys (Vol. 1, Metals handbook, 10th ed., p. 140ff). Novelty, OH: ASM Metals Park.
  • Azadbeh, M., Danninger, H., & Gierl, C. (2006). Elastic properties of Cr-Mo alloyed sintered steels: A comparison of dynamic and static Young’s moduli. Powder Metallurgy Progress, 6(1), 1–10.
  • Banerjee, S., Gemenetzis, V., & Thümmler, F. (1981). New results in the master alloy concept for high strength sintered steels. Modern Developments in Powder Metallurgy, 13, 143–157.
  • Behera, D. K., Tripathi, P., & Chaubey, A. K. (2018). Effect of nickel on mechanical properties of alloy steel produced by powder metallurgy. Materials Today: Proceedings, 5(1), 1704–1710. doi:10.1016/j.matpr.2017.11.267
  • Berg, S., & Maroli, B. (2002). Properties obtained by chromium-containing material. Adv. Powder Metall. and Partic. Mater. - 2002 (Proc. PM2002 Orlando), compiled by V. Arnhold, C.-L. Chu, W. F. Jandeska, & H. I. Sanderow, MPIF, Princeton NJ (2002) Part 8, pp.1–14 (on CD).
  • Bergmark, A., & Alzati, L. (2005). Fatigue crack path in Cu–Ni–Mo alloyed PM steel. Fatigue & Fracture of Engineering Materials and Structures, 28(1–2), 229–235. doi:10.1111/j.1460-2695.2004.00841.x
  • Bocchini, G. F., Rivolta, B., Silva, G., Lenco, M. G., Pinasco, M. R., & Stagno, E. (2002). Influence of density and surface/volume ratio on the cooling speed of sinter-hardening materials, Part two: Microstructure and microhardness distribution inside parallelepipeds. Adv. Powder Metall. and Partic. Mater.- 2002 (Proc. PM2002 Orlando), compiled by V. Arnhold, C.-L. Chu, W. F. Jandeska, & H. I. Sanderow, MPIF, Princeton, NJ, Part 13 (pp. 60–72). (on CD).
  • Brian James, W. (1998). What is sinter hardening? Proceedings of the PM2 TEC ’98 Las Vegas, Mpif, Princeton, NJ. Retrieved from https://www.gknpm.com/globalassets/downloads/hoeganaes/technical-library/technical-papers/test-papers/62.-what-is-sinter-hardening.pdf/
  • Carabajar, S., Verdu, C., & Fougeres, R. (1997). Damage mechanisms of a nickel alloyed sintered steel during tensile tests. Materials Science and Engineering: A, 232(1–2), 80–87. doi:10.1016/S0921-5093(97)00100-7
  • Danninger, H., Spoljaric, D., Arakil, A., & Weiss, B. (1996). Mo alloyed PM structural steels prepared by different alloying techniques. Adv. Powder Metall. & Partic. Mater. – 1996 (Proc. PM’96 Washington DC), compiled by T. M. Cadle, & K. S. Narasimhan. Part 13 (pp. 177–188).
  • Danninger, H., Prokofyev, M., Gierl-Mayer, C., Hellein, R., & Müller, A. (2021). Sintering of PM steels with high Mn content – Using the masteralloy route. Proceeding of Euro PM2021. Virtual Conference. Paper no. 5065116.
  • Danninger, H., & Gierl, C. (2001). Processes in PM steel compacts during the initial stages of sintering. Materials Chemistry and Physics, 67(1–3), 49–55. doi:10.1016/S0254-0584(00)00419-3
  • Danninger, H., & Weiss, B. (2001). Ultra high cycle fatigue properties of sintered steels. Powder Metallurgy Progress 1(1), 19–40.
  • Danninger, H., & Weiss, B. (2003). The influence of defects on high cycle fatigue of metallic materials. Journal of Materials Processing Technology, 143–144, 179–184. doi:10.1016/S0924-0136(03)00409-6
  • Danninger, H., Gierl, C., Kremel, S., Leitner, G., K. Jaenicke-Roessler, K., & Yu, Y. (2002). Degassing and deoxidation processes during sintering of unalloyed and alloyed PM steels. Powder Metallurgy Progress, 2, 125–140.
  • Danninger, H., Gierl-Mayer, C., Prokofyev, M., Huemer, M.-C., de Oro Calderon, R., Hellein, R., Müller, A., & Stetina, G. (2021). Manganese – A promising element also in high alloy sintered steels. Powder Metallurgy, 64(2), 115–125. doi:10.1080/00325899.2021.1886717
  • Danninger, H., Pöttschacher, R., Bradac, S., Salak, A., & Seyrkammer, J. (2005). Comparison of Mn, Cr, and Mo alloyed sintered steels prepared from elemental powders. Powder Metallurgy, 48(1), 23–32. doi:10.1179/003258905X37567
  • Danninger, H., Spoljaric, D., & Weiss, B. (1997). Microstructural features limiting the performance of PM structural parts. International Journal of Powder Metallurgy., 33(4), 43–53.
  • Danninger, H., Xu, C., Khatibi, G., Weiss, B., & Lindqvist, B. (2012). Gigacycle fatigue of ultra high density sintered alloy steels. Powder Metallurgy, 55(5), 378–387. doi:10.1179/1743290112Y.0000000001
  • De Oro Calderón, R., Bernardo, E., Campos, M., Gierl-Mayer, C., Danninger, H., & Torralba, J. M. (2016). The master alloy route: Introducing attractive alloying element in powder metallurgy steels. Powder Metallurgy Review, 59(1), 31–40. doi:10.1080/00325899.2016.1148897
  • Engström, U. (1986). Innovations in ferrous PM. In W. J. Huppmann, W. A. Kaysser, & G. Petzow (Eds.), Powder metallurgy-state of the art (pp. 41–70). Freiburg: Verlag Schmid.
  • Engström, U. (2000). Evaluation of sinter hardening of different PM materials. Proceedings of the PowderMet 2000 New York, compiled by H. Ferguson & D. T. Whychell, MPIF, Princeton, NJ, Part 5 (pp. 157–158).
  • Garcia, W., Sainz, S., & Castro, F. (2010). Influence of Mn and Ni on the mechanical properties of newly developed PM steels. Proceedings of the PM2010 World Congress Florence (Vol. 3, pp. 487–494). Shrewsbury, UK: EPMA.
  • Geroldinger, S., Oro Calderon, R. d., Gierl-Mayer, C., & Danninger, H. (2021). Sinter hardening PM steels prepared through hybrid alloying. HTM Journal of Heat Treatment and Materials, 76(2), 105–119. doi:10.1515/htm-2020-0007
  • Gierl-Mayer, C., Calderon, R., & Danninger, H. (2016). The role of oxygen transfer in sintering of low alloy steel powder compacts: A review of the “internal getter” effect. JOM Journal of the Minerals Metals and Materials Society, 68(3), 920–927. doi:10.1007/s11837-016-1819-z
  • Hadrboletz, A., & Weiss, B. (1997). Fatigue behaviour of iron based sintered mterial: A review. International Materials Reviews, 42(1), 1–44. doi:10.1179/imr.1997.42.1.1
  • Hausner, H. H., & Mal, K. H. (1982). Handbook of powder metallurgy (2nd ed., p.305ff). New York, NY: Chemical Publishing Inc.
  • Hojati, M., Danninger, H., & Gierl-Mayer, C. (2021). Mechanical and physical properties of differently alloyed sintered steels as a function of the sintering temperature. Metals, 12(1), 13. doi:10.3390/met12010013
  • Hryha, E. (2007). Fundamental study of Mn containing PM steels with alloying method of both premix and pre alloy [PhD thesis]. Slovak Academy of Sciences, Kosice.
  • Hryha, E., Nyborg, L., Dudrova, E., & Bengtsson, S. (2010). Sintered steels alloyed with manganese: Effect of alloying mode. Proceedings of the PM2010 World Congress (Vol. 3, pp. 87–94). Florence, EPMA, Shrewsbury, UK.
  • Jalili Ziyaeian, M. (2008). Manganese evaporation during sintering of Fe-Mn-Cr compacts from prealloyed iron powder. Proceedings of the Euro International Powder Metallurgy Congress and Exhibition, Euro PM 2008 (Vol. 1, pp. 115–120).
  • Karamchedu, S., Hatami, S., Nyborg, L., & Andersson, M. (2014). Sinter hardening response of sintered steels based on Astaloy Mo and its diffusion bonded derivatives. Powder Metallurgy Progress, 14(2), 93–98.
  • Klein, A. N., Oberacker, R., & Thümmler, F. (1985). High-strength Si-Mn alloyed sintered steels – Microstructure and mechanical properties. Powder Metallurgy International, 17, 13–16.
  • Kotthoff, G., & Leupold, B. (2017). V.Janzen: Potenziale von PM-Verzahnungen für den Einsatz in konventionellen und elektrifizierten Antrieben. In H. Kolaska, H. Danninger, & B. Kieback (Eds.), Pulvermetallurgie in Wissenschaft und Praxis (Vol. 33, pp. 183–206). Hagen: Fachverband Pulvermetallurgie.
  • Krauss, G. (2005). Steels – Processing, structure, and performance. Novelty, OH: ASM Materials Park.
  • Kremel, S., Danninger, H., & Yu, Y. (2002). Effect of sintering conditions on particle contacts and mechanical properties of pm steels prepared from 3% cr prealloyed powder. Powder Metallurgy Progress, 2, 211–221.
  • Kulecki, P., Lichańska, E., & Sułowski, M. (2015). The effect of processing parameters on microstructure and mechanical properties of sintered structural steels based on prealloyed powders. Archives of Metallurgy and Materials, 60(4), 2543–2548. doi:10.1515/amm-2015-0411
  • Lenel, F. V. (1980). Powder metallurgy – Principles and applications (p. 404ff). Princeton NJ: MPIF.
  • Lindqvist, B. (2001). Chromium alloyed PM steels – A new powder generation. Proceedings of the EuroPM2001 (Vol. 1, pp. 13–21), Nice, EPMA, Shrewsbury.
  • Lindskog, P. (2013). The history of Distaloy. Powder Metallurgy, 56(5), 351–361. No doi:10.1179/1743290113Y.0000000077
  • Nabeel, M., Frykholm, R., & Hedström, P. (2014). Influence of alloying elements on Ni distribution in PM steels. Powder Metallurgy, 57(2), 111–118. doi:10.1179/1743290113Y.0000000078
  • Ratzi, R., & Orth, P. (2000). Sinter hardening reduces cost for manual transmission synchronizer parts. Metal Powder Report, 55(7/8), 20–25.
  • Salak, A. (1995). Ferrous powder metallurgy. Cambridge, UK: Cambridge International Science Publishing.
  • Šalak, A., & Selecká, M. (2012). Manganese in powder metallurgy steels (pp. 39–72). Cambridge International Science Publishing Ltd.
  • Schlieper, G., & Thümmler, F. (1979). High strength heat-treatable sintered steels containing manganese, chromium, vanadium and molybdenum. Powder Metallurgy International, 11, 172–176.
  • Sohar, C., Betzwar-Kotas, A., Gierl, C., Weiss, B., & Danninger, H. (2008). Influence of surface residual stresses on gigacycle fatigue response of high chromium cold work tool steel. Materialwissenschaft Und Werkstofftechnik, 39(3), 248–257. doi:10.1002/mawe.200700216
  • Sonsino, C. M. (2005). Dauerfestigkeit – eine Fiktion (Endurance limit – A fiction). Konstruktion, no. 4, pp. 87–92.
  • Sonsino, C. M. (2007). Course of SN-curves especially in the high-cycle fatigue regime with regard to component design and safety. International Journal of Fatigue, 29(12), 2246–2258. doi:10.1016/j.ijfatigue.2006.11.015
  • Stoyanova, V., & Molinari, A. (2004). Vacuum sintering and sinter hardening of Mo and Ni low alloyed steels. Powder Metallurgy Progress, 4(2), 79–87.
  • Sułowski, M., Kulecki, P., & Radziszewska, A. (2014). Sintered structural PM Cr and Cr-Mo steels/Spiekane Stale Konstrukcyjne Chromowe I Chromowo-Molibdenowe. Archives of Metallurgy and Materials, 59(4), 1507–1512. doi:10.2478/amm-2014-0256
  • Whittaker, D. (2015). Innovation drives powder metallurgy structural components forward in the automotive industry. Powder Metallurgy Review, 4(2), 35–53.
  • Williams, J., Deng, X., & Chawla, N. (2007). N.Chawla: Effect of residual surface stress on the fatigue behavior of a low-alloy powder metallurgy steel. International Journal of Fatigue, 29(9–11), 1978–1984. doi:10.1016/j.ijfatigue.2007.01.008
  • Wu, M., Hwang, K.-S., & Huang, H.-S. (2007). In-situ observations on the fracture mechanism of diffusion-alloyed Ni-containing powder metal steels and a proposed method for tensile strength improvement. Metallurgical and Materials Transactions A, 38(7), 1598–1607. doi:10.1007/s11661-007-9201-y
  • Wu, M. W., Tsao, L. C., Shu, G. J., & Lin, B. H. (2012). The effects of alloying elements and microstructure on the impact toughness of powder metal steels. Materials Science and Engineering: A, 538, 135–144. doi:10.1016/j.msea.2011.12.113
  • Zafari, A., & Beiss, P. (2008). Effect of tensile mean stresses on fatigue strength of Fe-Cu-C steels in as sintered and heat treated conditions. Powder Metallurgy Progress, 8(3), 200–209.
  • Zapf, G., & Dalal, K. (1977). Introduction of high oxygen affinity elements manganese, chromium and vanadium in the powder metallurgy of P/M parts. Modern Developments in Powder Metallurgy, 10, 129–152.