Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 9, 2023 - Issue 1
461
Views
0
CrossRef citations to date
0
Altmetric
Environmental Management & Conservation

Comparison of conventional and artificial fallout radionuclide (FRNs) methods in assessing soil erosion

ORCID Icon, & | (Reviewing editor)
Article: 2236406 | Received 10 Jan 2021, Accepted 10 Jul 2023, Published online: 19 Jul 2023

References

  • Alewell, C., Borrelli, P., Meusburger, K., & Panag, P. (2019). Using the USLE: Chances, challenges and limitations of soil erosion modelling. International Soil & Water Conservation Research, 7(3), 203–11. https://doi.org/10.1016/j.iswcr.2019.05.004
  • Alewell, C., Meusburger, K., Juretzko, G., Mabit, L., & Ketterer, M. E. (2014). Suitability of 239+240Pu and 137Cs as tracers for soil erosion assessment in mountain grasslands. Chemosphere, 103, 274–280. https://doi.org/10.1016/j.chemosphere.2013.12.016
  • Arata, L., Meusburger, K., Frenkel, E., A’Campo-Neuen, A., Andra-Rada, L., Ketterer, M. E., LMabit, L., & Alewell, C. (2016). Modelling deposition and erosion rates with RadioNuclides (MODERN)-Part 1: A new conversion model to derive soil redistribution rates from inventories of fallout radionuclides. Journal of Environmental Radioactivity, 162-163, 45–55. https://doi.org/10.1016/j.jenvrad.2016.05.008
  • Baumhardt, R. L., Stewart, B. A., & Sainju, U. M. (2015). North American soil degradation: Processes, practices, and mitigating strategies. Sustainability, 7(3), 2936–2960. https://doi.org/10.3390/su7032936
  • Bewket, W., & Teferi, E. (2009). Assessment of soil erosion hazard and prioritization for treatment at the watershed level: Case study in the chemoga watershed, Blue Nile Basin, Ethiopia. Land Degradation and Development, 20(6), 609–622. https://doi.org/10.1002/ldr.944
  • Bhattarai, R., & Dutta, D. (2007). Estimation of soil erosion and sediment yield using GIS at catchment scale. Water Resource Management, 21(10), 1635–1647. https://doi.org/10.1007/s11269-006-9118-z
  • Boardman, J. (2006). Soil erosion science: Reflections on the limitations of current approaches. Catena, 68(2–3), 73–86. https://doi.org/10.1016/j.catena.2006.03.007
  • Boix-Fayos, C., de Vente, J., Martinez-Mena, M., Barbera, G. G., & Castillo, V. (2008). The impact of land use change and check-dams on catchment sediment yield. Hydrological Processes, 22(25), 4922–4935. https://doi.org/10.1002/hyp.7115
  • Borrelli, P., Robinson, D. A., Fleischer, L. R., Lugato, E., Ballabio, C., Alewell, C., Meusburger, K., Modugno, S., Schutt, B., Ferro, V., Bagarello, V., Oost, K. V., Montanarella, L., & Panagos, P. (2017). An assessment of the global impact of 21st century land use change on soil erosion. Nature Communications, 8(1), 2013. https://doi.org/10.1038/s41467-017-02142-7
  • Ceaglio, E., Meusburger, K., Freppaz, M., Zanini, E., & Alewell, C. (2012). Estimation of soil redistribution rates due to snow cover related processes in a mountainous area (Valle d’Aosta, NW Italy). Hydrology and Earth System Sciences, 16(2), 517–528. https://doi.org/10.5194/hess-16-517-2012
  • Cerdan, O., Govers, G., Le Bissonnais, Y., Van Oost, K., Poesen, J., Saby, N., Gobin, A., Vacca, A., Quinton, J., Auerswald, K., Klik, A., Kwaad, F. J. P. M., Raclot, D., Ionita, I., Rejman, J., Rousseva, S., Muxart, T., Roxo, M. J., & Dostal, T. (2010). Rates and spatial variations of soil erosion in Europe: A study based on erosion plot data. Geomorphology, 122(1–2), 167–177. https://doi.org/10.1016/j.geomorph.2010.06.011
  • Chalise, D., Kumar, L., & Kristiansen, P. (2019). Land degradation by soil erosion in Nepal: A review. Soil Systems, 3(1), 12. https://doi.org/10.3390/soilsystems3010012
  • Chappell, A., Viscarra Rossel, R. A., & Loughran, R. (2011). Spatial uncertainty of 137 Cs-derived net (1950s–1990) soil redistribution for Australia. Journal of Geophysical Research, 116(F4), 2011. https://doi.org/10.1029/2010JF0019
  • Elwell, H. A. (1978). Modeling soil losses in southern Africa. Journal of Agricultural Engineering Research, 23(2), 117–127. https://doi.org/10.1016/0021-8634(78)90043-4
  • Evans, R., & Brazier, R. (2005). Evaluation of modelled spatially distributed predictions of soil erosion by water versus field-based assessments. Environmental Science & Policy, 8(5), 493–501. https://doi.org/10.1016/j.envsci.2005.04.009
  • Evans, R., Collins, A. L., Zhang, Y., Foster, I. D. I., Boardman, J., Sint, H., Lee, M. R. F., & Griffith, B. A. (2017). A comparison of conventional and137Cs-based estimates of soil erosion rates on arable and grassland across lowland England and Wale. Earth-Science Reviews, 173, 49–64. https://doi.org/10.1016/j.earscirev.2017.08.005
  • FAO. (2015). Revised world soil charter. Food and Agriculture Organization of the United Nations. Rome. 10 pp. http://www.fao.org/documents/card/en/c/e60df30b-0269-4247-a15f-db564161fee0/.
  • FAO. (2019). Soil erosion: The greatest challenge to sustainable soil management. FAO.
  • Fiener, P., & Auerswald, K. (2016). Comment on “The new assessment of soil loss by water erosion in Europe” by Panagos et al. (environmental science & policy 54 (2015) 438–447). Environmental Science & Policy, 57(March 2016), 140–142. https://doi.org/10.1016/j.envsci.2015.12.012
  • García-Ruiz, J. M., Beguería, S., Lana-Renault, N., Nadal-Romero, E., & Cerdà, A. (2017). Ongoing and emerging questions in water erosion studies. Land Degradation & Development, 28(1), 5–21. https://doi.org/10.1002/ldr.2641
  • Gholami, V., Booijc, M. J., Nikzad Tehranid, E., & Hadian, M. A. (2018). Spatial soil erosion estimation using an artificial neural network (ANN) and field plot data. Catena, 163, 210–218. https://doi.org/10.1016/j.catena.2017.12.027
  • Gomiero, T. (2016). Soil degradation, land scarcity and food security: Reviewing a complex challenge. Sustainability, 8(3), 281. https://doi.org/10.3390/su8030281
  • IAEA. (2014). Guidelines for using fallout radionuclides to assess erosion and effectiveness of soil conservation strategies. In: IAEATECDOC 1741 (pp. 226). International Atomic Energy Agency, Vienna
  • ISCO. (2002 May 26–31). International soil conservation Organization (ISCO). In 12th ISCO Congress Conference, Beijing, China
  • Konz, N., Prasuhn, V., & Alewell, C. (2012). On the measurement of alpine soil erosion. Catena, 91, 63–71. https://doi.org/10.1016/j.catena.2011.09.010
  • Kouli, M., Soupios, P., & Vallianatos, F. (2008). Soil erosion prediction using the Revised Universal Soil Loss Equation (RUSLE) in a GIS framework, Chania, Northwestern crete, Greece. Environmental Geology, 57(3), 483–497. https://doi.org/10.1007/s00254-008-1318-9
  • Lal, R., Tims, S. G., Fifield, L. K., Wasson, R. J., & Howe, D. (2013). Applicability of 239Pu as a tracer for soil erosion in the wet-dry tropics of northern Australia. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 294, 577–583. https://doi.org/10.1016/j.nimb.2012.07.041
  • Li, C., Grayson, R., Holden, J., & Li, P. (2018). Erosion in peatlands: Recent research progress and future directions. Earth-Science Reviews, 185, 870–886. https://doi.org/10.1016/j.earscirev.2018.08.005
  • Lupia-Palmieri, E. (2004). Erosion. In A. S. Goudie (Ed.), Encyclopedia of geomorphology (pp. 331–336). Routledge.
  • Mabit, L., Benmansour, M., & Walling, D. E. (2008). Comparative advantages and limitations of the fallout radionuclides 137Cs, 210Pbex and 7Be for assessing soil erosion and sedimentation. Journal of Environmental Radioactive, 99(12), 1799–1807. https://doi.org/10.1016/j.jenvrad.2008.08.009
  • Mabit, L., Meusburger, K., Fulajtar, E., & Alewell, C. (2013). The usefulness of 137Cs as a tracer for soil erosion assessment: A critical reply to Parsons and Foster (2011). Earth-Science Reviews, 127, 300–307. https://doi.org/10.1016/j.earscirev.2013.05.008
  • Mandal, D., Giri, N., Srivastava, P., Shah, C., Bhushan, R., Naregundi, K., Mohan, M. P., & Shrivastava, M. (2019). 137Cs–A Potential Environmental Marker for Assessing Erosion-Induced Soil Organic Carbon Loss in India. Research Communications Current Science, 117(5), 865. https://doi.org/10.18520/cs/v117/i5/865-871
  • Martin-Rosales, W., Pulido-Bosch, A., Gisbert, J., & Vallejos, A. (2003). Sediment yield estimation and check dams in a semiarid area (Sierra de Gador, southern Spain). In Erosion Prediction in Ungauged Basins: Integrating methods and techniques. Proceedings of symposium HS01 held during IUGG 2003, Sapporo, Japan, July 2003 2003, Sapporo, Japan, July 2003. IAHS Publ.no. 279, 2003.
  • Meusburger, G., Leitinger, L., Mabit, M., Mueller, H., Walter, A., & Alewell, C. (2014). Soil erosion by snow gliding – a first quantification attempt in a sub-alpine area, Switzerland. Hydrology and Earth System Sciences, 11(9), 3675–3710. https://doi.org/10.5194/hess-3763-2014
  • Millward, A. A., & Mersey, J. E. (1999). Adapting the RUSLE to model soil erosion potential in a mountainous tropical watershed. Catena, 38(2), 109–129. https://doi.org/10.1016/S0341-8162(99)00067-3
  • Navas, A., Machin, J., & Soto, J. (2005). Assessing soil erosion in a pyrenean mountain catchment using GIS and fallout 137Cs. Agriculture Ecosystems and Environment, 105(3), 493–506. https://doi.org/10.1016/j.agee.2004.07.005
  • Ownegh, M. (2003). Land use planning and integrated management of natural hazards in Golestan Province. In International Seminar on flood hazard prevention and mitigation 15-16 January. 2003. Gorgan, Iran.
  • Parwada, C., & van Tol, J. (2018). Effects of litter source on the dynamics of particulate organic matter fractions and rates of macroaggregate turnover in different soil horizons. European Journal of Soil Science, 69(6), 1126–1136. https://doi.org/10.1111/ejss.12726
  • Pimentel, D., & Burgess, M. (2013). Soil erosion threatens food production. Agriculture, 3(3), 443–463. https://doi.org/10.3390/agriculture3030443
  • Rodrigo Comino, J., Quiquerez, A., Follain, S., Raclot, D., Le Bissonnais, Y., Casalí, J., Giménez, R., Cerdà, A., Keesstra, S. D., Brevik, E. C., Pereira, P., Senciales, J. M., Seeger, M., Ruiz Sinoga, J. D., & Ries, J. B. (2016). Soil erosion in sloping vineyards assessed by using botanical indicators and sediment collectors in the Ruwer-Mosel valley. Agriculture, Ecosystems and Environment, 233, 158–170. https://doi.org/10.1016/j.agee.2016.09.009
  • Rodrigo Comino, J., Senciales, J. M., Ramos, M. C., Martínez-Casasnovas, J. A., Lasanta, T., Brevik, E. C., Ries, J. B., & Ruiz Sinoga, J. D. (2017). Understanding soil erosion processes in mediterranean sloping vineyards (Montes de Málaga, Spain). Geoderma, 296, 47–59. https://doi.org/10.1016/j.geoderma.2017.02.0210016-7061
  • Stroosnijder, L. (2005). Measurement of erosion: Is it possible? Catena, 64(2–3), 162–173. https://doi.org/10.1016/j.catena.2005.08.004
  • Tundu, C., Tumbare, M. J., & Onema, J. M. K. (2018). Sedimentation and its impacts/effects on river system and reservoir water quality: Case Study of mazowe catchment, Zimbabwe. Proceedings of the International Association of Hydrological Sciences, 377, 57–66. https://doi.org/10.5194/piahs-377-57-2018
  • Vahid, G., Hossein, S., & Mohammad, A. H. (2020). Mapping soil erosion rates using Self-Organizing Map (SOM) and Geographic Information System (GIS) on hillslopes. Earth Science Informatics, 13(4), 1175–1185. https://doi.org/10.1007/s12145-020-00499-w
  • Vahid, G., Hossein, S., & Mohammad, A. H. A. (2021). Soil erosion modeling using erosion pins and artificial neural networks. Catena, 196(2021), 104902. https://doi.org/10.1016/j.catena.2020.104902
  • Walling, D. E., He, Q., & Appleby, P. G. (2002). Conversion models for use in soil-erosion, soil-redistribution and sedimentation investigations. In F. Zapata (Ed.), Handbook for the assessment of soil erosion and sedimentation using environmental radionuclides (pp. 111–164). Kluwer, Dordrecht.
  • Walling, D. E., Zhang, Y., & He, Q. (2014). Conversion models and related software. Proceedings of the Guidelines for using fallout radionuclides to assess erosion and effectiveness of soil conservation strategies, Vienna, Austria (pp. 125e148). International Atomic Energy Agency Publication. IAEA-TECDOC-1741.
  • Wang, B., Zheng, F., & Guan, Y. (2016). Improved USLE-K factor prediction: A case study on water erosion areas in China. International Soil & Water Conservation Research, 4(3), 168–176. https://doi.org/10.1016/j.iswcr.2016.08.003
  • Zhang, K. L., Peng, W. Y., & Yang, H. L. (2007). Soil erodibility and its estimation for agricultural soil in China. Acta Pedologica Sinica, 44(1), 7–13.
  • Zhao, B., Zhang, L., Xia, Z., Xu, W., Xia, L., Liang, Y., & Xia, D. (2019). Effects of rainfall intensity and vegetation cover on erosion characteristics of a soil containing rock fragments slope. Advances in Civil Engineering, 2019, 1–14. https://doi.org/10.1155/2019/704342