Publication Cover
Sustainable Environment
An international journal of environmental health and sustainability
Volume 9, 2023 - Issue 1
1,249
Views
0
CrossRef citations to date
0
Altmetric
WASTE MANAGEMENT

Pyrolysis of municipal food waste: A sustainable potential approach for solid food waste management and organic crop fertilizer production

, , , , , , , & | (Reviewing editor:) show all
Article: 2260057 | Received 27 Jun 2023, Accepted 10 Sep 2023, Published online: 26 Sep 2023

References

  • Ahmad, M., Lee, S. S., Dou, X., Mohan, D., Sung, J. K., Yang, J. E., & Ok, Y. S. (2012). Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource Technology, 118, 536–14.
  • Aissaoui, M. H., Trabelsi, A. B. H., Abidi, S., Zaafouri, K., Haddad, K., Jamaaoui, F., & Kwapinski, W. (2023). Sustainable biofuels and biochar production from olive mill wastes via co-pyrolysis process. Biomass Conversion and Biorefinery, 13(10), 8877–8890.
  • Alghashm, S., Qian, S., Hua, Y., Wu, J., Zhang, H., Chen, W., & Shen, G. (2018). Properties of biochar from anaerobically digested food waste and its potential use in phosphorus recovery and soil amendment. Sustainability, 10(12), 4692. https://doi.org/10.3390/su10124692
  • Beneireh, N. M., Boakye, P., Oduro-Kwarteng, S., & Sokama-Neuyam, Y. A. (2020). Valorization of faecal and sewage sludge via pyrolysis for application as crop organic fertilizer. Journal of Analytical and Applied Pyrolysis, 151, 104903. https://doi.org/10.1016/j.jaap.2020.104903
  • Boakye, P., Sewu, D. D., & Woo, S. H. (2018). Effect of thermal pretreatment on the extraction of potassium salt from alga Saccharina japonica. Journal of Analytical and Applied Pyrolysis, 133, 68–75. https://doi.org/10.1016/j.jaap.2018.04.019
  • Boakye, P., Tran, H. N., Lee, D. S., & Woo, S. H. (2019). Effect of water washing pretreatment on property and adsorption capacity of macroalgae-derived biochar. Journal of Environmental Management, 233, 165–174. https://doi.org/10.1016/j.jenvman.2018.12.031
  • Cantrell, K. B., Hunt, P. G., Uchimiya, M., Novak, J. M., & Ro, K. S. (2012). Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresource Technology, 107, 419–428. https://doi.org/10.1016/j.biortech.2011.11.084
  • Chandler, S. F., & Dodds, J. H. (1983). The effect of phosphate, nitrogen and sucrose on the production of phenolics and solasodine in callus cultures of Solanum laciniatum. Plant Cell Reports, 2(4), 205–208. https://doi.org/10.1007/BF00270105
  • Claoston, N., Samsuri, A. W., Ahmad Husni, M. H., & Mohd Amran, M. S. (2014). Effects of pyrolysis temperature on the physicochemical properties of empty fruit bunch and rice husk biochars. Waste Management & Research, 32(4), 331–339. https://doi.org/10.1177/0734242X14525822
  • Crombie, K., Mašek, O., Sohi, S. P., Brownsort, P., & Cross, A. (2013). The effect of pyrolysis conditions on biochar stability as determined by three methods. Global Change Biology Bioenergy, 5(2), 122–131. https://doi.org/10.1111/gcbb.12030
  • Das, B. M., & Sobhan, K. (2013). Principles of geotechnical engineering. Cengage learning.
  • Ding, W., Dong, X., Ime, I. M., Gao, B., & Ma, L. Q. (2014). Pyrolytic temperatures impact lead sorption mechanisms by bagasse biochars. Chemosphere, 105, 68–74. https://doi.org/10.1016/j.chemosphere.2013.12.042
  • Domene, X., Enders, A., Hanley, K., & Lehmann, J. (2015). Ecotoxicological characterization of biochars: Role of feedstock and pyrolysis temperature. Science of the Total Environment, 512, 552–561. https://doi.org/10.1016/j.scitotenv.2014.12.035
  • Domingues, R. R., Trugilho, P. F., Silva, C. A., Melo, I. C. N. D., Melo, L. C., Magriotis, Z. M., & Sanchez-Monedero, M. A. (2017). Properties of biochar derived from wood and high-nutrient biomasses with the aim of agronomic and environmental benefits. PloS One, 12(5), e0176884. https://doi.org/10.1371/journal.pone.0176884
  • Elnour, A. Y., Alghyamah, A. A., Shaikh, H. M., Poulose, A. M., Al-Zahrani, S. M., Anis, A., & Al-Wabel, M. I. (2019). Effect of pyrolysis temperature on biochar microstructural evolution, physicochemical characteristics, and its influence on biochar/polypropylene composites. Applied Sciences, 9(6), 1149. https://doi.org/10.3390/app9061149
  • Gaskin, J. W., Steiner, C., Harris, K., Das, K. C., & Bibens, B. (2008). Effect of low-temperature pyrolysis conditions on biochar for agricultural use. Transactions of the ASABE, 51(6), 2061–2069. https://doi.org/10.13031/2013.25409
  • Githinji, L. (2013). Effect of biochar application rate on soil physical properties of a sandy loam. Archives of Agronomy & Soil Science, 60(4), 457–470. https://doi.org/10.1080/03650340.2013.821698
  • Glazunova, D. M., Kuryntseva, P. A., Selivanovskaya, S. Y., & Galitskaya, P. Y. (2018). Assessing the potential of using biochar as a soil conditioner. IOP Conference Series: Earth and Environmental Science, 107, 012059. https://doi.org/10.1088/1755-1315/107/1/012059
  • Hossain, M. K., Strezov, V., Chan, K. Y., Ziolkowski, A., & Nelson, P. F. (2011). Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar. Journal of Environmental Management, 92(1), 223–228. https://doi.org/10.1016/j.jenvman.2010.09.008
  • International Biochar Initiative. (2012). Standardized product definition and product testing guidelines for Biochar That is Used in Soil| International Biochar Initiative. International Biochar Initiative, 47. www.biochar-international.org/characterizationstandard
  • Jia, Y., Shi, S., Liu, J., Su, S., Liang, Q., Zeng, X., & Li, T. (2018). Study of the effect of pyrolysis temperature on the Cd2+ adsorption characteristics of biochar. Applied Sciences, 8(7), 1019. https://doi.org/10.3390/app8071019
  • Khanmohammadi, Z., Afyuni, M., & Mosaddeghi, M. R. (2015). Effect of pyrolysis temperature on chemical and physical properties of sewage sludge biochar. Waste Management & Research, 33(3), 275–283. https://doi.org/10.1177/0734242X14565210
  • Liu, Z., Singer, S., Tong, Y., Kimbell, L., Anderson, E., Hughes, M., Zitomer, D., & McNamara, P. (2018). Characteristics and applications of biochars derived from wastewater solids. Renewable and Sustainable Energy Reviews, 90, 650–664. https://doi.org/10.1016/j.rser.2018.02.040
  • Liu, X., Wang, Y., Gui, C., Li, P., Zhang, J., Zhong, H., & Wei, Y. (2016). Chemical forms and risk assessment of heavy metals in sludge-biochar produced by microwave-induced low temperature pyrolysis. RSC Advances, 6(104), 101960–101967. https://doi.org/10.1039/C6RA22511J
  • López-Cano, I., Cayuela, M. L., Mondini, C., Takaya, C. A., Ross, A. B., & Sánchez-Monedero, M. A. (2018). Suitability of different agricultural and urban organic wastes as feedstocks for the production of biochar—part 1: Physicochemical characterisation. Sustainability, 10(7), 2265. https://doi.org/10.3390/su10072265
  • Major, J., Rondon, M., Molina, D., Riha, S. J., & Lehmann, J. (2010). Maize yield and nutrition during 4 years after biochar application to a Colombian savanna oxisol. Plant and Soil, 333, 117–128.
  • Mazac, R. (2016). Assessing the use of food waste biochar as a Biodynamic plant fertilizer. Biology Department and Program in Environmental Studies, Hamline University.
  • McHenry, M. P. (2009). Agricultural bio-char production, renewable energy generation and farm carbon sequestration in Western Australia: Certainty, uncertainty and risk. Agriculture, Ecosystems & Environment, 129(1–3), 1–7. https://doi.org/10.1016/j.agee.2008.08.006
  • Moody, P. W., & Bell, M. J. (2006). Availability of soil potassium and diagnostic soil tests. Soil Research, 44(3), 265–275. https://doi.org/10.1071/SR05154
  • Moss, P. (1961). Limits of interference by fe, mn, Al and phosphate in the EDTA determination of calcium in the presence of mg using calcon-red as indicator. Journal of the Science of Food and Agriculture, 12, 30–34.
  • Motsa, M. R., & Roy, R. N. (2008). Guide to Laboratory Establishment for Plant Nutrient Analysis. FAO.
  • Mukherjee, A., & Zimmerman, A. R. (2013). Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar soil mixtures. Geoderma, 193, 122–130.
  • Naeem, M. A., Khalid, M., Arshad, M., & Ahmad, R. (2014). Yield and nutrient composition of biochar produced from different feedstocks at varying pyrolytic temperatures. Pakistan Journal of Agricultural Sciences, 51(1), 75–82.
  • Nolan, T., Troy, S. M., Healy, M. G., Kwapinski, W., Leahy, J. J., & Lawlor, P. G. (2011). Characterization of compost produced from separated pig manure and a variety of bulking agents at low initial C/N ratios. Bioresource Technology, 102(14), 7131–7138.
  • Novak, J. M., Johnson, M. G., & Spokas, K. A. (2018). Concentration and release of phosphorus and potassium from lignocellulosic-and manure-based biochars for fertilizer reuse. Frontiers in Sustainable Food Systems, 2, 54. https://doi.org/10.3389/fsufs.2018.00054
  • Novak, J. M., Lima, I., Xing, B., Gaskin, J. W., Steiner, C., Das, K. C., Ahmedna, M., Rehrah, D., Watts, D. W., Busscher, W. J., & Schomberg, H. (2009). Characterization of designer biochar produced at different temperatures and their effects on a loamy sand. Annals of Environmental Science, 3, 195–206.
  • Ofosu-Budu, G. K., Hogarh, J. N., Fobil, J. N., Quaye, A., Danso, S. K. A., & Carboo, D. (2010). Harmonizing procedures for the evaluation of compost maturity in two compost types in Ghana. Resources, Conservation and Recycling, 54(3), 205–209. https://doi.org/10.1016/j.resconrec.2009.08.001
  • Oh, T. K., Choi, B., Shinogi, Y., & Chikushi, J. (2012). Effect of pH conditions on actual and apparent fluoride adsorption by biochar in aqueous phase. Water, Air, & Soil Pollution, 223(7), 3729–3738. https://doi.org/10.1007/s11270-012-1144-2
  • Okalebo, J. R., Gathua, K. W., & Woomer, P. L. (1993). Laboratory Methods of Soil and Plant Analysis: A working manual. Tropical Soil biology and fertility, Soil Science Society of East Africa.
  • Rehrah, D., Reddy, M. R., Novak, J. M., Bansode, R. R., Schimmel, K. A., Yu, J., Watts, D. W., & Ahmedna, M. (2014). Production and characterization of biochars from agricultural by-products for use in soil quality enhancement. Journal of Analytical and Applied Pyrolysis, 108, 301–309. https://doi.org/10.1016/j.jaap.2014.03.008
  • Ren, X. H., Zhang, P., Zhao, L. J., & Sun, H. W. (2016). Sorption and degradation of carbaryl in soils amended with biochars: Influence of biochar type and content. Environmental Science and Pollution Research, 23(3), 2724–2734. https://doi.org/10.1007/s11356-015-5518-z
  • Rogovska, N., Laird, D., Cruse, R. M., Trabue, S., & Heaton, E. (2012). Germination tests for assessing biochar quality. Journal of Environmental Quality, 41(4), 1014–1022. https://doi.org/10.2134/jeq2011.0103
  • Ronsse, F., Van Hecke, S., Dickinson, D., & Prins, W. (2013). Production and characterization of slow pyrolysis biochar: Influence of feedstock type and pyrolysis conditions. Global Change Biology Bioenergy, 5(2), 104–115. https://doi.org/10.1111/gcbb.12018
  • Singh, B., Singh, B. P., & Cowie, A. L. (2010). Characterization and evaluation of biochars for their application as a soil amendment. Soil Research, 48(7), 516–525. https://doi.org/10.1071/SR10058
  • Smider, B., & Singh, B. (2014). Agronomic performance of a high ash biochar in two contrasting soils. Agriculture, Ecosystems & Environment, 191, 99–107. https://doi.org/10.1016/j.agee.2014.01.024
  • Sohi, S. P., Krull, E., Lopez-Capel, E., & Bol, R. (2010). A review of biochar and its use and function in soil. In Advances in agronomy (Vol. 105, pp. 47–82). Academic Press. https://doi.org/10.1016/S0065-2113(10)05002-9
  • Sujeeun, L., & Thomas, S. C. (2017). Potential of biochar to mitigate allelopathic effects in tropical island invasive plants: Evidence from seed germination trials. Tropical Conservation Science, 10, 1940082917697264. https://doi.org/10.1177/1940082917697264
  • Sun, J., Drosos, M., Mazzei, P., Savy, D., Todisco, D., Vinci, G., Pan, G., & Piccolo, A. (2017). The molecular properties of biochar carbon released in dilute acidic solution and its effects on maize seed germination. Science of the Total Environment, 576, 858–867. https://doi.org/10.1016/j.scitotenv.2016.10.095
  • Sun, F., & Lu, S. (2014). Biochars improve aggregate stability, water retention, and pore‐space properties of clayey soil. Journal of Plant Nutrition and Soil Science, 177(1), 26–33. https://doi.org/10.1002/jpln.201200639
  • Tsai, W. T., Liu, S. C., Chen, H. R., Chang, Y. M., & Tsai, Y. L. (2012). Textural and chemical properties of swine-manure-derived biochar pertinent to its potential use as a soil amendment. Chemosphere, 89(2), 198–203. https://doi.org/10.1016/j.chemosphere.2012.05.085
  • Wan, Q., Yuan, J. H., Xu, R. K., & Li, X. H. (2014). Pyrolysis temperature influences ameliorating effects of biochars on acidic soil. Environmental Science and Pollution Research, 21(4), 2486–2495. https://doi.org/10.1007/s11356-013-2183-y
  • Yanai, Y., Toyota, K., & Okazaki, M. (2007). Effects of charcoal addition on N2O emissions from soil resulting from rewetting air-dried soil in short-term laboratory experiments. Soil Science & Plant Nutrition, 53(2), 181–188. https://doi.org/10.1111/j.1747-0765.2007.00123.x
  • Yuan, J. H., Xu, R. K., & Zhang, H. (2011). The forms of alkalis in the biochar produced from crop residues at different temperatures. Bioresource Technology, 102(3), 3488–3497. https://doi.org/10.1016/j.biortech.2010.11.018
  • Zhao, S. X., Ta, N., & Wang, X. D. (2017). Effect of temperature on the structural and physicochemical properties of biochar with apple tree branches as feedstock material. Energies, 10(9), 1293. https://doi.org/10.3390/en10091293
  • Zhou, D., Liu, D., Gao, F., Li, M., & Luo, X. (2017). Effects of biochar-derived sewage sludge on heavy metal adsorption and immobilization in soils. International Journal of Environmental Research and Public Health, 14(7), 681. https://doi.org/10.3390/ijerph14070681