Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 9, 2023 - Issue 1
584
Views
0
CrossRef citations to date
0
Altmetric
ENVIRONMENTAL RESOURCE MANAGEMENT

Feasibility assessment of harvest residue gasification for bioelectricity and its financial impact on conventional plantation forestry

ORCID Icon | (Reviewing editor)
Article: 2206506 | Received 05 Dec 2022, Accepted 20 Apr 2023, Published online: 08 May 2023

References

  • Abdul Salam, P., Kumar, S., & Siriwardhana, M. (2010). The Status of Biomass Gasification in Thailand and Cambodia. In Pathum Thani 12120. Asia Institute of Technology.
  • Baker, J. S., Crouch, A., Cai, Y., Latta, G., Ohrel, S., Jones, J., & Latané, A. (2018). Logging residue supply and costs for electricity generation: Potential variability and policy considerations. Energy Policy, 116, 397–11. https://doi.org/10.1016/j.enpol.2017.11.026
  • Bali, T. (2018). South Africa 2018 update: Bioenergy policies and status of implementation. 3063 IEA Bioenergy. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.ieabioenergy.com/wp-content/uploads/2018/10/CountryReport2018_SouthAfrica_final.pdf
  • Beke, N., Fox, G., & Mckenney, D. (1996). A Financial Analysis of Using Sawmill Residues for Cogeneration in Northern Ontario. Energy Studies Review, 8(1), 16–26. https://doi.org/10.15173/esr.v8i1.381
  • Boerner, J., Baylis, K., Corbera, E., Ezzine de Blas, D., Ferraro, P. J., Honey-Roses, J., Renaud Lapeyre, U., Persson, M., Wunder, S., & Bond Lamberty, B. (2016). Emerging Evidence on the Effectiveness of Tropical Forest Conservation. PloS One, 11(11), e0159152. https://doi.org/10.1371/journal.pone.0159152
  • Burgess, J. C. (1993). Timber Production, Timber Trade, and Tropical Deforestation. Ambio, 22(2/3), 136–143. http://www.jstor.org/stable/4314058
  • Call, M., Mayer, T., Sellers, S., Ebanks, D., Bertalan, M., Nebie, E., & Gray, C. (2017). Socio-environmental drivers of forest change in rural Uganda. Land Use Policy, 62, 49–58. https://doi.org/10.1016/j.landusepol.2016.12.012
  • Cambero, C., Sowlati, T., Marinescu, M., & Röser, D. (2015). Strategic optimization of forest residues to bioenergy and biofuel supply chain. International Journal of Energy Research, 39(4), 439–452. https://doi.org/10.1002/er.3233
  • Camia, A., Giuntoli, J., Jonsson, R., Robert, N., Cazzaniga, N. E., Jasinevičius, G., Avitabile, V., Grassi, G., Barredo, J. I., & Mubareka, S. (2021). The use of woody biomass for energy purposes in the EU, EUR 30548. EN, Publications Office of the European Union.
  • Cardoso, J., Silva, V., & Eusebio, D. (2019). Techno-economic analysis of a biomass gasification power plant dealing with forestry residues blends for electricity production in Portugal. Journal of Cleaner Production, 212, 741–753. https://doi.org/10.1016/j.jclepro.2018.12.054
  • Cardoso, J. S., Silva, V., Eusébio, D., Azevedo, I. L., & Tarelho, L. A. C. (2020). Techno-economic analysis of forest biomass blends gasification for small-scale power production facilities in the Azores. Fuel, 279, 1–11. https://doi.org/10.1016/j.fuel.2020.118552
  • Cheng-Lin, J., Zhen-Mei, W., Shu-Wen, W., Zheng-Qun, C., Chen, T., Farahani, M. R., & De Xun, L. (2017). Economic assessment of biomass gasification and pyrolysis: A review. Energy Sources, Part B: Economics, Planning, and Policy, 12(11), 1030–1035. https://doi.org/10.1080/15567249.2017.1358309
  • Clarke, J., Clarke, J. M., Foy, T., & Foy, T. J. (1997). The role of the forest industry in rural development and land reform in South Africa. The Commonwealth Forestry Review, 76(3), 175–178. http://www.jstor.org/stable/42608588
  • Colantoni, A., Villarini, M., Monarca, D., Carlini, M., Mosconi, E. M., Bocci, E., & Hamedani, S. R. (2021). Economic analysis and risk assessment of biomass gasification CHP systems of different sizes through Monte Carlo simulation. Energy Reports, 7, 1954–1961. https://doi.org/10.1016/j.egyr.2021.03.028
  • Daioglou, V., Stehfest, E., Wicke, B., Faaij, A., & Van Vuuren, D. P. (2016). Projections of the availability and cost of residues from agriculture and forestry. GCB Bioenergy, 8(2), 456–470. https://doi.org/10.1111/gcbb.12285
  • Forest Economics Services (FES). (2008). Financial analysis and costs of forestry operations, Mpumalanga province-. Forest Economics Services, Mpumalanga, South Africa.
  • Huang, H., Yan, X., Song, S., Du, Y., & Guo, Y. (2020). An Economic and Technology Analysis of a New High-Efficiency Biomass Cogeneration System: A Case Study in DC County, China. Energies, 13(15), 1–20. https://doi.org/10.3390/en13153957
  • International Institute for Environment and Development (IIED). (2013). South African biomass energy: Little heeded but much needed.
  • International Renewable Energy Agency: IRENA. (2017). Biofuel Potential in Sub-Saharan Africa: Raising food yields, reducing food waste and utilizing residues, Assessed: 29-March-2022. International Renewable Energy Agency, Abu Dhabi. https://www.irena.org/-/media/Files/IRENA/Agency/Publication/2017/Nov/IRENA_Biofuel_potential_sub-Saharan_Africa_2017.pdf
  • Jean-François, C., MacLean, D. A., Erdle, T. A., & Roy, R. J. (2011). Integration of bioenergy strategies into forest management scenarios for Crown land in New Brunswick, Canada. Canadian Journal of Forest Research, 41(6), 1319–1332. https://doi.org/10.1139/x11-048
  • Jin, E., & Sutherland, J. W. (2018). An integrated sustainability model for a bioenergy system: Forest residues for electricity generation. Biomaa and Bioenergy, 119, 10–21. https://doi.org/10.1016/j.biombioe.2018.09.005
  • Kizha, A. R., & Han-Sup, H. (2015). Forest residues were recovered from whole-tree timber harvesting operations. European Journal of Forest Engineering, 1(2), 46–55.
  • Klemperer, W. D. (2003). Forest resource economics and finance. McGraw-Hill inc.
  • Leung, D. Y. C., Yin, X. L., & Wu, C. Z. (2004). A review on the development and commercialization of biomass gasification technologies in China. Renewable and Sustainable Energy Reviews, 8(6), 565–580. https://doi.org/10.1016/j.rser.2003.12.010
  • Lundqvist, A. (2020). Future development of bioenergy in South Africa. Mälardalen University. chrome-extension://efaidnbmnnnibpcajpcglclefindmkaj/https://www.diva-portal.org/smash/get/diva2:1443396/FULLTEXT01.pdf
  • Lyons-White, J., Pollard, E. H. B., Catalano, A. S., & Knight, A. T. (2018). Rethinking zero deforestation beyond 2020 to more equitably and effectively conserve tropical forests. One Earth, 3(6), 714–726. https://doi.org/10.1016/j.oneear.2020.11.007
  • Malkamäki, A., D’Amato, D., Hogarth, N. J., Kanninen, M., Pirard, R., Toppinen, A., & Zhou, W. (2018). A systematic review of the socio-economic impacts of large-scale tree plantations, worldwide. Global Environmental Change, 53, 90–103. https://doi.org/10.1016/j.gloenvcha.2018.09.001
  • Mayaki, A. I. 2008. Sustainable Bioenergy Development in UEMOA Member Countries [ Online] http://d.scribd.com/docs/lxw2r89y9cpzy1ngj5i.pdf [December 5, 2008].
  • Miner, R., & Lucier, A. (2004). A Value Chain Assessment of Climate Change and Energy Issues Affecting the Global Forest-Based Industry. WBCSD Sustainable Forest Products Industry Working Group.
  • Ofoegbu, C. (2010). An evaluation of the socio-economic impact of timber production with and without the inclusion of biomass energy production. MSc Thesis, University of Stellenbosch,
  • Ofoegbu, C., & Ifejika-Speranza, C. (2021). Making climate information useable for forest-based climate change interventions in South Africa. Environmental Sociology, 7(4), 279–293. https://doi.org/10.1080/23251042.2021.1904534
  • Penniall, C. L., & Williamson, C. J. (2009). Feasibility study into the potential for gasification plant in the New Zealand wood processing industry. Energy Policy, 37(9), 3377–3386. https://doi.org/10.1016/j.enpol.2008.11.046
  • Pereira, E. J., Pinho, J. T., Galhardo, M. A. B., & Macêdo, W. N. (2014). Methodology of risk analysis by Monte Carlo Method applied to power generation with renewable energy. Renewable Energy, 69, 347–355. https://doi.org/10.1016/j.renene.2014.03.054
  • Persson, T. (2007). Standard & Generic Integrated Gasification and Combined Heat & Power (CHP) Plant. A project proposal submitted to Mondi Zimele by GreenForze.
  • Pokharel, R., Grala, R. K., & Grebner, D. L. (2017). Woody residue utilization for bioenergy by primary forest products manufacturers: An exploratory analysis. Forest Policy and Economics, 85, 161–171. https://doi.org/10.1016/j.forpol.2017.09.012
  • Porcu, A., Sollai, S., Marotto, D., Mureddu, M., Ferrara, F., & Pettinau, A. (2019). Techno-Economic Analysis of a Small-Scale Biomass-to-Energy BFB Gasification-Based System. Energies, 12(3), 1–17. https://doi.org/10.3390/en12030494
  • Premer, M. I., Froese, R. E., & Vance, E. D. (2019). Whole-tree harvest and residue recovery in commercial aspen: Implications to forest growth and soil productivity across a rotation. Forest Ecology and Management, 447, 130–138. https://doi.org/10.1016/j.foreco.2019.05.002
  • Puttock, G. D. (1995). Estimating cost for integrated harvesting and related forest management activities. Biomass & Bioenergy, 8(2), 73–79. https://doi.org/10.1016/0961-9534(95)00001-N
  • Ratnasingam, J., Wai, L. T., Thanasegaran, G., Florin Ioras, F., Vacalie, C., Coman, C., & Wenming, L. (2013). Innovations in the Forest Products Industry: The Malaysian Experience. Ratnasingam J et al ,Not Bot Horti Agrobo, 41(2), 601–607. https://doi.org/10.15835/nbha4129339
  • Saunders, A. M., Aguilar, F. X., Dwyer, J. P., & Stelzer, H. E. (2012). Cost Structure of Integrated Harvesting for Woody Biomass and Solid Hardwood Products in Southeastern Missouri. Journal of Forestry, 110(1), 7–15. https://doi.org/10.5849/jof.10-072
  • Savvides, S. (1994). Risk analysis in investment appraisal. Project Appraisal, 9(1), 1. https://doi.org/10.1080/02688867.1994.9726923
  • Scudder, M. G., Herbohn, J., & Baynes, J. (2019). Are portable sawmills a financially viable option for economic development in tropical forests? Forest Policy and Economics, 100, 188–197. https://doi.org/10.1016/j.forpol.2018.12.011
  • Situmorang, Y. A., Zhao, Z., Yoshida, A., & Abudula, A. (2020). Small-scale biomass gasification systems for power generation (<200 kW class): A review. Renewable and Sustainable Energy Reviews, 117, 1–14. https://doi.org/10.1016/j.rser.2019.109486
  • Trading Economics. ( den15 October. 2021). Trading Economics. South Africa - Gross Savings - Gross Savings (% of GDP): https://tradingeconomics.com/south-africa/indicators
  • Tripathi, A. K., Iyer, P. V. R., & Kandpal, T. C. (1997). A financial evaluation of biomass-gasifier-based power generation in India. Bioresource Technology, 61, 53–59. https://doi.org/10.1016/S0960-8524(97)84699-8
  • Weiss, G., Ludvig, A., & Živojinovića, I. (2020). Four decades of innovation research in forestry and the forest-based industries – a systematic literature review. Forest Policy and Economics, 120(102288), 1–25. https://doi.org/10.1016/j.forpol.2020.102288
  • Wu, C. Z., Huang, H., Zheng, S. P., & Yin, X. L. (2002). An economic analysis of biomass gasification and power generation in China. Bioresource Technology, 83(1), 65–70. https://doi.org/10.1016/S0960-8524(01)00116-X
  • Yagi, K., & Nakata, Y. (2011). Economic analysis on small-scale forest biomass gasification considering geographical resources distribution and technical characteristics. Biomass & Bioenergy, 35, 2883–2892. https://doi.org/10.1016/j.biombioe.2011.03.032