534
Views
0
CrossRef citations to date
0
Altmetric
Review

Emerging implications of bacterial biofilm in cancer biology: Recent updates and major perspectives

, , , , , & show all
Pages 1-20 | Received 05 Oct 2023, Accepted 27 Mar 2024, Published online: 07 May 2024

References

  • Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A, Bray F. Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA A Cancer J Clin. 2021;71:209–249. doi:10.3322/caac.21660.
  • Flemming H-C, Wingender J, Szewzyk U, Steinberg P, Rice SA, Kjelleberg S. Biofilms: an emergent form of bacterial life. Nat Rev Microbiol. 2016;14(9):563–575. doi:10.1038/nrmicro.2016.94.
  • Mirzaei R, Abdi M, Gholami H. The host metabolism following bacterial biofilm: what is the mechanism of action? Rev Med Microbiol. 2020;31(4):175–182. doi:10.1097/MRM.0000000000000216.
  • Mirzaei R, Mohammadzadeh R, Sholeh M, Karampoor S, Abdi M, Dogan E, Moghadam MS, Kazemi S, Jalalifar S, Dalir A, et al. The importance of intracellular bacterial biofilm in infectious diseases. Microb Pathog. 2020;147:104393. doi:10.1016/j.micpath.2020.104393.
  • Koo H, Yamada KM. Dynamic cell–matrix interactions modulate microbial biofilm and tissue 3D microenvironments. Curr Opin Cell Biol. 2016;42:102–112. doi:10.1016/j.ceb.2016.05.005.
  • Akyıldız İ, Take G, Uygur K, Kızıl Y, Aydil U. Bacterial biofilm formation in the middle-ear mucosa of chronic otitis media patients. Indian J Otolaryngol Head Neck Surg. 2013;65(S3):557–561. doi:10.1007/s12070-012-0513-x.
  • Masters EA, Trombetta RP, De Mesy Bentley KL, Boyce BF, Gill AL, Gill SR, Nishitani K, Ishikawa M, Morita Y, Ito H, et al. Evolving concepts in bone infection: redefining “biofilm”, “acute vs. chronic osteomyelitis”, “the immune proteome” and “local antibiotic therapy. Bone Res. 2019;7:20. doi:10.1038/s41413-019-0061-z.
  • Southey-Pillig CJ, Davies DG, Sauer K. Characterization of temporal protein production inPseudomonas aeruginosa Biofilms. Biofilms J Bacteriol. 2005;187(23):8114–8126. doi:10.1128/JB.187.23.8114-8126.2005.
  • Machado A, Cerca N. Influence of biofilm formation by Gardnerella vaginalis and other anaerobes on bacterial vaginosis. J Infect Dis. 2015;212(12):1856–1861. doi:10.1093/infdis/jiv338.
  • Von Rosenvinge EC, GA O, Macfarlane S, Macfarlane GT, Shirtliff ME. Microbial biofilms and gastrointestinal diseases. Pathogens Disease. 2013;67:25–38. doi:10.1111/2049-632X.12020.
  • Behlau I, Gilmore MS. Microbial biofilms in ophthalmology and infectious disease. Archives of Ophthalmology. 2008;126(11):1572 doi:10.1001/archopht.126.11.1572.
  • Vieira Colombo AP, Magalhães CB, FARR H, Martins Do Souto R, Maciel Da Silva-Boghossian C. Periodontal-disease-associated biofilm: a reservoir for pathogens of medical importance. Microb Pathog. 2016;94:27–34. doi:10.1016/j.micpath.2015.09.009.
  • Delcaru C, Alexandru I, Podgoreanu P, Grosu M, Stavropoulos E, Chifiriuc M, Lazar V. Microbial biofilms in urinary tract infections and prostatitis: etiology, pathogenicity, and combating strategies. Pathogens. 2016;5(4):65. doi:10.3390/pathogens5040065.
  • Costerton JW, Stewart PS, Greenberg EP. Bacterial biofilms: a common cause of persistent infections. Science. 1999;284(5418):1318–1322. doi:10.1126/science.284.5418.1318.
  • Sharma D, Misba L, Khan AU. Antibiotics versus biofilm: an emerging battleground in microbial communities. Antimicrob Resist Infect Control. 2019;8(1):76. doi:10.1186/s13756-019-0533-3.
  • Uruén C, Chopo-Escuin G, Tommassen J, Mainar-Jaime RC, Arenas J. Biofilms as promoters of bacterial antibiotic resistance and tolerance. Antibiotics. 2021;10:3. doi:10.3390/antibiotics10010003.
  • Dejea CM, Fathi P, Craig JM, Boleij A, Taddese R, Geis AL, Wu X, DeStefano Shields CE, Hechenbleikner EM, Huso DL, et al. Patients with familial adenomatous polyposis harbor colonic biofilms containing tumorigenic bacteria. Science. 2018;359(6375):592–597. doi:10.1126/science.aah3648.
  • Martinez-Medina M, Naves P, Blanco J, Aldeguer X, Blanco JE, Blanco M, Ponte C, Soriano F, Darfeuille-Michaud A, Garcia-Gil LJ. Biofilm formation as a novel phenotypic feature of adherent-invasive Escherichia coli(AIEC). BMC Microbiol. 2009;9:202. doi:10.1186/1471-2180-9-202.
  • Prudent V, Demarre G, Vazeille E, Wery M, Quenech’du N, Ravet A, Dauverd - Girault J, van Dijk E, Bringer M-A, Descrimes M, et al. The Crohn’s disease-related bacterial strain LF82 assembles biofilm-like communities to protect itself from phagolysosomal attack. Commun Biol. 2021;4(1):1–13. doi:10.1038/s42003-021-02161-7.
  • Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J Clin Microbiol. 2005;43(7):3380–3389. doi:10.1128/JCM.43.7.3380-3389.2005.
  • Weng J, Li S, Zhu Z, Liu Q, Zhang R, Yang Y, Li X. Exploring immunotherapy in colorectal cancer. J Hematol Oncol. 2022;15(1):95. doi:10.1186/s13045-022-01294-4.
  • Stoodley P, Sauer K, Davies DG, Costerton JW. Biofilms as complex differentiated communities. Annu Rev Microbiol. 2002;56(1):187–209. doi:10.1146/annurev.micro.56.012302.160705.
  • Vestby LK, Grønseth T, Simm R, Nesse LL. Bacterial biofilm and its role in the pathogenesis of disease. Antibiotics. 2020;9(2):59. doi:10.3390/antibiotics9020059.
  • Al-Hilu SA, Al-Shujairi WH. Dual role of bacteria in carcinoma: stimulation and inhibition. Iran J Pediatr Hematol Oncol. 2020;2020:e4639761. doi:10.1155/2020/4639761.
  • Rizzato C, Torres J, Kasamatsu E, Camorlinga-Ponce M, Bravo MM, Canzian F, Kato I. Potential role of biofilm formation in the development of digestive tract cancer with special reference to helicobacter pylori infection. Front Microbiol. 2019;10:846. doi:10.3389/fmicb.2019.00846.
  • Bonnet M, Buc E, Sauvanet P, Darcha C, Dubois D, Pereira B, Déchelotte P, Bonnet R, Pezet D, Darfeuille-Michaud A. Colonization of the human gut by E. coli and colorectal cancer risk. Clin Cancer Res. 2014;20(4):859–867. doi:10.1158/1078-0432.CCR-13-1343.
  • Cheng Y, Ling Z, Li L. The intestinal microbiota and colorectal cancer. Front Immunol [Internet]. 2020;11. doi:10.3389/fimmu.2020.615056.
  • Shukla R, Shukla P, Behari A, Khetan D, Chaudhary RK, Tsuchiya Y, Ikoma T, Asai T, Nakamura K, Kapoor VK. Roles of Salmonella typhi and Salmonella paratyphi in gallbladder cancer development. Asian Pac J Cancer Prev. 2021;22(2):509–516. doi:10.31557/APJCP.2021.22.2.509.
  • Tian Y, Hao T, Cao B, Zhang W, Ma Y, Lin Q, Li X. Clinical end-points associated with mycobacterium tuberculosis and lung cancer: implications into host-pathogen interaction and coevolution. Biomed Res Int. 2015;2015:827829. doi:10.1155/2015/827829.
  • Fan X, Alekseyenko AV, Wu J, Peters BA, Jacobs EJ, Gapstur SM, Purdue MP, Abnet CC, Stolzenberg-Solomon R, Miller G, et al. Human oral microbiome and prospective risk for pancreatic cancer: a population-based nested case-control study. Gut. 2018;67(1):120–127. doi:10.1136/gutjnl-2016-312580.
  • Jacob JA. Study links periodontal disease bacteria to pancreatic cancer risk. JAMA. 2016;315(24):2653. doi:10.1001/jama.2016.6295.
  • Boleij A, Schaeps RMJ, Tjalsma H. Association Between streptococcus bovis and colon cancer. J Clin Microbiol. 2009;47(2):516. doi:10.1128/JCM.01755-08.
  • Zarkin BA, Lillemoe KD, Cameron JL, Effron PN, Magnuson TH, Pitt HA. The triad of streptococcus bovis bacteremia, colonic pathology, and liver disease: annals of surgery. Annals Of Surgery. 1990;211(6):786. doi:10.1097/00000658-199006000-00019.
  • Tateda M, Shiga K, Saijo S, Sone M, Hori T, Yokoyama J, Matsuura K, Takasaka T, Miyagi T. Streptococcus anginosus in head and neck squamous cell carcinoma: implication in carcinogenesis. Int J Mol Med [Internet]. 2000. [accessed 2023 Aug 16]. doi:10.3892/ijmm.6.6.699.
  • Gopinath D, Wie CC, Banerjee M, Thangavelu L, Kumar RP, Nallaswamy D, Botelho MG, Johnson NW. Compositional profile of mucosal bacteriome of smokers and smokeless tobacco users. Clin Oral Invest. 2022;26(2):1647–1656. doi:10.1007/s00784-021-04137-7.
  • Jiang Q, Liu X, Yang Q, Chen L, Yang D. Salivary microbiome in adenoid cystic carcinoma detected by 16s rRNA sequencing and shotgun metagenomics. Front Cell Infect Microbiol. 2021;11:774453. doi:10.3389/fcimb.2021.774453.
  • Nishimura M, Miyajima S, Okada N. Salivary gland MALT lymphoma associated with Helicobacter pylori infection in a patient with Sjögren’s syndrome. J Dermatol. 2000;27(7):450–452. doi:10.1111/j.1346-8138.2000.tb02204.x.
  • Larsen JM. The immune response to Prevotella bacteria in chronic inflammatory disease. Immunology. 2017;151(4):363–374. doi:10.1111/imm.12760.
  • Sharma G, Garg N, Hasan S, Shirodkar S. Prevotella: an insight into its characteristics and associated virulence factors. Microb Pathog. 2022;169:105673. doi:10.1016/j.micpath.2022.105673.
  • Dejea CM, Wick EC, Hechenbleikner EM, White JR, Mark Welch JL, Rossetti BJ, Peterson SN, Snesrud EC, Borisy GG, Lazarev M, et al. Microbiota organization is a distinct feature of proximal colorectal cancers. Proc Nat Acad Sci 2014; 111:18321–18326.
  • de Martel C, Georges D, Bray F, Ferlay J, Clifford GM. Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Global Health. 2020;8:e180–90. doi:10.1016/S2214-109X(19)30488-7.
  • Bhatt AP, Redinbo MR, Bultman SJ. The role of the microbiome in cancer development and therapy. CA Cancer J Clin. 2017;67(4):326–344. doi:10.3322/caac.21398.
  • Ellermann M, Sartor RB. Intestinal bacterial biofilms modulate mucosal immune responses. J Immunol Sci. 2018;2:13–18. doi:10.29245/2578-3009/2018/2.1122.
  • Otto M. Staphylococcus epidermidis–the “accidental” pathogen. Nat Rev Microbiol. 2009;7:555–567. doi:10.1038/nrmicro2182.
  • Kostic AD, Chun E, Robertson L, Glickman JN, Gallini CA, Michaud M, Clancy TE, Chung DC, Lochhead P, Hold GL, et al. Fusobacterium nucleatum potentiates intestinal tumorigenesis and modulates the tumor-immune microenvironment. Cell Host Microbe. 2013;14(2):207–215. doi:10.1016/j.chom.2013.07.007.
  • Ciernikova S, Sevcikova A, Stevurkova V, Mego M. Tumor microbiome - an integral part of the tumor microenvironment. Front Oncol. 2022;12:1063100. doi:10.3389/fonc.2022.1063100.
  • Cullin N, Azevedo Antunes C, Straussman R, Stein-Thoeringer CK, Elinav E. Microbiome and cancer. Cancer Cell. 2021;39(10):1317–1341. doi:10.1016/j.ccell.2021.08.006.
  • Upadhyay A, Pal D, Kumar A. Substantial relation between the bacterial biofilm and oncogenesis progression in host. Microb Pathog. 2023;175:105966. doi:10.1016/j.micpath.2022.105966.
  • Johansson MEV, Larsson JMH, Hansson GC. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host–microbial interactions. Proc Natl Acad Sci USA. 2011;108(supplement_1):4659–4665. doi:10.1073/pnas.1006451107.
  • Johansson MEV, Gustafsson JK, Holmén-Larsson J, Jabbar KS, Xia L, Xu H, Ghishan FK, Carvalho FA, Gewirtz AT, Sjövall H, et al. Bacteria penetrate the normally impenetrable inner colon mucus layer in both murine colitis models and patients with ulcerative colitis. Gut. 2014;63(2):281–291. doi:10.1136/gutjnl-2012-303207.
  • Mirzaei R, Sabokroo N, Ahmadyousefi Y, Motamedi H, Karampoor S. Immunometabolism in biofilm infection: lessons from cancer. Mol Med. 2022;28(1):10. doi:10.1186/s10020-022-00435-2.
  • Römling U, Balsalobre C. Biofilm infections, their resilience to therapy and innovative treatment strategies. J Intern Med. 2012;272(6):541–561. doi:10.1111/joim.12004.
  • Ferlay J, Colombet M, Soerjomataram I, Parkin DM, Piñeros M, Znaor A, Bray F. Cancer statistics for the year 2020: an overview. Int J Cancer. 2021;149(4):778–789. doi:10.1002/ijc.33588.
  • Brenner H, Chen C. The colorectal cancer epidemic: challenges and opportunities for primary, secondary and tertiary prevention. Br J Cancer. 2018;119(7):785–792. doi:10.1038/s41416-018-0264-x.
  • Dekker E, Tanis PJ, Vleugels JLA, Kasi PM, Wallace MB. Colorectal cancer. Lancet. 2019;394(10207):1467–1480. doi:10.1016/S0140-6736(19)32319-0.
  • Triantafillidis JK, Nasioulas G, Kosmidis PA. Colorectal cancer and inflammatory bowel disease: epidemiology, risk factors, mechanisms of carcinogenesis and prevention strategies. Anticancer Res. 2009;29:2727–2737.
  • den Besten G, van Eunen K, Groen AK, Venema K, Reijngoud D-J, Bakker BM. The role of short-chain fatty acids in the interplay between diet, gut microbiota, and host energy metabolism. J Lipid Res. 2013;54(9):2325–2340. doi:10.1194/jlr.R036012.
  • Natividad JMM, Verdu EF. Modulation of intestinal barrier by intestinal microbiota: pathological and therapeutic implications. Pharmacol Res. 2013;1:42–51. doi:10.1016/j.phrs.2012.10.007.
  • Bäumler AJ, Sperandio V. Interactions between the microbiota and pathogenic bacteria in the gut. Nature. 2016;535(7610):85–93. doi:10.1038/nature18849.
  • Gensollen T, Iyer SS, Kasper DL, Blumberg RS. How colonization by microbiota in early life shapes the immune system. Science. 2016;352(6285):539–544. doi:10.1126/science.aad9378.
  • Helmink BA, Khan MAW, Hermann A, Gopalakrishnan V, Wargo JA. The microbiome, cancer, and cancer therapy. Nat Med. 2019;25(3):377–388. doi:10.1038/s41591-019-0377-7.
  • Li S, Liu J, Zheng X, Ren L, Yang Y, Li W, Fu W, Wang J, Du G. Tumorigenic bacteria in colorectal cancer: mechanisms and treatments. Cancer Biol Med. 2022;19:147–162.
  • White MT, Sears CL. The microbial landscape of colorectal cancer. Nat Rev Microbiol [Internet]. 2023. [accessed 2023 Dec 6]. https://www.nature.com/articles/s41579-023-00973-4.
  • Hernández-Luna MA, López-Briones S, Luria-Pérez R. The four horsemen in colon cancer. J Oncol. 2019;2019:1–12. doi:10.1155/2019/5636272.
  • Dalal N, Jalandra R, Bayal N, Yadav AK, Harshulika N, Sharma M, Makharia GK, Kumar P, Singh R, Solanki PR, et al. Gut microbiota-derived metabolites in CRC progression and causation. J Cancer Res Clin Oncol. 2021;147:3141–3155. doi:10.1007/s00432-021-03729-w.
  • Jalandra R, Dalal N, Yadav AK, Verma D, Sharma M, Singh R, Khosla A, Kumar A, Solanki PR. Emerging role of trimethylamine-N-oxide (TMAO) in colorectal cancer. Appl Microbiol Biotechnol. 2021;105(20):7651–7660. doi:10.1007/s00253-021-11582-7.
  • Silva CL, Olival A, Perestrelo R, Silva P, Tomás H, Câmara JS. Untargeted Urinary 1H NMR-Based metabolomic pattern as a potential platform in breast cancer detection. Metabolites. 2019;9(11):269. doi:10.3390/metabo9110269.
  • Bae S, Ulrich CM, Neuhouser ML, Malysheva O, Bailey LB, Xiao L, Brown EC, Cushing-Haugen KL, Zheng Y, Cheng T-Y, et al. Plasma choline metabolites and colorectal cancer risk in the women’s health initiative observational study. Cancer Res. 2014;74(24):7442–7452. doi:10.1158/0008-5472.CAN-14-1835.
  • Janeiro MH, Ramírez MJ, Milagro FI, Martínez JA, Solas M. Implication of trimethylamine N-Oxide (TMAO) in disease: potential biomarker or new therapeutic target. Nutrients. 2018;10(10):1398. doi:10.3390/nu10101398.
  • Wang Z, Roberts AB, Buffa JA, Levison BS, Zhu W, Org E, Gu X, Huang Y, Zamanian-Daryoush M, Culley MK, et al. Non-lethal inhibition of gut microbial trimethylamine production for the treatment of atherosclerosis. Cell. 2015;163(7):1585–1595. doi:10.1016/j.cell.2015.11.055.
  • Nougayrède J-P, Homburg S, Taieb F, Boury M, Brzuszkiewicz E, Gottschalk G, Buchrieser C, Hacker J, Dobrindt U, Oswald E. Escherichia coli induces DNA double-strand breaks in eukaryotic cells. Science. 2006;313(5788):848–851. doi:10.1126/science.1127059.
  • Swidsinski A, Khilkin M, Kerjaschki D, Schreiber S, Ortner M, Weber J, Lochs H. Association between intraepithelial Escherichia coli and colorectal cancer. Gastroenterology. 1998;115(2):281–286. doi:10.1016/S0016-5085(98)70194-5.
  • Boleij A, Hechenbleikner EM, Goodwin AC, Badani R, Stein EM, Lazarev MG, Ellis B, Carroll KC, Albesiano E, Wick EC, et al. The bacteroides fragilis toxin gene is prevalent in the colon mucosa of colorectal cancer patients. Clin Infect Dis. 2015;60(2):208–215. doi:10.1093/cid/ciu787.
  • Chung L, Thiele Orberg E, Geis AL, Chan JL, Fu K, DeStefano Shields CE, Dejea CM, Fathi P, Chen J, Finard BB, et al. Bacteroides fragilis toxin coordinates a pro-carcinogenic inflammatory cascade via targeting of colonic epithelial cells. Cell Host Microbe. 2018;23(2):203–214.e5. doi:10.1016/j.chom.2018.01.007.
  • Castellarin M, Warren RL, Freeman JD, Dreolini L, Krzywinski M, Strauss J, Barnes R, Watson P, Allen-Vercoe E, Moore RA, et al. Fusobacterium nucleatum infection is prevalent in human colorectal carcinoma. Genome Res. 2012;22(2):299–306. doi:10.1101/gr.126516.111.
  • Wirbel J, Pyl PT, Kartal E, Zych K, Kashani A, Milanese A, Fleck JS, Voigt AY, Palleja A, Ponnudurai R, et al. Meta-analysis of fecal metagenomes reveals global microbial signatures that are specific for colorectal cancer. Nat Med. 2019;25(4):679–689. doi:10.1038/s41591-019-0406-6.
  • Abdulamir AS, Hafidh RR, Bakar FA. The association of Streptococcus bovis/gallolyticus with colorectal tumors: the nature and the underlying mechanisms of its etiological role. J Exp Clin Cancer Res. 2011;30(1):11. doi:10.1186/1756-9966-30-11.
  • Aymeric L, Donnadieu F, Mulet C, du Merle L, Nigro G, Saffarian A, Bérard M, Poyart C, Robine S, Regnault B, et al. Colorectal cancer specific conditions promote streptococcus gallolyticus gut colonization. Proc Natl Acad Sci U S A. 2018;115(2):E283–91. doi:10.1073/pnas.1715112115.
  • Lu R, Wu S, Zhang Y, Xia Y, Zhou Z, Kato I, Dong H, Bissonnette M, Sun J. Salmonella protein AvrA activates the STAT3 signaling pathway in colon cancer. Neoplasia (New York, NY). 2016;18(5):307. doi:10.1016/j.neo.2016.04.001.
  • Mughini-Gras L, Schaapveld M, Kramers J, Mooij S, Neefjes-Borst EA, van PW, Neefjes J. Increased colon cancer risk after severe Salmonella infection. PLOS ONE. [Internet]. 2018 [accessed 2023 Dec 8];13(1):e0189721. doi:10.1371/journal.pone.0189721.
  • Pleguezuelos-Manzano C, Puschhof J, Rosendahl Huber A, van Hoeck A, Wood HM, Nomburg J, Gurjao C, Manders F, Dalmasso G, Stege PB, et al. Mutational signature in colorectal cancer caused by genotoxic pks+ E. coli. Nature. 2020;580(7802):269–273. doi:10.1038/s41586-020-2080-8.
  • Hall-Stoodley L, Costerton JW, Stoodley P. Bacterial biofilms: from the natural environment to infectious diseases. Nat Rev Microbiol. 2004;2(2):95–108. doi:10.1038/nrmicro821.
  • Tomkovich S, Dejea CM, Winglee K, Drewes JL, Chung L, Housseau F, Pope JL, Gauthier J, Sun X, Mühlbauer M, et al. Human colon mucosal biofilms from healthy or colon cancer hosts are carcinogenic. J Clin Invest. 2019;129(4):1699–1712. doi:10.1172/JCI124196.
  • Tjalsma H, Boleij A, Marchesi JR, Dutilh BE. A bacterial driver–passenger model for colorectal cancer: beyond the usual suspects. Nat Rev Microbiol. 2012;10(8):575–582. doi:10.1038/nrmicro2819.
  • Johnson CH, Dejea CM, Edler D, Hoang LT, Santidrian AF, Felding BH, Ivanisevic J, Cho K, Wick EC, Hechenbleikner EM, et al. Metabolism links bacterial biofilms and colon carcinogenesis. Cell Metab. 2015;21(6):891–897. doi:10.1016/j.cmet.2015.04.011.
  • Soler AP. Increased tight junctional permeability is associated with the development of colon cancer. Carcinogenesis. 1999;20(8):1425–1432. doi:10.1093/carcin/20.8.1425.
  • Tremblay W, Mompart F, Lopez E, Quaranta M, Bergoglio V, Hashim S, Bonnet D, Alric L, Mas E, Trouche D, et al. Cytolethal distending toxin promotes replicative stress leading to genetic instability transmitted to daughter cells. Front Cell Dev Biol. 2021;9:656795. doi:10.3389/fcell.2021.656795.
  • Cuevas-Ramos G, Petit CR, Marcq I, Boury M, Oswald E, Nougayrède J-P. Escherichia coli induces DNA damage in vivo and triggers genomic instability in mammalian cells. Proc Natl Acad Sci USA. 2010;107(25):11537–11542. doi:10.1073/pnas.1001261107.
  • Goodwin AC, Destefano Shields CE, Wu S, Huso DL, Wu X, Murray-Stewart TR, Hacker-Prietz A, Rabizadeh S, Woster PM, Sears CL, et al. Polyamine catabolism contributes to enterotoxigenic Bacteroides fragilis-induced colon tumorigenesis. Proc Natl Acad Sci USA. 2011;108(37):15354–15359. doi:10.1073/pnas.1010203108.
  • Clay SL, Fonseca-Pereira D, Garrett WS. Colorectal cancer: the facts in the case of the microbiota. J Clin Invest. [Internet] 2022;132(4). [accessed 2023 Jul 18]. doi:10.1172/JCI155101.
  • Ternes D, Tsenkova M, Pozdeev VI, Meyers M, Koncina E, Atatri S, Schmitz M, Karta J, Schmoetten M, Heinken A, et al. The gut microbial metabolite formate exacerbates colorectal cancer progression. Nat Metab. 2022;4:458–475. doi:10.1038/s42255-022-00558-0.
  • Zheng D-W, Dong X, Pan P, Chen K-W, Fan J-X, Cheng S-X, Zhang X-Z. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat Biomed Eng. 2019;3(9):717–728. doi:10.1038/s41551-019-0423-2.
  • Rubinstein MR, Wang X, Liu W, Hao Y, Cai G, Han YW. Fusobacterium nucleatum promotes colorectal carcinogenesis by modulating E-Cadherin/β-Catenin signaling via its FadA Adhesin. Cell Host Microbe. 2013;14(2):195–206. doi:10.1016/j.chom.2013.07.012.
  • Brown DG, Rao S, Weir TL, O’Malia J, Bazan M, Brown RJ, Ryan EP. Metabolomics and metabolic pathway networks from human colorectal cancers, adjacent mucosa, and stool. Cancer Metab. 2016;4(1):11. doi:10.1186/s40170-016-0151-y.
  • Lucas C, Barnich N, Nguyen NH. Microbiota, inflammation and colorectal cancer. Int J Mol Sci. 2017;18(6):1310. doi:10.3390/ijms18061310.
  • Binda C, Gibiino G, Coluccio C, Sbrancia M, Dajti E, Sinagra E, Capurso G, Sambri V, Cucchetti A, Ercolani G, et al. Biliary diseases from the microbiome perspective: how microorganisms could change the approach to benign and malignant diseases. Microorganisms. 2022;10(2):312. doi:10.3390/microorganisms10020312.
  • Crawford RW, Gibson DL, Kay WW, Gunn JS. Identification of a bile-induced exopolysaccharide required for Salmonella biofilm formation on gallstone surfaces. Infect Immun. 2008;76(11):5341–5349. doi:10.1128/IAI.00786-08.
  • Hall-Stoodley L, Stoodley P. Evolving concepts in biofilm infections. Cell Microbiol. 2009;11(7):1034–1043. doi:10.1111/j.1462-5822.2009.01323.x.
  • Prouty AM, Schwesinger WH, Gunn JS. Biofilm formation and interaction with the surfaces of gallstones by Salmonella spp. Infect Immun. 2002;70(5):2640–2649. doi:10.1128/IAI.70.5.2640-2649.2002.
  • Nath G, Gulati AK, Shukla VK. Role of bacteria in carcinogenesis, with special reference to carcinoma of the gallbladder. World J Gastroenterol. 2010;16:5395–5404. doi:10.3748/wjg.v16.i43.5395.
  • Fowler CC, Chang S-J, Gao X, Geiger T, Stack G, Galán JE. Emerging insights into the biology of typhoid toxin. Curr Opin Microbiol. 2017;35:70–77. doi:10.1016/j.mib.2017.01.012.
  • Pickett CL, Whitehouse CA. The cytolethal distending toxin family. Trends Microbiol. 1999;7(7):292–297. doi:10.1016/S0966-842X(99)01537-1.
  • Scuron MD, Boesze-Battaglia K, Dlakić M, Shenker BJ. The cytolethal distending toxin contributes to microbial virulence and disease pathogenesis by acting as a tri-perditious toxin. Front Cell Infect Microbiol. 2016;6:168. doi:10.3389/fcimb.2016.00168.
  • Thelestam M, Frisan T. Cytolethal distending toxins. Rev Physiol Biochem Pharmacol. 2004;152:111–133.
  • Di Domenico EG, Cavallo I, Pontone M, Toma L, Ensoli F. Biofilm producing Salmonella typhi: chronic colonization and development of gallbladder cancer. IJMS. 2017;18(9):1887. doi:10.3390/ijms18091887.
  • Dutta U, Garg PK, Kumar R, Tandon RK. Typhoid carriers among patients with gallstones are at increased risk for carcinoma of the gallbladder. Am J Gastroenterol. 2000;95(3):784–787. doi:10.1111/j.1572-0241.2000.01860.x.
  • Kumar S, Kumar S, Kumar S. Infection as a risk factor for gallbladder cancer. J Surg Oncol. 2006;93(8):633–639. doi:10.1002/jso.20530.
  • Upadhayay A, Pal D, Kumar A. Salmonella typhi induced oncogenesis in gallbladder cancer: co-relation and progression. Adv Cancer Biol Metastasis. 2022;4:100032. doi:10.1016/j.adcanc.2022.100032.
  • Gagnaire A, Nadel B, Raoult D, Neefjes J, Gorvel J-P. Collateral damage: insights into bacterial mechanisms that predispose host cells to cancer. Nat Rev Microbiol. 2017;15(2):109–128. doi:10.1038/nrmicro.2016.171.
  • Johnson R, Ravenhall M, Pickard D, Dougan G, Byrne A, Frankel G, Payne SM. Comparison of Salmonella enterica serovars typhi and typhimurium reveals typhoidal serovar-specific responses to bile. Infect Immun. 2018;86(3):e00490–17. doi:10.1128/IAI.00490-17.
  • Chen L, Gu L, Geng X, Xu G, Huang X, Zhu X. A novel cis antisense RNA AsfD promotes Salmonella enterica serovar typhi motility and biofilm formation. Microb Pathog. 2020;142:104044. doi:10.1016/j.micpath.2020.104044.
  • Zhao H, Li Y. Cancer metabolism and intervention therapy. Mol Biomed. 2021;2(1):5. doi:10.1186/s43556-020-00012-1.
  • Sheng X, Wang W, Chen L, Zhang H, Zhang Y, Xu S, Xu H, Huang X. Mig-14 may contribute to Salmonella enterica serovar typhi resistance to polymyxin B by decreasing the permeability of the outer-membrane and promoting the formation of biofilm. Int J Med Microbiol. 2019;309(2):143–150. doi:10.1016/j.ijmm.2019.01.001.
  • Walawalkar YD, Vaidya Y, Nayak V, Monack D. Response of Salmonella typhi to bile-generated oxidative stress: implication of quorum sensing and persister cell populations. Pathog Dis. 2016;74(8):ftw090. doi:10.1093/femspd/ftw090.
  • Jesudhasan PR, Cepeda ML, Widmer K, Dowd SE, Soni KA, Hume ME, Zhu J, Pillai SD. Transcriptome analysis of genes controlled by luxS/autoinducer-2 in Salmonella enterica serovar Typhimurium. Foodborne Pathog Dis. 2010;7(4):399–410. doi:10.1089/fpd.2009.0372.
  • Cho I, Blaser MJ. The human microbiome: at the interface of health and disease. Nat Rev Genet. 2012;13(4):260–270. doi:10.1038/nrg3182.
  • Costello EK, Stagaman K, Dethlefsen L, Bohannan BJM, Relman DA. The application of ecological theory toward an understanding of the human microbiome. Science. 2012;336(6086):1255–1262. doi:10.1126/science.1224203.
  • Bebek G, Bennett KL, Funchain P, Campbell R, Seth R, Scharpf J, Burkey B, Eng C. Microbiomic subprofiles and MDR1 promoter methylation in head and neck squamous cell carcinoma. Hum Mol Genet [Internet]. 2012;21: 1557–1565. doi:10.1093/hmg/ddr593.
  • Frank DN, Qiu Y, Cao Y, Zhang S, Lu L, Kofonow JM, Robertson CE, Liu Y, Wang H, Levens CL, et al. A dysbiotic microbiome promotes head and neck squamous cell carcinoma. Oncogene. 2022;41(9):1269–1280. doi:10.1038/s41388-021-02137-1.
  • Marttila E, Uittamo J, Rusanen P, Lindqvist C, Salaspuro M, Rautemaa R. Acetaldehyde production and microbial colonization in oral squamous cell carcinoma and oral lichenoid disease. Oral Surg Oral Med Oral Pathol Oral Radiol. 2013;116(1):61–68. doi:10.1016/j.oooo.2013.02.009.
  • Raisch J, Buc E, Bonnet M, Sauvanet P, Vazeille E, de Vallée A, Déchelotte P, Darcha C, Pezet D, Bonnet R, et al. Colon cancer-associated B2 Escherichia coli colonize gut mucosa and promote cell proliferation. World J Gastroenterol. 2014;20:6560–6572. doi:10.3748/wjg.v20.i21.6560.
  • Cantero D, Cooksley C, Bassiouni A, Tran HB, Roscioli E, Wormald P-J, Vreugde S. Staphylococcus aureus biofilms induce apoptosis and expression of Interferon-γ, Interleukin-10, and Interleukin-17A on Human Sinonasal Explants. Am J Rhinol? Allergy. 2015;29(1):23–28. doi:10.2500/ajra.2015.29.4130.
  • Kim J, Lee HK. Potential role of the gut microbiome in colorectal cancer progression. Front Immunol. 2022;12:807648. doi:10.3389/fimmu.2021.807648.
  • Curtis MA, Diaz PI, Van Dyke TE. The role of the microbiota in periodontal disease. Periodontol 2000. 2020;83:14–25. doi:10.1111/prd.12296.
  • Hajishengallis G, Lambris JD. Complement and dysbiosis in periodontal disease. Immunobiology. 2012;217(11):1111–1116. doi:10.1016/j.imbio.2012.07.007.
  • Yost S, Stashenko P, Choi Y, Kukuruzinska M, Genco CA, Salama A, Weinberg EO, Kramer CD, Frias-Lopez J. Increased virulence of the oral microbiome in oral squamous cell carcinoma revealed by metatranscriptome analyses. Int J Oral Sci. 2018;10(4):32. doi:10.1038/s41368-018-0037-7.
  • Kolenbrander PE, Andersen RN, Blehert DS, Egland PG, Foster JS, Palmer RJ. Communication among oral bacteria. Microbiol Mol Biol Rev. 2002;66(3):486–505. doi:10.1128/MMBR.66.3.486-505.2002.
  • Brennan CA, Garrett WS. Fusobacterium nucleatum — symbiont, opportunist and oncobacterium. Nat Rev Microbiol. 2019;17(3):156–166. doi:10.1038/s41579-018-0129-6.
  • Nagy KN, Sonkodi I, Szöke I, Nagy E, Newman HN. The microflora associated with human oral carcinomas. Oral Oncol. 1998;34(4):304–308. doi:10.1016/S1368-8375(98)80012-2.
  • Zhang L, Liu Y, Zheng HJ, Zhang CP. The oral microbiota may have influence on oral cancer. Front Cell Infect Microbiol. 2020;9:476. doi:10.3389/fcimb.2019.00476.
  • Al-Hebshi NN, Nasher AT, Maryoud MY, Homeida HE, Chen T, Idris AM, Johnson NW. Inflammatory bacteriome featuring Fusobacterium nucleatum and Pseudomonas aeruginosa identified in association with oral squamous cell carcinoma. Sci Rep. 2017;7(1):1834. doi:10.1038/s41598-017-02079-3.
  • Zhao H, Chu M, Huang Z, Yang X, Ran S, Hu B, Zhang C, Liang J. Variations in oral microbiota associated with oral cancer. Sci Rep. 2017;7(1):11773. doi:10.1038/s41598-017-11779-9.
  • Gallimidi AB, Fischman S, Revach B, Bulvik R, Maliutina A, Rubinstein AM, Nussbaum G, Elkin M. Periodontal pathogens Porphyromonas gingivalis and Fusobacterium nucleatum promote tumor progression in an oral-specific chemical carcinogenesis model. Oncotarget. 2015;6(26):22613–22623. doi:10.18632/oncotarget.4209.
  • Fardini Y, Wang X, Témoin S, Nithianantham S, Lee D, Shoham M, Han YW. Fusobacterium nucleatum adhesin FadA binds vascular-endothelial cadherin and alters endothelial integrity. Mol Microbiol. 2011;82:1468–1480. doi:10.1111/j.1365-2958.2011.07905.x.
  • Bosetti C, Carioli G, Santucci C, Bertuccio P, Gallus S, Garavello W, Negri E, La Vecchia C. Global trends in oral and pharyngeal cancer incidence and mortality. Int J Cancer. 2020;147(4):1040–1049. doi:10.1002/ijc.32871.
  • Monti E, Barbara G, Libutti G, Boero V, Parazzini F, Ciavattini A, Bogani G, Pignataro L, Magni B, Merli C, et al. A clinician’s dilemma: what should be communicated to women with oncogenic genital HPV and their partners regarding the risk of oral viral transmission? BMC Women’s Health. 2022:22. doi:10.1186/s12905-022-01965-x
  • Andrews N, Griffiths C. Dental complications of head and neck radiotherapy: part 1. Aust Dent J. 2001;46(2):88–94. doi:10.1111/j.1834-7819.2001.tb00562.x.
  • Støre G, Eribe ERK, Olsen I. DNA–DNA hybridization demonstrates multiple bacteria in osteoradionecrosis. Int J Oral Max Surg. 2005;34(2):193–196. doi:10.1016/j.ijom.2004.06.010.
  • Curi MM, Dib LL, Kowalski LP, Landman G, Mangini C. Opportunistic actinomycosis in osteoradionecrosis of the jaws in patients affected by head and neck cancer: incidence and clinical significance. Oral Oncol. 2000;36(3):294–299. doi:10.1016/S1368-8375(99)00080-9.
  • Aas JA, Reime L, Pedersen K, Eribe ERK, Abesha-Belay E, Støre G, Olsen I. Osteoradionecrosis contains a wide variety of cultivable and non-cultivable bacteria. J Oral Microbiol. 2010;2:5072. doi:10.3402/jom.v2i0.5072.
  • Li Z, Fu R, Huang X, Wen X, Zhang L. Oral microbiota may affect osteoradionecrosis following radiotherapy for head and neck cancer. J Transl Med. 2023;21(1):391. doi:10.1186/s12967-023-04219-y.
  • Tsai Y, Lin Y, Wu W, Chiu P, Lin BJ, Hao S. Biofilm formations in nasopharyngeal tissues of patients with nasopharyngeal osteoradionecrosis. Otolaryngol–Head Neck Surg. 2013;148:633–636. doi:10.1177/0194599812474971.
  • Conlon BP, Nakayasu ES, Fleck LE, MD L, Isabella VM, Coleman K, Leonard SN, Smith RD, Adkins JN, Lewis K. Activated ClpP kills persisters and eradicates a chronic biofilm infection. Nature. 2013;503:365–370. doi:10.1038/nature12790.
  • Otto M. Staphylococcal infections: mechanisms of biofilm maturation and detachment as critical determinants of pathogenicity. Annu Rev Med. 2013;64(1):175–188. doi:10.1146/annurev-med-042711-140023.
  • Utsui Y, Yokota T. Role of an altered penicillin-binding protein in methicillin- and cephem-resistant Staphylococcus aureus. Antimicrob Agents Chemother. 1985;28(3):397–403. doi:10.1128/AAC.28.3.397.
  • Jiang R, Liu Y, Zhang H, Chen Y, Liu T, Zeng J, Nie E, Chen S, Tan J. Distinctive microbiota of delayed healing of oral mucositis after radiotherapy of nasopharyngeal carcinoma. Front Cell Infect Microbiol. 2022;12:1070322. doi:10.3389/fcimb.2022.1070322.
  • Gong H, Shi Y, Zhou X, Wu C, Cao P, Xu C, Hou D, Wang Y, Zhou L, Drake HL. Microbiota in the throat and risk factors for laryngeal carcinoma. Appl Environ Microbiol. 2014;80(23):7356–7363. doi:10.1128/AEM.02329-14.
  • Alberg AJ, Brock MV, Samet JM. Epidemiology of lung cancer: looking to the future. JCO. 2005;23(14):3175–3185. doi:10.1200/JCO.2005.10.462.
  • Engels EA. Inflammation in the development of lung cancer: epidemiological evidence. Expert Rev Anticancer Ther. 2008;8(4):605–615. doi:10.1586/14737140.8.4.605.
  • Govindan R. Lung cancer in never smokers: a new hot area of research. Lancet Oncol. 2010;11(4):304–305. doi:10.1016/S1470-2045(10)70057-7.
  • Huang S. Mycoplasma infections and different human carcinomas. WJG. 2001;7:266. doi:10.3748/wjg.v7.i2.266.
  • Ushio S, Iwaki K, Taniai M, Ohta T, Fukuda S, Sugimura K, Kurimoto M. Metastasis-promoting activity of a novel molecule, Ag 243-5, derived from mycoplasma, and the complete nucleotide sequence. Microbiol Immunol. 1995;39(6):393–400. doi:10.1111/j.1348-0421.1995.tb02218.x.
  • Liu N-N, Ma Q, Ge Y, Yi C-X, Wei L-Q, Tan J-C, Chu Q, Li J-Q, Zhang P, Wang H. Microbiome dysbiosis in lung cancer: from composition to therapy. NPJ Precis Onc. 2020;4:33. doi:10.1038/s41698-020-00138-z.
  • Hwang SY, Kim JY, Lee HS, Lee S, Kim D, Kim S, Hyun JH, Shin JI, Lee KH, Han SH, et al. Pulmonary tuberculosis and risk of lung cancer: a systematic review and meta-analysis. J Clin Med. 2022;11(3):765. doi:10.3390/jcm11030765.
  • Chaturvedi AK, Gaydos CA, Agreda P, Holden JP, Chatterjee N, Goedert JJ, Caporaso NE, Engels EA. Chlamydia pneumoniae infection and risk for lung cancer. Cancer Epidem Biomar. 2010;19(6):1498–1505. doi:10.1158/1055-9965.EPI-09-1261.
  • Littman AJ, Jackson LA, Vaughan TL. Chlamydia pneumoniae and lung cancer: epidemiologic evidence. Cancer Epidem Biomar. 2005;14(4):773–778. doi:10.1158/1055-9965.EPI-04-0599.
  • Zhan P, Suo L, Qian Q, Shen X, Qiu L-X, Yu L, Song Y. Chlamydia pneumoniae infection and lung cancer risk: A meta-analysis. Eur J Cancer. 2011;47(5):742–747. doi:10.1016/j.ejca.2010.11.003.
  • Dancewicz M, Szymankiewicz M, Bella M, Swiniarska J, Kowalewski J. Bronchial bacterial colonization in patients with lung cancer. Pneumonol Alergol Pol. 2009;77(3):242–247. doi:10.5603/ARM.27802.
  • Szymankiewicz M, Kowalewski J, Dancewicz M. [Bacteriological and mycological analysis of material taken from lower respiratory tract in patients with malignancy]. Pol Merkur Lekarski. 2006;21:218–222.
  • Akshatha CR, Bhat S, Sindhu R, Shashank D, Rose Sommano S, Tapingkae W, Cheewangkoon R, Prasad SK. Current therapeutic options for gastric adenocarcinoma. Saudi J Biol Sci. 2021;28(9):5371–5378. doi:10.1016/j.sjbs.2021.05.060.
  • Shin WS, Xie F, Chen B, Yu P, Yu J, To KF, Kang W. Updated epidemiology of gastric cancer in Asia: decreased incidence but still a big challenge. Cancers Basel. 2023;15(9):2639. doi:10.3390/cancers15092639.
  • Sekiguchi M, Oda I, Matsuda T, Saito Y. Epidemiological trends and future perspectives of gastric cancer in Eastern Asia. Digestion. 2022;103(1):22–28. doi:10.1159/000518483.
  • Koo H, Allan RN, Howlin RP, Stoodley P, Hall-Stoodley L. Targeting microbial biofilms: current and prospective therapeutic strategies. Nat Rev Microbiol. 2017;15(12):740–755. doi:10.1038/nrmicro.2017.99.
  • Pucułek M, Machlowska J, Wierzbicki R, Baj J, Maciejewski R, Sitarz R. Helicobacter pylori associated factors in the development of gastric cancer with special reference to the early-onset subtype. Oncotarget. 2018;9(57):31146–31162. doi:10.18632/oncotarget.25757.
  • Rawla P, Barsouk A. Epidemiology of gastric cancer: global trends, risk factors and prevention. Prz Gastroenterol. 2019;14(1):26–38. doi:10.5114/pg.2018.80001.
  • Carron MA, Tran VR, Sugawa C, Coticchia JM. Identification of Helicobacter pylori biofilms in human gastric mucosa. J Gastrointest Surg. 2006;10(5):712–717. doi:10.1016/j.gassur.2005.10.019.
  • Hsieh Y-Y, Tung S-Y, Pan H-Y, Yen C-W, Xu H-W, Lin Y-J, Deng Y-F, Hsu W-T, Wu C-S, Li C. Increased abundance of Clostridium and Fusobacterium in gastric microbiota of patients with gastric cancer in Taiwan. Sci Rep. 2018;8(1):158. doi:10.1038/s41598-017-18596-0.
  • Lehr K, Nikitina D, Vilchez-Vargas R, Steponaitiene R, Thon C, Skieceviciene J, Schanze D, Zenker M, Malfertheiner P, Kupcinskas J, et al. Microbial composition of tumorous and adjacent gastric tissue is associated with prognosis of gastric cancer. Sci Rep. 2023;13(1):4640. doi:10.1038/s41598-023-31740-3.
  • Abadi ATB. Strategies used by helicobacter pylori to establish persistent infection. World J Gastroenterol. 2017;23(16):2870–2882. doi:10.3748/wjg.v23.i16.2870.
  • Cellini L, Grande R, Di Campli E, Traini T, Di Giulio M, Nicola Lannutti S, Lattanzio R. Dynamic colonization of Helicobacter pylori in human gastric mucosa. Scand J Gastroenterol. 2008;43(2):178–185. doi:10.1080/00365520701675965.
  • Coticchia J, Sugawa C, Tran V, Gurrola J, Kowalski E, Carron M. Presence and density of helicobacter pylori biofilms in human gastric mucosa in patients with peptic ulcer disease. J Gastrointest Surg. 2006;10(6):883–889. doi:10.1016/j.gassur.2005.12.009.
  • Chan W-Y, Hui P-K, Leung K-M, Chow J, Kwok F, Ng C-S. Coccoid forms of Helicobacter pylori in the human stomach. Am J Clin Pathol. 1994;102(4):503–507. doi:10.1093/ajcp/102.4.503.
  • Zou Q, Zhang H, Meng F, He L, Zhang J, Xiao D, Chammas R. Proteomic and transcriptomic studies of BGC823 cells stimulated with Helicobacter pylori isolates from gastric MALT lymphoma. PLOS ONE. 2020;15(9):e0238379. doi:10.1371/journal.pone.0238379.
  • Valenzuela MA, Canales J, Corvalán AH, Quest AF. Helicobacter pylori-induced inflammation and epigenetic changes during gastric carcinogenesis. World J Gastroenterol. 2015;21:12742–12756. doi:10.3748/wjg.v21.i45.12742.
  • Huang F-Y, Chan A-O, Rashid A, Wong D-H, Cho C-H, Yuen M-F. Helicobacter pylori induces promoter methylation of E-cadherin via interleukin-1β activation of nitric oxide production in gastric cancer cells. Cancer. 2012;118:4969–4980. doi:10.1002/cncr.27519.
  • Perri F, Cotugno R, Piepoli A, Merla A, Quitadamo M, Gentile A, Pilotto A, Annese V, Andriulli A. Aberrant DNA methylation in non-neoplastic gastric mucosa of H. Pylori infected patients and effect of eradication. Am J Gastroenterol. 2007;102(7):1361–1371. doi:10.1111/j.1572-0241.2007.01284.x.
  • Brabletz T, Kalluri R, Nieto MA, Weinberg RA. EMT in cancer. Nat Rev Cancer. 2018;18(2):128–134. doi:10.1038/nrc.2017.118.
  • Sougleri IS, Papadakos KS, Zadik MP, Mavri-Vavagianni M, Mentis AF, Sgouras DN. Helicobacter pylori CagA protein induces factors involved in the epithelial to mesenchymal transition (EMT) in infected gastric epithelial cells in an EPIYA- phosphorylation-dependent manner. FEBS J. 2016;283(2):206–220. doi:10.1111/febs.13592.
  • Kay J, Thadhani E, Samson L, Engelward B. Inflammation-induced DNA damage, mutations and cancer. DNA Repair (Amst). 2019;83:102673. doi:10.1016/j.dnarep.2019.102673.
  • Perwez Hussain S, Harris CC. Inflammation and cancer: an ancient link with novel potentials. Int J Cancer. 2007;121(11):2373–2380. doi:10.1002/ijc.23173.
  • Meng Z, Yang T. Liu DType-2 epithelial-mesenchymal transition in oral mucosal nonneoplastic diseases. Front Immunol [Internet]2022;13. doi:10.3389/fimmu.2022.1020768
  • Vergara D, Simeone P, Damato M, Maffia M, Lanuti P, Trerotola M. The cancer microbiota: EMT and inflammation as shared molecular mechanisms associated with plasticity and progression. J Oncol. 2019;2019:e1253727. doi:10.1155/2019/1253727.
  • Reddy KB. MicroRNA (miRNA) in cancer. Cancer Cell Int. 2015;15(1):38. doi:10.1186/s12935-015-0185-1.
  • Tomkovich S, Gharaibeh RZ, Dejea CM, Pope JL, Jiang J, Winglee K, Gauthier J, Newsome RC, Yang Y, Fodor AA, et al. Human colon mucosal biofilms and murine host communicate via altered mRNA and microRNA expression during cancer. MSystems. 2020;5:e00451–19. doi:10.1128/mSystems.00451-19.
  • Siegel RL, Miller KD, Jemal A. Cancer statistics, 2017. CA Cancer J Clin. 2017;67(1):7–30. doi:10.3322/caac.21387.
  • Vincent A, Hong S-M, Hu C, Omura N, Young A, Kim H, Yu J, Knight S, Ayars M, Griffith M, et al. Epigenetic silencing of EYA2 in pancreatic adenocarcinomas promotes tumor growth. Oncotarget. 2014;5(9):2575–2587. doi:10.18632/oncotarget.1842.
  • Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM. Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res. 2014;74(11):2913–2921. doi:10.1158/0008-5472.CAN-14-0155.
  • Mitsuhashi K, Nosho K, Sukawa Y, Matsunaga Y, Ito M, Kurihara H, Kanno S, Igarashi H, Naito T, Adachi Y, et al. Association of Fusobacterium species in pancreatic cancer tissues with molecular features and prognosis. Oncotarget. 2015;6(9):7209–7220. doi:10.18632/oncotarget.3109.
  • Torre LA, Bray F, Siegel RL, Ferlay J, Lortet-Tieulent J, Jemal A. Global cancer statistics, 2012: global cancer statistics, 2012. CA Cancer J Clin. 2015;65(2):87–108. doi:10.3322/caac.21262.
  • Farrell JJ, Zhang L, Zhou H, Chia D, Elashoff D, Akin D, Paster BJ, Joshipura K, Wong DTW. Variations of oral microbiota are associated with pancreatic diseases including pancreatic cancer. Gut. 2012;61(4):582–588. doi:10.1136/gutjnl-2011-300784.
  • Alkharaan H, Lu L, Gabarrini G, Halimi A, Ateeb Z, Sobkowiak MJ, Davanian H, Fernández Moro C, Jansson L, Del Chiaro M, et al. Circulating and salivary antibodies to Fusobacterium nucleatum are associated with cystic pancreatic neoplasm malignancy. Front Immunol. 2020;11:2003. doi:10.3389/fimmu.2020.02003.
  • Karpiński TM. The microbiota and pancreatic cancer. Gastroenterol Clin North Am. 2019;48(3):447–464. doi:10.1016/j.gtc.2019.04.008.
  • Pushalkar S, Hundeyin M, Daley D, Zambirinis CP, Kurz E, Mishra A, Mohan N, Aykut B, Usyk M, Torres LE. et al. The pancreatic cancer microbiome promotes oncogenesis by induction of innate and adaptive immune suppression. Cancer Discov. 2018;8(4):403–416. doi:10.1158/2159-8290.CD-17-1134.
  • Half E, Keren N, Dorfman T, Reshef L, Lachter I, Kluger Y, Konikoff F, Gphna U. P-165 specific changes in fecal microbiota may differentiate pancreatic cancer patients from healthy individuals. Ann Oncol. 2015;26:iv48. doi:10.1093/annonc/mdv233.165.
  • Half E, Keren N, Reshef L, Dorfman T, Lachter I, Kluger Y, Reshef N, Knobler H, Maor Y, Stein A, et al. Fecal microbiome signatures of pancreatic cancer patients. Sci Rep. 2019;9(1):16801. doi:10.1038/s41598-019-53041-4.
  • Ren Z, Jiang J, Xie H, Li A, Lu H, Xu S, Zhou L, Zhang H, Cui G, Chen X, et al. Gut microbial profile analysis by MiSeq sequencing of pancreatic carcinoma patients in China. Oncotarget. 2017;8(56):95176–95191. doi:10.18632/oncotarget.18820.
  • Thomas RM, Gharaibeh RZ, Gauthier J, Beveridge M, Pope JL, Guijarro MV, Yu Q, He Z, Ohland C, Newsome R, et al. Intestinal microbiota enhances pancreatic carcinogenesis in preclinical models. Carcinogenesis. 2018;39(8):1068–1078. doi:10.1093/carcin/bgy073.
  • Mendez R, Kesh K, Arora N, Di Martino L, McAllister F, Merchant N, Banerjee S, Banerjee S. Microbial dysbiosis and polyamine metabolism as predictive markers for early detection of pancreatic cancer. Carcinogenesis. 2020;41(5):561–570. doi:10.1093/carcin/bgz116.
  • Corrales L, Matson V, Flood B, Spranger S, Gajewski TF. Innate immune signaling and regulation in cancer immunotherapy. Cell Res. 2017;27(1):96–108. doi:10.1038/cr.2016.149.
  • Liu J, Xu D, Wang Q, Zheng D, Jiang X, Xu L. LPS induced miR-181a promotes pancreatic cancer cell migration via targeting PTEN and MAP2K4. Dig Dis Sci. 2014;59(7):1452–1460. doi:10.1007/s10620-014-3049-y.
  • Santoni M, Andrikou K, Sotte V, Bittoni A, Lanese A, Pellei C, Piva F, Conti A, Nabissi M, Santoni G, et al. Toll like receptors and pancreatic diseases: from a pathogenetic mechanism to a therapeutic target. Cancer Treat Rev. 2015;41(7):569–576. doi:10.1016/j.ctrv.2015.04.004.
  • Yin H, Pu N, Chen Q, Zhang J, Zhao G, Xu X, Wang D, Kuang T, Jin D, Lou W, et al. Gut-derived lipopolysaccharide remodels tumoral microenvironment and synergizes with PD-L1 checkpoint blockade via TLR4/MyD88/AKT/NF-κB pathway in pancreatic cancer. Cell Death Disease. 2021;12(11):1033. doi:10.1038/s41419-021-04293-4.
  • Leung PS, Chan YC. Role of oxidative stress in pancreatic inflammation. Antioxid Redox Signal. 2009;11:135–165. doi:10.1089/ars.2008.2109.
  • Noureldein MH, Eid AA. Gut microbiota and mTOR signaling: Insight on a new pathophysiological interaction. Microb Pathog. 2018;118:98–104. doi:10.1016/j.micpath.2018.03.021.
  • Chen Z, Zhang S, Dong S, Xu H, Zhou W. Association of the microbiota and pancreatic cancer: opportunities and limitations. Front Immunol. 2022;13:844401. doi:10.3389/fimmu.2022.844401.
  • Ma Y, Hao J. Dedifferentiation of epithelial cells incorporates immune reprogramming. Trends Cell Biol. 2021;31(4):237–240. doi:10.1016/j.tcb.2021.01.007.
  • Gnanasekaran J, Binder Gallimidi A, Saba E, Pandi K, Eli Berchoer L, Hermano E, Angabo S, Makkawi H, Khashan A, Daoud A, et al. Intracellular porphyromonas gingivalis promotes the tumorigenic behavior of pancreatic carcinoma cells. Cancers Basel. 2020;12(8):2331. doi:10.3390/cancers12082331.
  • Chen S-M, Hsu L-J, Lee H-L, Lin C-P, Huang S-W, Lai C-L, Lin C-W, Chen W-T, Chen Y-J, Lin Y-C, et al. Lactobacillus attenuate the progression of pancreatic cancer promoted by Porphyromonas gingivalis in k-rasg12d transgenic mice. Cancers Basel. 2020;12:3522. doi:10.3390/cancers12123522.
  • Jiang Y, Geng M, Bai L. Targeting biofilms therapy: current research strategies and development hurdles. Microorganisms. 2020;8(8):1222. doi:10.3390/microorganisms8081222.
  • Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, Zhou S. Bacteria‐based cancer immunotherapy. Adv Sci (Weinh). 2021;8:2003572. doi:10.1002/advs.202003572.
  • Soto Chervin C, Gajewski TF. Microbiome-based interventions: therapeutic strategies in cancer immunotherapy. Immunooncol Technol. 2020;8:12–20. doi:10.1016/j.iotech.2020.11.001.
  • Srinivasan R, Santhakumari S, Poonguzhali P, Geetha M, Dyavaiah M, Xiangmin L. Bacterial biofilm inhibition: a focused review on recent therapeutic strategies for combating the biofilm mediated infections. Front Microbiol. 2021;12:676458. doi:10.3389/fmicb.2021.676458.