Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 9, 2023 - Issue 1
1,417
Views
1
CrossRef citations to date
0
Altmetric
ENVIRONMENTAL CHEMISTRY, POLLUTION & WASTE MANAGEMENT

An experimental study of application of activated carbon from nipa fruit waste on herbal drinks

ORCID Icon, , , & ORCID Icon | (Reviewing editor:)
Article: 2173024 | Received 19 Nov 2022, Accepted 21 Jan 2023, Published online: 07 Feb 2023

References

  • Ayanlowo, A. G., Garádi, Z., Boldizsár, I., Darcsi, A., Nedves, A. N., Varjas, B., Riethmüller, E., Alberti, Á., & Riethmüller, E. (2020). UHPLC-DPPH method reveals antioxidant tyramine and octopamine derivatives in Celtis occidentalis. Journal of Pharmaceutical and Biomedical Analysis, 191, 113612. https://doi.org/10.1016/j.jpba.2020.113612
  • Cui, B., Chen, Z., Guo, D., & Liu, Y. (2022). Investigations on the pyrolysis of microalgal-bacterial granular sludge: Products, kinetics, and potential mechanisms. Bioresource Technology, 349, 126328. https://doi.org/10.1016/j.biortech.2021.126328
  • Deng, J., Li, Q.-W., Xiao, Y., Shu, C.-M., & Zhang, Y.-N. (2017). Predictive models for thermal diffusivity and specific heat capacity of coals in Huainan mining area, China. Thermochimica Acta, 656, 101–6. https://doi.org/10.1016/j.tca.2017.09.005
  • Ding, E., Jiang, J., Lan, Y., Zhang, L., Gao, C., Jiang, K., & Fan, X. (2022). Optimizing Cd2+ adsorption performance of KOH modified biochar adopting response surface methodology. Journal of Analytical and Applied Pyrolysis, 105788. https://doi.org/10.1016/j.jaap.2022.105788
  • Ge, L., Zhao, C., Chen, S., Li, Q., Zhou, T., Jiang, H., Xu, C., Wang, Y., & Xu, C. (2022). An analysis of the carbonization process and volatile-release characteristics of coal-based activated carbon. Energy, 257, 124779. https://doi.org/10.1016/j.energy.2022.124779
  • Gómez, I. C., Cruz, O. F., Silvestre-Albero, J., Rambo, C. R., & Escandell, M. M. (2022). Role of KCl in activation mechanisms of KOH-chemically activated high surface area carbons. Journal of CO2 Utilization, 66, 102258. https://doi.org/10.1016/j.jcou.2022.102258
  • Hussain, O. A., Abdel Rahim, E. A., Badr, A. N., Hathout, A. S., Rashed, M. M., & Fouzy, A. S. M. (2022). Total phenolics, flavonoids, and antioxidant activity of agricultural wastes, and their ability to remove some pesticide residues. Toxicology Reports, 9, 628–635. https://doi.org/10.1016/j.toxrep.2022.03.038
  • Kang, S. H., Chae, J. S., Choi, J.-M., Shin, Y.-J., Lee, J.-W., Kang, Y. C., & Roh, K. C. (2022). Pore-tailoring of pruned fruit tree branch derived activated carbon with hierarchical micropore structure for non-aqueous supercapacitors. Journal of Energy Storage, 56, 106098. https://doi.org/10.1016/j.est.2022.106098
  • Li, J., Chen, Z., Zhang, X., Qiao, Y., Yuan, Z., Zeng, L., & Li, Z. (2022). Structure and reactivity of residual carbon from circulating fluidized bed coal gasification fine ash. Journal of Environmental Chemical Engineering, 10(3), 107759. https://doi.org/10.1016/j.jece.2022.107759
  • Martayani, A. A. S. D. D., Suaniti, M., & Sulihingtyas, W. D. (2017). Kapasitas antioksidan dan kadar fenolik total dalam sari buah mengkudu terfermentasi [antioxidant and phenolic compound in fermented noni fruit herbal drink]. Jurnal Kimia (Journal of Chemistry, 113-117, 2599–2740. https://doi.org/10.24843/JCHEM.2017.v11.i02.p02
  • Musyoka, N. M., Wdowin, M., Rambau, K. M., Franus, W., Panek, R., Madej, J., & Czarna-Juszkiewicz, D. (2020). Synthesis of activated carbon from high-carbon coal fly ash and its hydrogen storage application. Renewable Energy, 155, 1264–1271. https://doi.org/10.1016/j.renene.2020.04.003
  • Osei, J. B. D., Amiri, A., Wang, J., Tavares, M. T., Kiatkittipong, W., & Najdanovic-Visak, V. (2022). Recovery of oils and antioxidants from olive stones. Biomass and Bioenergy, 166, 106623. https://doi.org/10.1016/j.biombioe.2022.106623
  • Saka, C. (2012). BET, TG–DTG, FT-IR, SEM, iodine number analysis and preparation of activated carbon from acorn shell by chemical activation with ZnCl2. Journal of Analytical and Applied Pyrolysis, 95, 21–24. https://doi.org/10.1016/j.jaap.2011.12.020
  • Siddiqui, N., Rauf, A., Latif, A., & Mahmood, Z. (2017). Spectrophotometric determination of the total phenolic content, spectral and fluorescence study of the herbal Unani drug Gul-e-Zoofa (Nepeta bracteata Benth). J Taibah Univ Med Sci, 12(4), 360–363. https://doi.org/10.1016/j.jtumed.2016.11.006
  • Sujiono, E. H., Zabrian, D., Zurnansyah, M., Zharvan, N. A., Zharvan, Samnur, S., Zharvan, N. A., & Humairah, N. A. (2022). Fabrication and characterization of coconut shell activated carbon using variation chemical activation for wastewater treatment application. Results in Chemistry, 4, 100291. https://doi.org/10.1016/j.rechem.2022.100291
  • Tamunaidu, P., & Saka, S. (2011). Chemical characterization of various parts of nipa palm (Nypa fruticans). Industrial Crops and Products, 34(3), 1423–1428. https://doi.org/10.1016/j.indcrop.2011.04.020
  • Wang, R., Wang, L., Zhang, L., Wan, S., Li, C., & Liu, S. (2022). Solvents effect on phenolics, iridoids, antioxidant activity, antibacterial activity, and pancreatic lipase inhibition activity of Noni (Morinda citrifolia L.) fruit extract. Food Chemistry, 377, 131989. https://doi.org/10.1016/j.foodchem.2021.131989
  • Waugh, A. B., & Bowling, K. M. (1984). Removal of mineral matter from bituminous coals by aqueous chemical leaching. Fuel Processing Technology, 9(3), 217–233. https://doi.org/10.1016/0378-382084
  • Yangui, A., & Abderrabba, M. (2018). Towards a high yield recovery of polyphenols from olive mill wastewater on activated carbon coated with milk proteins: Experimental design and antioxidant activity. Food Chemistry, 262, 102–109. https://doi.org/10.1016/j.foodchem.2018.04.091
  • Yao, F., Yang, Q., Sun, J., Chen, F., Zhong, Y., Yin, H., He, L., Tao, Z., Pi, Z., Wang, D., & Li, X. (2020). Electrochemical reduction of bromate using noble metal-free nanoscale zero-valent iron immobilized activated carbon fiber electrode. Chemical Engineering Journal, 389, 123588. https://doi.org/10.1016/j.cej.2019.123588
  • Yub Harun, N., Saeed, A. H., & Ramachandran, V. A. L. A. (2021). Abundant nipa palm waste as Bio-pellet fuel. Materials Today: Proceedings, 42, 436–443. https://doi.org/10.1016/j.matpr.2020.10.169
  • Zhang, X., Xiang, W., Miao, X., Li, F., Qi, G., Cao, C., Ma, X., Chen, S., Zimmerman, A. R., & Gao, B. (2022). Microwave biochars produced with activated carbon catalyst: Characterization and sorption of volatile organic compounds (VOCs). Science of the Total Environment, 827, 153996. https://doi.org/10.1016/j.scitotenv.2022.153996
  • Zhao, S., Liao, Y., Xie, X., Wang, Y., & Sun, Z. (2022). As2O3 removal from coal-fired flue gas by the carbon-based adsorbent: Effects of adsorption temperature and flue gas components. Chemical Engineering Journal, 450, 138023. https://doi.org/10.1016/j.cej.2022.138023