134
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Spatially scaled and customised daily light integral maps for horticulture lighting design

ORCID Icon, , , ORCID Icon, ORCID Icon & ORCID Icon
Article: 2349522 | Received 02 Aug 2023, Accepted 25 Apr 2024, Published online: 07 May 2024

References

  • Apogee DLI 400. (2023). DLI 400-600 meters. Apogee Instruments Inc., https://www.apogeeinstruments.com
  • Balázs, L., Dombi, Z., Csambalik, L., & Sipos, L. (2022). Characterizing the spatial uniformity of light intensity and spectrum for indoor crop production. Horticulturae, 8(7), 644. https://doi.org/10.3390/horticulturae8070644
  • Baumbauer, D. A., Schmidt, C. B., & Burgess, M. H. (2019). Leaf lettuce yield is more sensitive to low daily light integral than kale and spinach. Hort Science, 54(12), 2159–15. https://doi.org/10.21273/HORTSCI14288-19
  • Blonquist, M., & Bugbee, B. (2017). Principles and approaches for measuring net radiation. In J. Hatfield (Ed.), Agroclimatology Am Soc Of agronomy publication. https://doi.org/10.2134/agronmonogr60.2016.0001
  • Christiaens, A., Lootens, P., Roldán-Ruiz, I., Pauwels, E., Gobin, B., & Van Labeke, M. C. (2014). Determining the minimum daily light integral for forcing of azalea (rhododendron simsii). Scientia Horticulturae, 177, 1–9. https://doi.org/10.1016/j.scienta.2014.07.028
  • Dou, H., Niu, G., Gu, M., & Masabni, J. G. (2018). Responses of sweet basil to different daily light integrals in photosynthesis, morphology, yield, and nutritional quality. Hort Science, 53(4), 496–503. https://doi.org/10.21273/HORTSCI12785-17
  • Faust, J. E., & Logan, J. (2018). Daily light integral: A research review and high-resolution maps of the United States. Hort Science, 53(9), 1250–1257. https://doi.org/10.21273/HORTSCI13144-18
  • Hernández, R., & Kubota, C. (2014). Growth and morphological response of cucumber seedlings to supplemental red and blue photon flux ratios under varied solar daily light integrals. Scientia Horticulturae, 173, 92–99. https://doi.org/10.1016/j.scienta.2014.04.035
  • Higashide, T., & Heuvelink, E. (2009). Physiological and morphological changes over the past 50 years in yield components in tomato. Journal of the American Society for Horticultural Science, 134(4), 460–465. https://doi.org/10.21273/JASHS.134.4.460
  • Hungarian Meteorological Service (HMS). (2022). Climate of Hungary - general characteristics. Retrieved July 3, 2023, from https://www.met.hu/en/eghajlat/magyarorszag_eghajlata/altalanos_eghajlati_jellemzes/altalanos_leiras/
  • Kami, C., Lorrain, S., Hornitschek, P., & Fankhauser, C. (2010). Light-regulated plant growth and development. Current Topics in Developmental Biology, 91, 29–66. https://doi.org/10.1016/S0070-2153(10)91002-8
  • Kelly, N., Choe, D., Meng, Q., & Runkle, E. S. (2020). Promotion of lettuce growth under an increasing daily light integral depends on the combination of the photosynthetic photon flux density and photoperiod. Scientia Horticulturae, 272, 109565. https://doi.org/10.1016/j.scienta.2020.109565
  • Korczynski, P. C., Logan, J., & Faust, J. E. (2002). Mapping monthly distribution of daily light integrals across the contiguous United States. Hort Technology, 12(1), 12–16. https://doi.org/10.21273/HORTTECH.12.1.12
  • Li-COR LI-1500. (2023). LI-1500 DLI instruments package. LI-COR Biosciences Inc. https://www.licor.com/env
  • Palliwal, A., Song, S., Tan, H. T. W., & Biljecki, F. (2021). 3D city models for urban farming site identification in buildings. Computers, Environment and Urban Systems, 86, 101584. https://doi.org/10.1016/j.compenvurbsys.2020.101584
  • Quantum PAR/DLI Light Meter. (2023). Quantum PAR/DLI Light Meter. Spectrum Technologies Inc. https://www.specmeters.com/Last
  • Rodriguez, E., Morris, C. S., & Belz, J. E. (2006). A global assessment of the SRTM performance. Photogrammetric Engineering & Remote Sensing, 72(3), 249–260. https://doi.org/10.14358/PERS.72.3.249
  • Runkle, E. (2019). DLI ‘requirements’. Greenhouse Production News, 4. https://gpnmag.com/wp-content/uploads/2019/05/TechSpeak_GPN_0519.pdf
  • Seginer, I., Albright, L. D., & Ioslovich, I. (2006). Improved strategy for a constant daily light integral in greenhouses. Biosystems Engineering, 93(1), 69–80. https://doi.org/10.1016/j.biosystemseng.2005.09.007
  • Shao, M., Liu, W., Zhou, C., Wang, Q., & Li, B. (2022). Alternation of temporally overlapped red and blue light under continuous irradiation affected yield, antioxidant capacity and nutritional quality of purple-leaf lettuce. Scientia Horticulturae, 295, 110864. https://doi.org/10.1016/j.scienta.2021.110864
  • Sipos, L., Boros, I. F., Csambalik, L., Székely, G., Jung, A., & Balázs, L. (2020). Horticultural lighting system optimalization: A review. Scientia Horticulturae, 273, 109631. https://doi.org/10.1016/j.scienta.2020.109631
  • Thimijan, R. W., & Heins, R. D. (1983). Photometric, radiometric, and quantum light units of measure: A review of procedures for interconversion. Hort Science, 18(6), 818–822. https://doi.org/10.21273/HORTSCI.18.6.818
  • Warner, R. M., & Erwin, J. E. (2003). Effect of photoperiod and daily light integral on flowering of five hibiscus sp. Scientia Horticulturae, 97(3–4), 341–351. https://doi.org/10.1016/S0304-4238(02)00157-7
  • Whitman, C., Padhye, S., & Runkle, E. S. (2022). A high daily light integral can influence photoperiodic flowering responses in long day herbaceous ornamentals. Scientia Horticulturae, 295, 110897. https://doi.org/10.1016/j.scienta.2022.110897
  • Yan, Z., He, D., Niu, G., & Zhai, H. (2019). Evaluation of growth and quality of hydroponic lettuce at harvest as affected by the light intensity, photoperiod and light quality at seedling stage. Scientia Horticulturae, 248, 138–144. https://doi.org/10.1016/j.scienta.2019.01.002
  • Zhen, S., van Iersel, M., & Bugbee, B. (2021). Why far-red photons should be included in the definition of photosynthetic photons and the measurement of horticultural fixture efficacy. Frontiers in Plant Science, 12, 1158. https://doi.org/10.3389/fpls.2021.693445