Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 9, 2023 - Issue 1
2,139
Views
3
CrossRef citations to date
0
Altmetric
ENVIRONMENTAL RESOURCE MANAGEMENT

Salt-affected soils in Tanzanian agricultural lands: Type of soils and extent of the problem

, , , , &
Article: 2205731 | Received 16 Dec 2022, Accepted 18 Apr 2023, Published online: 26 Apr 2023

References

  • Abate, S., Belayneh, M., & Ahmed, F. (2021). Reclamation and amelioration of saline-sodic soil using gypsum and halophytic grasses: Case of Golina-addisalem irrigation scheme, raya kobo valley, Ethiopia. Cogent Food and Agriculture, 7(1), 1–19. https://doi.org/10.1080/23311932.2020.1859847
  • Abo Elyousr, K. A. M., Mousa, M. A. A., Ibrahim, O. H. M., Alshareef, N. O., & Eiss, M. A. (2022). Calcium-rich biochar stimulates salt resistance in pearl millet (Pennisetum glaucum L.) plants by improving soil quality and enhancing the antioxidant defense. Plants, 11(10), 1–11. https://doi.org/10.3390/plants11101301
  • Acosta-Motos, J. R., Ortuño, M. F., Bernal-Vicente, A., Pedro, D., Sanchez-Blanco, M. J., & Hernandez, J. A. (2017). Plant responses to salt stress: Adaptive mechanisms. Agronomy, 7(1), 1–38. https://doi.org/10.3390/agronomy7010018
  • Akhatar, M. S. (2019). Salt stress, microbes, and plant interactions: Causes and solution (Vol. 1). Springer. https://doi.org/10.1007/978-981-13-8801-9
  • Alcívar, M., Zurita-Silva, A., Sandoval, M., Muñoz, C., & Schoebitz, M. (2018). Reclamation of saline-sodic soils with combined amendments: Impact on quinoa performance and biological soil quality. Sustainability, 10(9), 1–17. https://doi.org/10.3390/su10093083
  • Ali, E. F., Al-Yasi, H. M., Kheir, A. M. S., & Eissa, M. A. (2021). Effect of biochar on CO2 sequestration and productivity of pearl millet plants grown in saline sodic soils. Journal of Soil Science and Plant Nutrition, 21(2), 897–907. https://doi.org/10.1007/s42729-021-00409-z
  • Almutairi, A. A., Ahmad, M., Rafique, M. I., & Al-Wabel, M. I. (2023). Variations in composition and stability of biochars derived from different feedstock types at varying pyrolysis temperature. Journal of the Saudi Society of Agricultural Sciences, 22(1), 25–34. https://doi.org/10.1016/j.jssas.2022.05.005
  • Amini, S., Ghadiri, H., Chen, C., & Marschner, P. (2016). Salt-affected soils, reclamation, carbon dynamics, and biochar: A review. Journal of Soils and Sediments, 16(3), 939–953. https://doi.org/10.1007/s11368-015-1293-1
  • Anami, B. S., Malvade, N. N., & Palaiah, S. (2020). Classification of yield affecting biotic and abiotic paddy crop stresses using field images. Information Processing in Agriculture, 7(2), 272–285. https://doi.org/10.1016/j.inpa.2019.08.005
  • Awan, S., Ippolito, J. A., Ullman, J. L., Ansari, K., Cui, L., & Siyal, A. A. (2021). Biochars reduce irrigation water sodium adsorption ratio. Biochar, 3(1), 77–87. https://doi.org/10.1007/s42773-020-00073-z
  • Bandyopadhyay, B. K., Burman, D., Sarangi, S. K., MandaL, S., & BAL, A. R. (2009). Land shaping techniques to alleviate salinity and waterlogging problems of land shaping techniques to alleviate salinity and waterlogging problems of mono-cropped coastal land for multi-crop cultivation. Journal of the Indian Society of Coastal Agricultural Research, 27(1), 13–17. Retrieved from. https://krishi.icar.gov.in/jspui/bitstream/123456789/49751/1
  • Bello, S. K., Alayafi, A. H., Al-Solaimani, S. G., & Abo Elyousr, K. A. M. (2021). Mitigating soil salinity stress with gypsum and bio-organic amendments: A review. Agronomy, 11(9), 1–18. https://doi.org/10.3390/agronomy11091735
  • Bin Yousaf, M. T., Nawaz, M. F., Yasin, G., Cheng, H., Ahmed, I., Gul, S., Rizwan, M., Rehim, A., Xuebin, Q., & Ur Rahman, S. (2022). Determining the appropriate level of farmyard manure biochar application in saline soils for three selected farm tree species. PloS One, 17(4), 1–17. https://doi.org/10.1371/journal.pone.0265005
  • Butcher, K., Wick, A. F., Desutter, T., Chatterjee, A., & Harmon, J. (2016). Soil salinity: A threat to global food security. Agronomy Journal, 108(6), 2189–2200. https://doi.org/10.2134/agronj2016.06.0368
  • Chaganti, V., Crohn, D., & Šimůnek, J. (2015). Leaching and reclamation of a biochar and compost amended saline-sodic soil with moderate SAR reclaimed water. Agricultural Water Management, 158(1), 255–265. https://doi.org/10.1016/j.agwat.2015.05.016
  • Chen, J., & Mueller, V. (2018). Coastal climate change, soil salinity and human migration in Bangladesh. Nature Climate Change, 8(11), 981–987. https://doi.org/10.1038/s41558-018-0313-8
  • Chhabra, R. (2005). Classification of salt-affected soils. Arid Land Research and Management, 19(1), 61–79. https://doi.org/10.1080/15324980590887344
  • Chiconato, D. A., Sousa, S., Maria, D., & Munns, R. (2019). Adaptation of sugarcane plants to saline soil. Environmental and Experimental Botany, 162(1), 201–211. https://doi.org/10.1016/j.envexpbot.2019.02.021
  • Connor, J. D., Schwabe, K., King, D., & Knapp, K. (2012). Irrigated agriculture and climate change: The influence of water supply variability and salinity on adaptation. Ecological Economics, 77(1), 149–157. https://doi.org/10.1016/j.ecolecon.2012.02.021
  • Corwin, D. L. (2021). Climate change impacts on soil salinity in agricultural areas. European Journal of Soil Science, 72(2), 842–862. https://doi.org/10.1111/ejss.13010
  • Corwin, D. L., & Scudiero, E. (2019). Review of soil salinity assessment for agriculture across multiple scales using proximal and/or remote sensors. In Advances in Agronomy Vol. 158, 1st ed, Elsevier. https://doi.org/10.1016/bs.agron.2019.07.001
  • Cuevas, J., Daliakopoulos, I. N., Del Moral, F., Hueso, J. J., & Tsanis, I. K. (2019). A review of soil-improving cropping systems for soil salinization. Agronomy, 9(6), 1–22. https://doi.org/10.3390/agronomy9060295
  • Dehnavi, A. R., Zahedi, M., Ludwiczak, A., Perez, S. C., & Piernik, A. (2020). Effect of salinity on seed germination and seedling development of sorghum (Sorghum bicolor (L.) Moench) genotypes. Agronomy, 10(6), 1–15. https://doi.org/10.3390/agronomy10060859
  • De Pauw, E. (1984). Soils, Physiography and Agro-Ecological Zones of Tanzania. Crop Monitoring and Early Warning Systems Project, FAO. Ministry of Agriculture, Dar es Salaam. GCPS/URT/047/NET.
  • Diacono, M., & Montemurro, F. (2015). Effectiveness of organic wastes as fertilizers and amendments in salt-affected soils. Agriculture, 5(2), 221–230. https://doi.org/10.3390/agriculture5020221
  • Ebrahim Yahya, K., Jia, Z., Luo, W., YuanChun, H., & Ame, M. A. (2022). Enhancing salt leaching efficiency of saline-sodic coastal soil by rice straw and gypsum amendments in Jiangsu coastal area. Ain Shams Engineering Journal, 13(5), 101721. https://doi.org/10.1016/j.asej.2022.101721
  • Egal, F. (2020). Review of the state of food security and nutrition in the world, 2019. In World Nutrition (Vol. 10. p. 320). Food and Agriculture Organization of the United Nations. https://doi.org/10.26596/wn.201910395-97
  • Egamberdieva, D., Wirth, S., Bellingrath-Kimura, S. D., Mishra, J., & Arora, N. K. (2019). Salt-tolerant plant growth promoting rhizobacteria for enhancing crop productivity of saline soils. Frontiers in Microbiology, 10, 1–18. https://doi.org/10.3389/fmicb.2019.02791
  • El Hasini, S., Iben Halima, O., El Azzouzi, M., Douaik, A., Azim, K., & Zouahri, A. (2019). Organic and inorganic remediation of soils affected by salinity in the Sebkha of Sed El Mesjoune – Marrakech (Morocco). Soil and Tillage Research, 193, 153–160. https://doi.org/10.1016/j.still.2019.06.003
  • Endo, A., & Kang, D. J. (2015). Salt removal from salt-damaged agricultural land using the scraping method combined with natural rainfall in the Tohoku district, Japan. Geoderma Regional, 4(November 2014), 66–72. https://doi.org/10.1016/j.geodrs.2014.11.001
  • Eswar, D., Karuppusamy, R., & Chellamuthu, S. (2021). Drivers of soil salinity and their correlation with climate change. Current Opinion in Environmental Sustainability, 50, 310–318. https://doi.org/10.1016/j.cosust.2020.10.015
  • FAO. 2000. Land resource potential and constraints at regional and country levels. World Soil Resources Reports, 90. Retrieved from ftp://ftp.fao.org/agl/agll/docs/wsr.pdf
  • Farooq, M., Gogoi, N., Hussain, M., Barthakur, S., Paul, S., Bharadwaj, N., Migdadi, H. M., Alghamdi, S. S., & Siddique, K. H. M. (2017). Plant Physiology and Biochemistry Effects , tolerance mechanisms and management of salt stress in grain legumes. Plant Physiology Et Biochemistry, 118, 199–217. https://doi.org/10.1016/j.plaphy.2017.06.020
  • Fidel, R. B., Laird, D. A., & Parkin, T. B. (2019). Effect of biochar on soil greenhouse gas emissions at the laboratory and field scales. Soil Systems, 3(1), 1–18. https://doi.org/10.3390/soilsystems3010008
  • Foronda, D. A. (2022). Reclamation of a saline-sodic soil with organic amendments and leaching. Environmental Sciences Proceedings, 16(1), 1–4. https://doi.org/10.3390/environsciproc2022016056
  • Freitas, A. M., Nair, V. D., & Harris, W. G. (2020). Biochar as Influenced by Feedstock Variability: Implications and opportunities for phosphorus management. Frontiers in Sustainable Food Systems, 4(September), 1–11. https://doi.org/10.3389/fsufs.2020.510982
  • Gangwar, P., Singh, R., Trivedi, M., & Tiwari, R. K. (2019). Sodic soil: Management and reclamation strategies. Environmental Concerns and Sustainable Development: Volume 2: Biodiversity, Soil and Waste Management, 1(1), 175–190. https://doi.org/10.1007/978-981-13-6358-0_8
  • Grant, M. J., & Booth, A. (2009). A typology of reviews: An analysis of 14 review types and associated methodologies. Health Information and Libraries Journal, 26(2), 91–108. https://doi.org/10.1111/j.1471-1842.2009.00848.x
  • Gunarathne, V., Senadeera, A., Gunarathne, U., Biswas, J. K., Almaroai, Y. A., & Vithanage, M. (2020). Potential of biochar and organic amendments for reclamation of coastal acidic-salt affected soil. Biochar, 2(1), 107–120. https://doi.org/10.1007/s42773-020-00036-4
  • Haider, M. Z., & Hossain, M. Z. (2013). Impact of salinity on livelihood strategies of farmers. Journal of Soil Science and Plant Nutrition, 13(2), 417–431. https://doi.org/10.4067/S0718-95162013005000033
  • Hailu, B., Mehari, H., & Tamiru, H. (2020). Evaluation of sorghum for salt stress tolerance using different stages as screening tool in Raya Valley, Northern Ethiopia. Ethiopian Journal of Agricultural Sciences, 30(4), 265–276.
  • Hassani, A., Azapagic, A., & Shokri, N. (2020). Predicting long-term dynamics of soil salinity and sodicity on a global scale. Proceedings of the National Academy of Sciences of the United States of America, 117(52), 33017–33027. https://doi.org/10.1073/PNAS.2013771117
  • Huang, H., Reddy, N. G., Huang, X., Chen, P., Wang, P., Zhang, Y., & Garg, A.(2021). Effects of pyrolysis temperature, feedstock type and compaction on water retention of biochar amended soil. Scientific Reports, 11(1), 1–19. https://doi.org/10.1038/s41598-021-86701-5
  • Huang, M., Zhang, Z., Zhu, C., Zhai, Y., & Lu, P. (2019). Effect of biochar on sweet corn and soil salinity under conjunctive irrigation with brackish water in coastal saline soil. Scientia horticulturae, 250(1), 405–413. https://doi.org/10.1016/j.scienta.2019.02.077
  • Ippolito, J. A., Cui, L., Kammann, C., Wrage-Mönnig, N., Estavillo, J. M., Fuertes-Mendizabal, T., Cayuela, M. L., Sigua, G., Novak, J., Spokas, K., & Borchard, N. (2020). Feedstock choice, pyrolysis temperature and type influence biochar characteristics: A comprehensive meta-data analysis review. Biochar, 2(4), 421–438. https://doi.org/10.1007/s42773-020-00067-x
  • Irakoze, W., Prodjinoto, H., Nijimbere, S., Bizimana, J. B., Bigirimana, J., Rufyikiri, G., & Lutts, S. (2021). NaCl- and Na 2 so 4 -induced salinity differentially affect clay soil chemical properties and yield components of two rice. Agronomy, 11(3), 1–15. https://doi.org/10.3390/agronomy11030571
  • Ires, I. (2021). Intensive agriculture as climate change adaptation? economic and environmental tradeoffs in securing rural livelihoods in Tanzanian River Basins. Frontiers in Environmental Science, 9(November), 1–17. https://doi.org/10.3389/fenvs.2021.674363
  • Ismail, A. M., & Horie, T. (2017). Genomics, physiology, and molecular breeding approaches for improving salt tolerance. Plant Biology, 68(1), 405–434. https://doi.org/10.1146/annurev-arplant-042916-040936
  • Ivushkin, K., Bartholomeus, H., Bregt, A. K., Pulatov, A., Kempen, B., & de Sousa, L. (2019). Global mapping of soil salinity change. Remote Sensing of Environment, 231(1), 1–23. https://doi.org/10.1016/j.rse.2019.111260
  • Jafarzadeh, H., Mahdianpari, M., Homayouni, S., Mohammadimanesh, F., & Dabboor, M. (2021). Oil spill detection from Synthetic Aperture Radar Earth observations: A meta-analysis and comprehensive review. GIScience & Remote Sensing, 58(7), 1022–1051. https://doi.org/10.1080/15481603.2021.1952542
  • Kammann, C., Ippolito, J., Hagemann, N., Borchard, N., Cayuela, M. L., Estavillo, J. M., Fuertes-Mendizabal, T., Jeffery, S., Kern, J., Novak, J., Rasse, D., Saarnio, S., Schmidt, H. P., Spokas, K., & Wrage-Mönnig, N. (2017). Biochar as a tool to reduce the agricultural greenhouse-gas burden–knowns, unknowns and future research needs. Journal of Environmental Engineering and Landscape Management, 25(2), 114–139. https://doi.org/10.3846/16486897.2017.1319375
  • Kamran, M., Parveen, A., Ahmar, S., Hussain, S., Chattha, M. S., Saleem, M. H., Adil, M., Heidari, P., & Chen, J. (2020). An Overview of Hazardous Impacts of Soil Salinity in Crops , Tolerance Mechanisms , and Amelioration through Selenium Supplementation. International Journal of Molecular Sciences, 21(1), 1–27. https://doi.org/10.3390/ijms21010148
  • Kashenge-Killenga, S., Meliyo, J., Urassa, G., & Kongo, V. (2016). Extent of salt-affected soils and their effects in irrigated and lowland rain-fed rice growing areas of Southwestern Tanzania. In E. T. A. L. O. Lal, R. Kraybill, & D. HansenO. Singh, B. R. Mosogoya (Eds.), Climate Change and Multi-Dimensional Sustainability in Agriculture: Climate Change and Sustainability in Agriculture (pp. 97–126). Springer. https://doi.org/10.1007/978-3-319-41238-2_3
  • Kashenge-Killenga, S., Tongoona, P., & Derera, J. (2013). Morphological and physiological responses of Tanzania rice genotypes under saline condition and evaluation of traits associated with stress tolerance. International Society for Development and Sustainability, 2(2), 1457–1475. Retrieved from. http://isdsnet.com/ijds-v2n2-76.pdf
  • Kashenge-Killenga, S., Tongoona, P., Derera, J., & Kanyeka, Z. (2014). Farmers’ perception of salt affected soils and rice varieties preferences in the north-eastern Tanzania and their implications in breeding. International Journal of Development and Sustainability, 33(66), 2168–8662. Retrieved from. https://isdsnet.com/ijds-v3n6-2.pdf
  • Kavitha, B., Reddy, P. V. L., Kim, B., Lee, S. S., Pandey, S. K., & Kim, K. H. (2018). Benefits and limitations of biochar amendment in agricultural soils: A review. Journal of Environmental Management, 227(June), 146–154. https://doi.org/10.1016/j.jenvman.2018.08.082
  • Ketehouli, T., Carther, K. F. I., Noman, M., Wang, F. W., Li, X. W., & Li, H. Y. (2019). Adaptation of plants to salt stress: Characterization of Na+ and K+ transporters and role of Cbl gene family in regulating salt stress response. Agronomy, 9(11), 687. https://doi.org/10.3390/agronomy9110687
  • Khatun, M., Shuvo, M. A. R., Salam, M. T. B., & Rahman, S. M. H. (2019). Effect of organic amendments on soil salinity and the growth of maize (Zea mays L.). Plant Science Today, 6(2), 106–111. https://doi.org/10.14719/pst.2019.6.2.491
  • Kim, H. S., Kim, K. R., Lee, S. H., Kunhikrishnan, A., Kim, W. I., & Kim, K. H. (2018). Effect of gypsum on exchangeable sodium percentage and electrical conductivity in the Daeho reclaimed tidal land soil in Korea-a field scale study. Journal of Soils and Sediments, 18(2), 336–341. https://doi.org/10.1007/s11368-016-1446-x
  • Kubaczyński, A., Walkiewicz, A., Pytlak, A., & Brzezińska, M. (2020). New biochars from raspberry and potato stems absorb more methane than wood offcuts and sunflower husk biochars. International Agrophysics, 34(3), 355–364. https://doi.org/10.31545/INTAGR/126762
  • Kul, R., Arjumend, T., Ekinci, M., Yildirim, E., Turan, M., & Argin, S. (2021). Biochar as an organic soil conditioner for mitigating salinity stress in tomato. Soil Science and Plant Nutrition, 67(6), 693–706. https://doi.org/10.1080/00380768.2021.1998924
  • Kumar, A., & Bandhu, A. (2005). Salt tolerance and salinity effects on plants: A review Cytosol and organelle space. Ecotoxicology and Environmental Safety, 60(3), 324–349. https://doi.org/10.1016/j.ecoenv.2004.06.010
  • Kumar, A. N., Fatima, T., Mishra, J., Mishra, I., Verma, S., Verma, R., Verma, M., Bhattacharya, A., Verma, P., Mishra, P., & Bharti, C. (2020). Halo-tolerant plant growth promoting rhizobacteria for improving productivity and remediation of saline soils. Journal of Advanced Research, 26, 69–82. https://doi.org/10.1016/j.jare.2020.07.003
  • Kumar, P., & Sharma, P. K. (2020). Soil Salinity and Food Security in India. Frontiers in Sustainable Food Systems, 4(1), 1–15. https://doi.org/10.3389/fsufs.2020.533781
  • Kumawat, C., Kumar, A., Parshad, J., Sharma, S. S., Patra, A., Dogra, P., Yadav, G. K., Dadhich, S. K., Verma, R., & Kumawat, G. L. (2022). Microbial Diversity and Adaptation under Salt-Affected Soils : A Review. 9280(14), 1–24. https://doi.org/10.3390/su14159280
  • Lastiri-Hernández, M. A., Alvarez-Bernal, D., Bermúdez-Torres, K., Cárdenas, G. C., & Ceja-Torres, L. F. (2019). Phytodesalination of a moderately saline soil combined with two inorganic amendments. Bragantia, 78(4), 579–586. https://doi.org/10.1590/1678-4499.20190031
  • Leogrande, R., & Vitti, C. (2019). Use of organic amendments to reclaim saline and sodic soils: A review. Arid Land Research and Management, 33(1), 1–21. https://doi.org/10.1080/15324982.2018.1498038
  • Liang, W., Ma, X., Wan, P., & Liu, L. (2017). Plant salt-tolerance mechanism: A review. Biochemical and Biophysical Research Communications, 1(1), 1–6. https://doi.org/10.1016/j.bbrc.2017.11.043
  • Liu, Z., Jiao, X., Lu, S., Zhu, C., Zhai, Y., Guo, W., & Farooq, S. (2019). Effects of winter irrigation on soil salinity and jujube growth in arid regions. PloS One, 14(6), 1–11. https://doi.org/10.1371/journal.pone.0218622
  • Maas, E. V. (1993). Plant growth response to salt stress. https://doi.org/10.1007/978-94-011-1858-3_31
  • Mageshen, V., Vidyapeetham, A. V., R, M. K., & Gajendiren, M. (2022, March). Latest trends in soil science (Volume - 3). Latest Trends in Soil Science, 3. https://doi.org/10.22271/int.book.107
  • Makoi, J. H. J. R., & Ndakidemi, P. A. (2007). Reclamation of sodic soils in northern Tanzania, using locally available organic and inorganic resources. African Journal of Biotechnology, 6(16), 1926–1931. https://doi.org/10.5897/ajb2007.000-2292
  • Malhi, G. S., Kaur, M., & Kaushik, P. (2021). Impact of climate change on agriculture and its mitigation strategies: A review. Sustainability (Switzerland), 13(3), 1–21. https://doi.org/10.3390/su13031318
  • Mamo, L., Bekele, T., Nekir, B., & Worku, A. (2021). Screening of Different Sesame (Sesamum Indicum L .) Accessions for Salt Tolerance at Different Growth Stages. International Journal of Novel Research in Life Sciences, 8(1), 21–27.
  • Manuel, R., Machado, A., & Serralheiro, R. P. (2017). Soil salinity: Effect on vegetable crop growth. management practices to prevent and mitigate soil salinization. Horticulturae, 3(2), 1–13. https://doi.org/10.3390/horticulturae3020030
  • Mdemu, M. V. (2021). Community’s vulnerability to drought-driven water scarcity and food insecurity in central and northern semi-arid areas of Tanzania. Frontiers in Climate, 3(October), 1–14. https://doi.org/10.3389/fclim.2021.737655
  • Mehmood, S., Ahmed, W., Ikram, M., Imtiaz, M., Mahmood, S., Tu, S., & Chen, D. (2020). Chitosan modified biochar increases soybean (Glycine max l.) resistance to salt-stress by augmenting root morphology, antioxidant defense mechanisms and the expression of stress-responsive genes. Plants, 9(9), 1–25. https://doi.org/10.3390/plants9091173
  • Meliyo, J. L., Kashenge-Killenga, S., Victor, K. M., Mfupe, B., Hiza, S., Kihupi, A. L., Boman, B. J., & Dick, W. (2016). Evaluation of Salt Affected Soils for Rice (Oryza Sativa) Production in Ndungu Irrigation Scheme Same District, Tanzania. Sustainable Agriculture Research, 6(1), 24–38. https://doi.org/10.5539/sar.v6n1p24
  • Mengist, W., Soromessa, T., & Legese, G. (2020). Method for conducting systematic literature review and meta-analysis for environmental science research. MethodsX, 7, 100777. https://doi.org/10.1016/j.mex.2019.100777
  • Mnkeni, P. (1996). Salt affected soils: Their origin, identification, reclamation and Management. Inter Press Ltd, 1, 1–250.
  • Mohanavelu, A., Naganna, S. R., & Al-Ansari, N. (2021). Irrigation Induced salinity and sodicity hazards on soil and groundwater: An overview of its causes, impacts and mitigation strategies. Agriculture, 11(10), 1–17. https://doi.org/10.3390/agriculture11100983
  • Mukhopadhyay, R., Sarkar, B., Jat, H. S., Sharma, P. C., & Bolan, N. S. (2021). Soil salinity under climate change: Challenges for sustainable agriculture and food security. Journal of Environmental Management, 280(1), 14. https://doi.org/10.1016/j.jenvman.2020.111736
  • Munns, R., & Gilliham, M. (2015). Salinity tolerance of crops - what is the cost? Tansley insight Salinity tolerance of crops – what is the cost? The New Phytologist, 208(1), 668–673. Retrieved from, https://nph.onlinelibrary.wiley.com/doi/10.1111/nph.13519
  • Munns, R., Passioura, J. B., Byrt, C. S., & Colmer, T. D. (2020). Tansley insight Osmotic adjustment and energy limitations to plant growth in saline soil. New Phytologist, 1091–1096. https://doi.org/10.1111/nph.15862
  • Nekir, B., Mamo, L., & Worku, A. (2019). Evaluation of wheat varieties/lines for salt tolerance at different growth stages. Greener Journal of Soil Science and Plant Nutrition, 6(1), 1–7. https://doi.org/10.15580/GJSSPN.2019.1.060619105
  • Nouri, H., Chavoshi Borujeni, S., Nirola, R., Hassanli, A., Beecham, S., Alaghmand, S., Saint, C., & Mulcahy, D. (2017). Application of green remediation on soil salinity treatment: A review on halophytoremediation. Process Safety and Environmental Protection, 107, 94–107. https://doi.org/10.1016/j.psep.2017.01.021
  • Okuda, Y., Onishi, J., Shirokova, Y. I., Kitagawa, I., Kitamura, Y., & Fujimaki, H. (2020). Water and salt balance in agricultural lands under leaching with shallow subsurface drainage used in combination with cut-drains. Water (Switzerland), 12(11), 1–16. https://doi.org/10.3390/w12113207
  • Omar, M. M., Shitindi, M. J., Massawe, B. H. J., Fue, K. G., Pedersen, O., & Meliyo, J. L. (2022). Exploring farmers’ perception, knowledge, and management techniques of salt-affected soils to enhance rice production on small land holdings in Tanzania. Cogent Food and Agriculture, 8(1). https://doi.org/10.1080/23311932.2022.2140470
  • Omuto, C., Vargas, R., El Mobarak, A., Mohamed, N., Viatkin, K., & Yigini, Y. (2020). Mapping of salt-affected soils. Technical Manual, FAO. Rome., 151pp. https://doi.org/10.4060/ca9215en
  • Osman, K. T. (2018). Management of soil problems. In Management of Soil Problems (p. 474). Springer. https://doi.org/10.1007/978-3-319-75527-4
  • Otlewska, A., Migliore, M., Dybka-Stępień, K., Manfredini, A., Struszczyk-Świta, K., Napoli, R., Białkowska, A., Canfora, L., & Pinzari, F. (2020). When Salt Meddles Between Plant, Soil, and Microorganisms. Frontiers in plant science, 11(1). https://doi.org/10.3389/fpls.2020.553087
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & Moher, D. (2021). The PRISMA 2020 statement: An updated guideline for reporting systematic reviews. The BMJ, 372. https://doi.org/10.1136/bmj.n71
  • Phogat, V., Pitt, T., Cox, J. W., Š, J., & Skewes, M. A. (2018). Soil water and salinity dynamics under sprinkler irrigated almond exposed to a varied salinity stress at di ff erent growth stages. Agricultural Water Management, 201(1), 70–82. https://doi.org/10.1016/j.agwat.2018.01.018
  • Phuong, N. T. K., Khoi, C. M., Ritz, K., Linh, T. B., Minh, D. D., Duc, T. A., Sinh, N. V., Linh, T. T., & Toyota, K. (2020). Influence of rice husk biochar and compost amendments on salt contents and hydraulic properties of soil and rice yield in salt-affected fields. Agronomy, 10(8), 1–23. https://doi.org/10.3390/agronomy10081101
  • Prasad, K., Devkota, M., Rezaei, M., & Oosterbaan, R. (2022). Managing salinity for sustainable agricultural production in salt-affected soils of irrigated drylands. Agricultural Systems, 198(1), 1–16. https://doi.org/10.1016/j.agsy.2022.103390
  • Prasertsuk, S., & Wijitkosum, S. (2021). Innovative use of rice husk biochar for rice cultivation in salt-affected soils with alternated wetting and drying irrigation. Engineering Journal, 25(9), 1–14. https://doi.org/10.4186/ej.2021.25.9.19
  • Qadir, G., Ahmad, K., Qureshi, M., Saqib, A., Zaka, M., Sarfraz, M., Warraich, I., & Ullah, S. (2017). Integrated use of inorganic and organic amendments for reclamation of salt affected soil. International Journal of Biosciences (IJB), 11(2), 1–10. https://doi.org/10.12692/ijb/11.2.1-10
  • Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., Singh, M., Thomas, R. J., Drechsel, P., Noble, A. D., Qadir, M., Quillérou, E., Nangia, V., Murtaza, G., & Singh, M. (2014). Economics of salt-induced land degradation and restoration. HAL Open Science, 1(1), 1–27.
  • Rahneshan, Z., Nasibi, F., & Moghadam, A. A. (2018). Effects of salinity stress on some growth, physiological, biochemical parameters and nutrients in two pistachio (Pistacia vera L .) rootstocks. Journal of Plant Interactions, 13(1), 73–82. https://doi.org/10.1080/17429145.2018.1424355
  • Randell, H., Gray, C., & Shayo, E. H. (2022). Climatic conditions and household food security: Evidence from Tanzania. Food Policy, 112(November 2021), 102362. https://doi.org/10.1016/j.foodpol.2022.102362
  • Richards, L. A., & USDA. (1954). Washington. Soil Science Society of America JournalSoil Science Society of America Journal, 18(3), 348. https://doi.org/10.2136/sssaj1954.03615995001800030032x
  • Saifullah Dahlawi, S., Naeem, A., Rengel, Z., Naidu, R., & Naidu, R. (2017). Biochar application for the remediation of salt-affected soils: Challenges and opportunities. The Science of the Total Environment, 625(1), 320–335. https://doi.org/10.1016/j.scitotenv.2017.12.257
  • Sarwar, G., Ibrahim, M., Tahir, M. A., Iftikhar, Y., Haider, M. S., Noor-Us-Sabah, N. U. S., Han, K. H., Ha, S. K., & Zhang, Y. S. (2011). Effect of Compost and Gypsum Application on the Chemical Properties and Fertility Status of Saline-Sodic Soil. Korean Journal of Soil Science and Fertilizer, 44(3), 510–516. https://doi.org/10.7745/kjssf.2011.44.3.510
  • Shahid, S. A., Zaman, M., & Heng, L. (2018). Introduction to Soil Salinity, Sodicity and Diagnostics Techniques. Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques. https://doi.org/10.1007/978-3-319-96190-3_1
  • Sharma, S., Kulkarni, J., & Jha, B. (2016). Halotolerant Rhizobacteria promote growth and enhance salinity tolerance in peanut isolation of bacterial isolates. Frontiers in Microbiology, 7(1), 1–11. https://doi.org/10.3389/fmicb.2016.01600
  • Shaygan, M., & Baumgartl, T. Reclamation of Salt-Affected Land: A Review. (2022). Soil Systems, 6(3), 61. 6(3. https://doi.org/10.3390/soilsystems6030061
  • Sheoran, P., Kumar, A., Singh, A., Parjapat, K., Sharma, R., & Yadav, R. K. (2021). Pressmud alleviates soil sodicity stress in a rice – wheat rotation: Effects on soil properties, physiological adaptation and yield-related traits. Land Degrad and Development, 1(1), 1–14. https://doi.org/10.1002/ldr.3953
  • Shokat, S., & Großkinsky, D. K. (2019). Tackling Salinity in Sustainable Agriculture — what developing countries may learn from approaches of the developed world the saline global area under salinity (Million Hectares). Sustainability, 11(1), 19. https://doi.org/10.3390/su11174558
  • Shouse, P. J., Goldberg, S., Skaggs, T. H., Soppe, R. W. O., & Ayars, J. E. (2010). Changes in spatial and temporal variability of SAR affected by shallow groundwater management of an irrigated field, California. Agricultural Water Management, 97(5), 673–680. https://doi.org/10.1016/j.agwat.2009.12.008
  • Shrivastava, P., & Kumar, R. (2015). Soil salinity: A serious environmental issue and plant growth promoting bacteria as one of the tools for its alleviation. Saudi Journal of Biological Sciences, 22(2), 123–131. https://doi.org/10.1016/j.sjbs.2014.12.001
  • Singh, A. (2021). Soil salinity: A global threat to sustainable development. Soil Use and Management, 1(1), 1–28. https://doi.org/10.1111/sum.12772
  • Singh, U. B., Malviya, D., Singh, S., Singh, P., Ghatak, A., Imran, M., Rai, J. P., Singh, R. K., Manna, M. C., Sharma, A. K., & Saxena, A. K. (2021). Salt‐tolerant compatible microbial inoculants modulate physio‐biochemical responses enhance plant growth, zn biofortification and yield of wheat grown in saline‐sodic soil. International Journal of Environmental Research and Public Health, 18(18), 1–53. https://doi.org/10.3390/ijerph18189936
  • Singh, Y. P., Mishra, V. K., Bharadwaj, A. K., Arora, S., Singh, A. K., Singh, S., Singh, U. S., & Ismail, A. M. (2019). Synergy of reduced gypsum and pressmud – a cost effective approach for sustainable reclamation of degraded sodic lands. Indian Journal of Agricultural Sciences, 89(6), 1027–1032.
  • Singh, M., Singh, S., Parkash, V., Ritchie, G., Wallace, R. W., & Deb, S. K. (2022). Biochar implications under limited irrigation for sweet corn production in a semi-arid environment. Frontiers in Plant Science, 13(April), 1–13. https://doi.org/10.3389/fpls.2022.853746
  • Snyder, H. (2019). Literature review as a research methodology: An overview and guidelines. Journal of Business Research, 104(March), 333–339. https://doi.org/10.1016/j.jbusres.2019.07.039
  • Stavi, I., Shem-Tov, R., Ragolsky, G., & Lekach, J. (2017). Ancient to recent-past runoff harvesting agriculture in recharge playas of the hyper-arid Southern Israel. Water, 9(12), 1–18. https://doi.org/10.3390/w9120991
  • Stavi, I., Thevs, N., & Priori, S. (2021). Soil salinity and sodicity in drylands: a review of causes, effects, monitoring, and restoration measures. Frontiers in Environmental Science, 9(1), 1–16. https://doi.org/10.3389/fenvs.2021.712831
  • Sun, Y., Chen, X., Yang, J., Luo, Y., Yao, R., Wang, X., Xie, W., & Zhang, X. (2022). Biochar Effects Coastal Saline Soil and Improves Crop Yields in a Maize-Barley Rotation System in the Tidal Flat Reclamation Zone, China. Water (Switzerland), 14(20). https://doi.org/10.3390/w14203204
  • Sunita, K., Mishra, I., Mishra, J., Prakash, J., & Arora, N. K. (2020). Secondary metabolites from halotolerant plant growth promoting rhizobacteria for ameliorating salinity stress in plants. Frontiers in Microbiology, 11(1), 1–12. https://doi.org/10.3389/fmicb.2020.567768
  • Sun, H., Lu, H., Chu, L., Shao, H., & Shi, W. (2017). Biochar applied with appropriate rates can reduce N leaching, keep N retention and not increase NH3 volatilization in a coastal saline soil. The Science of the Total Environment, 575(1), 820–825. https://doi.org/10.1016/j.scitotenv.2016.09.137
  • Suvi, W. T., Shimelis, H., & Laing, M. (2020). Farmers’ perceptions, production constraints and variety preferences of rice in Tanzania. Journal of Crop Improvement, 00(1), 1–18. https://doi.org/10.1080/15427528.2020.1795771
  • Thimmappa, K., Sharma, D., Dagar, J., & Raju, R. (2016). Reclamation of Salt-Affected Soils: Socioeconomic Impact Assessment. In J. C. Dagar, D. K. Sharma, P. C. Sharma, & A. K. Singh (Eds.), Innovative Saline Agriculture (pp. 489–506). https://doi.org/10.1007/978-81-322-2770-0
  • Tully, K., Sullivan, C., Weil, R., & Sanchez, P. (2015). The state of soil degradation in sub-Saharan Africa: Baselines, trajectories, and solutions. Sustainability, 7(6), 6523–6552. https://doi.org/10.3390/su7066523
  • Verhoeve, S. L., Keijzer, T., Kaitila, R., Wickama, J., & Sterk, G. (2021). Vegetation resilience under increasing drought conditions in northern Tanzania. Remote Sensing, 13(22), 1–20. https://doi.org/10.3390/rs13224592
  • Wallender, W. W., & Kenneth, T. K. (Eds). (2012). Agricultural Salinity Assessment and Management. American Society of Civil Engineers, pp. 905. Retrieved from https://ascelibrary.org/doi/book/10.1061/9780784411698
  • Wang, X. W., Cai, H., Liu, Y. L., Li, C. L., Wan, Y. S., Song, F. P., & Chen, W. F. (2019). Addition of organic fertilizer affects soil nitrogen availability in a salinized fluvo-aquic soil. Environmental Pollutants and Bioavailability, 31(1), 331–338. https://doi.org/10.1080/26395940.2019.1700827
  • Wang, W., Vinocur, B., & Altman, A. (2003). Plant responses to drought, salinity and extreme temperatures: Towards genetic engineering for stress tolerance. Planta, 218(1), 1–14. https://doi.org/10.1007/s00425-003-1105-5
  • Wen, W., Timmermans, J., Chen, Q., & van Bodegom, P. M. (2021). A review of remote sensing challenges for food security with respect to salinity and drought threats. Remote Sensing, 13(1), 1–14. https://doi.org/10.3390/rs13010006
  • Wicke, B., Smeets, E., Dornburg, V., Vashev, B., Gaiser, T., Turkenburg, W., & Faaij, A. (2011). The global technical and economic potential of bioenergy from salt-affected soils. Energy and Environmental Science, 4(8), 2669–2681. https://doi.org/10.1039/c1ee01029h
  • Xu, P., Zhang, Q., Qian, H., & Qu, W. Effect of sodium chloride concentration on saturated permeability of remolded loess. (2020). Minerals, 10(2), 199. 10(2. https://doi.org/10.3390/min10020199
  • Yang, A., Akhtar, S. S., Li, L., Fu, Q., Li, Q., Naeem, M. A., He, X., Zhang, Z., & Jacobsen, S. E. (2020). Biochar mitigates combined effects of drought and salinity stress in Quinoa. Agronomy, 10(6). https://doi.org/10.3390/agronomy10060912
  • Yang, Y., Li, D., Huang, W., Zhou, X., Li, Z., Dong, X., & Wang, X. (2022). Effects of subsurface drainage on soil salinity and groundwater table in drip irrigated cotton fields in Oasis Regions of Tarim Basin. Agriculture, 12(2167), 1–14. https://doi.org/10.3390/agriculture12122167
  • Zhang, Q., & Dai, W. (2019). Plant response to salinity stress. In Stress Physiology of Woody Plants, <. I. I. A. I. <. Dai. Ed., 1st Edition. pp. 155–173. CRC PressTylor & Fransis. Retrieved fromhttps://www.routledge.com/Stress-Physiology-of-Woody-Plants/Dai/p/book/9781032092775
  • Zhao, C., Zhang, H., Song, C., Zhu, J. K., & Shabala, S. (2020). Mechanisms of plant responses and adaptation to soil salinity. The Innovation, 1(1), 1–20. https://doi.org/10.1016/j.xinn.2020.100017
  • Zörb, C., Geilfus, C. M., Dietz, K. J., & Weber, A. (2019). Salinity and crop yield. Plant Biology, 21(1), 31–38. https://doi.org/10.1111/plb.12884