16
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Intracellular Mechanisms of Antidepressant Drug Action

Pages 161-174 | Published online: 28 Aug 2009

REFERENCES

  • Quetsch RM, Achor RWP, Litin EM, Faucett RL. Depressive reactions in hypertensive patients: a comparison of those treated with rauwolfia and those receiving no specific anti- hypertensive treatment. Circulation 1959;19:366–75.
  • Schildkraut JJ. The catecholamine hypothesis of affective disorders: a review of supporting evidence. Am J Psychiatry 1965;122:509–22.
  • Bunney WE Jr, Davis JM. Norepinephrine in depressive re- actions: a review. Arch Gen Psychiatry 1965;13:483–94.
  • Coppen A. The biochemistry of affective disorders. Br J Psy- chiatry 1967;113:1237–64.
  • Vetulani J, Sulser F. Action of various antidepressant treat- ments reduces reactivity of noradrenergic cyclic AMP– generating system in limbic forebrain. Nature 1975;257:495–6.
  • Sulser F, Vetulani J, Mobley PL. Mode of action of anti- depressant drugs. Biochem Pharmacol 1978;27:257–61.
  • Bergstrom DA, Kellar KJ. Adrenergic and serotonergic re- ceptor binding in rat brain after chronic desmethylimipra- mine treatment. J Pharmacol Exp Ther 1979;209:256–61.
  • Blackshear MA, Sanders-Bush E. Serotonin receptor sensi- tivity after acute and chronic treatment with mianserin. J Pharmacol Exp Ther 1982;221:303–8.
  • Kendall DA, Nahorski SR. 5-Hydroxytryptamine–stimulated inositol phospholipid hydrolysis in rat cerebral cortex slices: pharmacological characterization and effects of antidepres- sants. J Pharmacol Exp Ther 1985;233:473–9.
  • Blier P, De Montigny C. Current advances and trends in the treatment of depression. Trends Pharmacol Sci 1994;15:220–6.
  • Delgado PL, Price LH, Miller HL, Salomon RM, Aghajanian GK, Heninger GR, et al. Serotonin and the neurobiology of depression: effects of tryptophan depletion in drug-free de- pressed patients. Arch Gen Psychiatry 1994;51:865–74.
  • Miller HL, Delgado PL, Salomon RM, Berman R, Krystal JH, Heninger GR, et al. Clinical and biochemical effects of cate- cholamine depletion on antidepressant-induced remission of depression. Arch Gen Psychiatry 1996;53:117–28.
  • Berman RM, Narasimhan M, Miller HL, Anand A, Cappiello A, Oren DA, et al. Transient depressive relapse induced by catecholamine depletion: potential phenotypic vulnerability marker? Arch Gen Psychiatry 1999;56:395–403.
  • Honegger UE, Disler B, Wiesmann UN. Chronic exposure of human cells in culture to the tricyclic antidepressant desi- pramine reduces the number of beta-adrenoceptors. Biochem Pharmacol 1986;35:1899–902.
  • Janowsky A, Steranka LR, Gillespie DD, Sulser F. Role of neuronal signal input in the down-regulation of central nor- adrenergic receptor function by antidepressant drugs. J Neu- rochem 1982;39:290–2.
  • Hall H, Ross SB, Sallemark M. Effect of destruction of cen- tral noradrenergic and serotonergic nerve terminals by sys- temic neurotoxins on the long-term effects of antidepressants on beta-adrenoceptors and 5-HT2 binding sites in the rat ce- rebral cortex. J Neural Transm 1984;59:9–23.
  • Pariante CM, Pearce BD, Pisell TL, Owmen MJ, Miller AH. Steroid-independent translocation of the glucocorticoid re- ceptor by the antidepressant desipramine. Mol Pharmacol 1997;52:571–81.
  • Rossby SP, Nalepa I, Huang M, Perrin C, Burt AM, Schmidt DE, Gillespie DD, et al. Norepinephrine-independent regula- tion of GRII mRNA in vivo by a tricyclic antidepressant. Brain Res 1995;687:79–82.
  • Gilman AG. G proteins in signal transduction: transducersof receptor-generated signals. Ann Rev Biochem 1987;56:615–49.
  • Birnbaumer L. G proteins in signal transduction. Ann Rev Pharmacol Toxicol 1990;30:675–705.
  • Nestler EJ, Greengard P. Protein phosphorylation in the ner- vous system. New York: Wiley, 1984.
  • Vetulani J, Stawarz RJ, Dingell JV, Sulser F. A possible com- mon mechanism of action of antidepressant treatments: re- duction in the sensitivity of the noradrenergic cyclic AMP generating system in the rat limbic forebrain. Naunyn Schmiedebergs Arch Pharmacol 1976;293:109–14.
  • Vetulani J, Stawarz RJ, Sulser F. Adaptive mechanisms of the noradrenergic cyclic AMP generating system in the lim- bic forebrain of the rat: adaptation to persistent changes in the availability of norepinephrine (NE). J Neurochem 1976; 27:661–6.
  • Banerjee SP, Kung LS, Riggi SJ, Chanda SK. Development of �-adrenergic receptor subsensitivity by antidepressants. Nature 1977;268:455–6.
  • Benovic JL, Bouvier M, Caron MG, Lefkowitz RJ. Regulation of adenylyl cyclase–coupled �-adrenergic receptors. Ann Rev Cell Biol 1988;4:405–28.
  • Avissar S, Schreiber G. Interaction of antibipolar and anti- depressant treatments with receptor-coupled G proteins. Pharmacopsychiatry 1992;25:44–50.
  • Duman RS, Terwilliger RZ, Nestler EJ. Chronic antidepres- sant regulation of Gscx and cyclic AMP–dependent protein ki- nase. Pharmacologist 1989;31:182.
  • Lesch KP, Aulakh CS, Tolliver TJ, Hill JL, Murphy DL. Reg- ulation of G proteins by chronic antidepressant drug treat- ment in rat brain: tricyclics but not clorgyline increase Gocx subunits. Eur J Pharmacol 1991;207:361–4.
  • Lesch KP, Manji HK. Signal-transducing G proteins and antidepressant drugs: evidence for modulation of cx subunit gene expression in rat brain. Biol Psychiatry 1992;32:549–79.
  • Li PP, Young LT, Warsh JJ. Effects of antibipolar and anti- depressant drugs on the levels of signal transducing G pro- teins and their messenger ribonucleic acid transcripts [Ab- stract]. Neuropsychopharmacology 1994;10(3, suppl, pt 1): 780S.
  • Rasenick NM. G proteins as the molecular target of anti- depressant action: chronic treatment increases coupling be- tween Gs and adenylyl cyclase [Abstract]. Neuropsychophar- macology 1994;10(3, suppl, pt 1):580S.
  • Dwivedi Y, Pandey SC, Pandey GN. Effect of chronic admin- istration of antidepressants on the levels of various subtypes of G-proteins (Gscx, G1cx, Gq/11) in rat brain [Abstract]. Soc Neu- rosci Abstr 1995;21:1864.
  • Nalepa I, Sulser F. Presently known and possible mecha- nisms of action for future generations of antidepressants. In: Boyer W, Feighner J, eds. Handbook of experimental phar- macology. Berlin: Springer [In press].
  • Chen J, Rasenick MM. Chronic antidepressant treatment fa- cilitates G protein activation of adenylyl cyclase without al- tering G protein content. J Pharmacol Exp Ther 1995;275:509–17.
  • Taylor SS, Buechler JA, Yonemoto W. cAMP-dependent pro-tein kinase: framework for a diverse family of regulatory en- zymes. Ann Rev Biochem 1990;59:971–1005.
  • Shelton RC, Manier DH, Sulser F. cAMP-dependent protein kinase activity in major depression. Am J Psychiatry 1996; 153:1037–42.
  • Manier DH, Eiring A, Shelton RC, Sulser F. Beta- adrenoceptor–linked protein kinase A (PKA) activity in hu- man fibroblasts from normal subjects and from patients with major depression. Neuropsychopharmacology 1996;15:555– 61.
  • Manier DH, Shelton RC, Ellis T, Peterson CS, Eiring A, Sulser F. Human fibroblasts as a relevant model to study sig- nal transduction in affective disorders. J Affect Disord [In press].
  • Kay G, Sargeant M, McGuffin P, Whatley S, Marchbanks R, Baldwin D, et al. The lymphoblast �-adrenergic receptor in bipolar depressed patients: characterization and down- regulation. J Affect Disord 1993;27:163–72.
  • Kay G, Sargeant M, McGuffin P, Whatley S, Marchbanks R, Bullock T, et al. The lymphoblast �-adrenergic receptor in bipolar depressed patients: effect of chronic incubation with lithium chloride. J Affect Disord 1994;30:185–92.
  • Rahman S, Li PP, Young LT, Kofman O, Kish SJ, Warsh JJ. Reduced [3H]cyclic AMP binding in postmortem brain from subjects with bipolar affective disorder. J Neurochem 1997; 68:297–304.
  • Nestler EJ, Terwilliger RZ, Duman RS. Chronic antidepres- sant administration alters the subcellular distribution of cy- clic AMP–dependent protein kinase in rat frontal cortex. J Neurochem 1989;53:1644–7.
  • Perez J, Mori S, Caivano M, Fumagalli F, Pezzetta B, Tascedda F, et al. cAMP protein kinase as a intracellular tar- get for the action of antidepressant drugs [Abstract]. Neurop- sychopharmacology 1994;10(3, suppl, pt 1):171S.
  • Perez J, Tinelli D, Brunello N, Racagni G. cAMP-dependent phosphorylation of soluble and crude microtubule fractions of rat cerebral cortex after prolonged desmethylimipramine treatment. Eur J Pharmacol 1989;172:305–16.
  • Perez J, Tinelli D, Bianchi E, Brunello N, Racagni G. cAMP binding proteins in the rat cerebral cortex after administra- tion of selective 5-HT and NE reuptake blockers with antidepressant activity. Neuropsychopharmacology 1991;4:57–64.
  • Bobon D, Breulet M, Gerard-Vandenhove MA, Guiot-Goffioul F, Plomteux G, Sastre-y-Herna´ ndez M, et al. Is phosphodies- terase inhibition a new mechanism of antidepressant action? A double blind double-dummy study between rolipram and desipramine in hospitalized major and/or endogenous de- pressives. Eur Arch Psychiatry Neurosci 1988;238:2–6.
  • Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A, Pilc A. Chronic electroconvulsive treatment enhances the density of [3H]prazosin binding sites in the central nervous system of the rat. Brain Res 1983;275:392–5.
  • Vetulani J, Antkiewicz-Michaluk L, Rokosz-Pelc A. Chronic administration of antidepressant drugs increases the density of cortical 3H-prazosin binding sites in the rat. Brain Res 1984;310:360–2.
  • Newman ME, Lerer B. Modulation of second messenger function in rat brain by in vivo alteration of receptor sensitiv- ity: relevance to the mechanism of action of electroconvulsive therapy and antidepressants. Prog Neuropsychopharmacol Biol Psychiatry 1989;13:1–30.
  • Nalepa I, Vetulani J. The effect of calcium channel blockade on the action of chronic ECT and imipramine on responses of cx1-and �-adrenoceptors in the rat cerebral cortex. Pol J Pharmacol 1993;45:201–5.
  • Nalepa I, Vetulani J. The responsiveness of cerebral cortical adrenergic receptors after chronic administration of atypical antidepressant mianserin. J Psychiatry Neurosci 1994;19:120–8.
  • Nalepa I, Chalecka-Franaszek E, Vetulani J. The antagonis- tic effect of separate and consecutive chronic treatment with imipramine and ECS on the regulation of cx1-adrenoceptor activity by protein kinase C. Pol J Pharmacol 1993;45:521–32.
  • Nalepa I, Vetulani J. Enhancement of the responsiveness of cortical adrenergic receptors by chronic administration of the 5-hydroxytryptamine uptake inhibitor citalopram. J Neuro- chem 1993;60:2029–35.
  • Nalepa I, Chalecka-Franaszek E, Vetulani J. Modulation by mianserin pretreatment of the chronic electroconvulsive shock effects on the adrenergic system in the cerebral cortex of the rat. Hum Psychopharmacol 1996;11:273–82.
  • Shih M, Malbon CC. Oligodeoxynucleotides antisense to mRNA encoding protein kinase A, protein kinase C, and �- adrenergic receptor kinase reveal distinctive cell-type- specific roles in agonist-induced desensitization. Proc Natl Acad Sci USA 1994;91:12193–7.
  • Assie MB, Broadhurst A, Briley M. Is down-regulation of �- adrenoceptors necessary for antidepressant activity? In: Bri- ley M, Fillion G, eds. New concepts in depression. London, England: Macmillan, 1988:161–6.
  • Neliat G, Bodinier MC, Panconi E, Briley M. Lack of effect of repeated administration of milnacipran, a double nor- adrenaline and serotonin reuptake inhibitor, on the �- adrenoceptor–linked adenylate cyclase system in the rat ce- rebral cortex. Neuropharmacology 1996;35:589–93.
  • Nalepa I, Manier DH, Gillespie DD, Rossby SP, Schmidt DE, Sulser F. Lack of beta adrenoceptor desensitization in brain following the dual noradrenaline and serotonin reuptake in- hibitor venlafaxine. Eur Neuropsychopharmacol 1998;8:227–32.
  • Do¨bbeling U, Berchtold MW. Down-regulation of the protein kinase A pathway by activators of protein kinase C and intra- cellular Ca2+ in fibroblast cells. FEBS Lett 1996;391:131–3.
  • Hoeffler JP, Deutsch PJ, Lin J, Habener JF. Cyclic adenosine 3’,5’-monophosphate and phorbol ester–responsive signal transduction pathways converge at the level of transcrip- tional activation by the interactions of DNA-binding pro- teins. Mol Endocrinol 1989;3:868–80.
  • Lee KAW, Masson N. Transcriptional regulation by CREB and its relatives. Biochem Biophys Acta 1993;1174:221–33.
  • Nichols M, Weih F, Schmid W, DeVack C, Kowenz-Leutz E, Luckow B, et al. Phosphorylation of CREB affects its bindingto high and low affinity sites: implications for cAMP induced gene transcription. EMBO J 1992;11:3337–46.
  • Yamamoto KK, Gonzalez GA, Biggs WH III, Montminy MR. Phosphorylation-induced binding and transcriptional effi- cacy of nuclear factor CREB. Nature 1988;334:494–8.
  • Gonzalez GA, Montminy MR. Cyclic AMP stimulates somato- statin gene transcription by phosphorylation of CREB at ser- ine 133. Cell 1989;59:675–80.
  • Wadzinski BE, Wheat WH, Jaspers S, Peruski LF Jr, Lick- teig RL, Johnson GL, et al. Nuclear protein phosphatase 2A dephosphorylates protein kinase A–phosphorylated CREB and regulates CREB transcriptional stimulation. Mol Cell Biol 1993;13:2822–34.
  • Shelton RC, Manier DH, Peterson CS, Ellis TC, Sulser F. Cy- clic AMP–dependent protein kinase in subtypes of major de- pression and normal volunteers. Int J Neuropsychopharma- col 1999;2:187–92.
  • Shelton RC, Manier DH, Sulser F. Beta receptor–stimulated protein kinase A activity in depression [Abstract]. Neuropsy- chopharmacology 1994;10(3, suppl, pt 2):118S.
  • Nibuya M, Nestler EJ, Duman RS. Chronic antidepressant administration increases the expression of cAMP response element binding protein (CREB) in rat hippocampus. J Neu- rosci 1996;16:2365–72.
  • Schwaninger M, Scho¨fl C, Blume R, Ro¨ssig L, Knepel W. In- hibition by antidepressant drugs of cyclic AMP response ele- ment–binding protein/cyclic AMP response element–directed gene transcription. Mol Pharmacol 1995;47:1112–8.
  • Duman RS, Heninger GR, Nestler EJ. A molecular and cellu- lar theory of depression. Arch Gen Psychiatry 1997;54:597–606.
  • Duman RS, Malberg J, Thome J. Neural plasticity to stress and antidepressant treatment. Biol Psychiatry 1999;46:1181–91.
  • Saxena PR. Serotonin receptors: subtypes, functional re- sponses and therapeutic relevance. Pharmacol Ther 1995; 66:339–68.
  • Pandey SC, Davis JM, Pandey GN. Phosphoinositide sys- tem–linked serotonin receptor subtypes and their pharma- cological properties and clinical correlates. J Psychiatry Neurosci 1995;20:215–25.
  • Sleight AJ, Carolo C, Petit N, Zwingelstein C, Bourson A. Identification of 5-hydroxytryptamine7 receptor binding sites in rat hypothalamus: sensitivity to chronic antidepressant treatment. Mol Pharmacol 1995;47:99–103.
  • Erdmann G, Janke W. Interaction between physiological and cognitive determinants of emotions: experimental studies on Schachter’s theory of emotions. Biol Psychol 1978;6:61–74.
  • Cusack B, Nelson A, Richelson E. Binding of antidepressants to human brain receptors: focus on newer generation com- pounds. Psychopharmacology 1994;114:559–65.
  • Davis R, Whittington R, Bryson HM. Nefazodone: a review of its pharmacology and clinical efficacy in the management of major depression. Drugs 1997;53:608–36.
  • De Boer T. The pharmacologic profile of mirtazapine. J Clin Psychiatry 1996;57(suppl 4):19–25.
  • Sa´ nchez C. Serotonergic mechanisms involved in the explor- atory behaviour of mice in a fully automated two-compart- ment black and white text box. Pharmacol Toxicol 1995;77:71–8.
  • Bersani G, Pozzi F, Marini S, Grispini A, Pasini A, Ciani N. 5-HT2 receptor antagonism in dysthymic disorder: a double- blind placebo-controlled study with ritanserin. Acta Psychi- atr Scand 1991;83:244–8.
  • Bakish D, Lapierre YD, Weinstein R, Klein J, Wiens A, Jones B, et al. Ritanserin, imipramine, and placebo in the treat- ment of dysthymic disorder. J Clin Psychopharmacol 1993; 13:409–14.
  • Sibille E, Sarnyai Z, Benjamin D, Gal J, Baker H, Toth M. Antisense inhibition of 5-hydroxytryptamine2a receptor in- duces an antidepressant-like effect in mice. Mol Pharmacol 1997;52:1056–63.
  • Charney DS, Woods SW, Goodman WK, Heninger GR. Sero- tonin function in anxiety, II: Effects of the serotonin agonist MCPP in panic disorder patients and healthy subjects. Psy- chopharmacology 1987;92:14–24.
  • Shepherd JK, Grewal SS, Fletcher A, Bill DJ, Dourish CT. Behavioural and pharmacological characterisation of the ele- vated “zero-maze” as an animal model of anxiety. Psycho- pharmacology 1994;116:56–64.
  • Silverstone PH, Rue JE, Franklin M, Hallis K, Camplin G, Laver D, et al. The effects of administration of mCPP on psy- chological, cognitive, cardiovascular, hormonal and MHPG measurements in human volunteers. Int Clin Psychophar- macol 1994;9:173–8.
  • Mann CD, Vu TB, Hrdina PD. Protein kinase C in rat brain cortex and hippocampus: effect of repeated administration of fluoxetine and desipramine. Br J Pharmacol 1995;115:595–600.
  • Hyman SE, Nestler EJ. Initiation and adaptation: a para- digm for understanding psychotropic drug action. Am J Psy- chiatry 1996;153:151–62.
  • Gold PW, Goodwin FK, Chrousos GP. Clinical and biochemi- cal manifestations of depression: relation to the neurobiology of stress (1). N Engl J Med 1988;319:348–53.
  • Gold PW, Goodwin FK, Chrousos GP. Clinical and biochemi- cal manifestations of depression: relation to the neurobiology of stress (2). N Engl J Med 1988;319:413–20.
  • Ha¨ rfstrand A, Fuxe K, Cintra A, Agnati LF, Zini I, Wirkstro¨m AC, et al. Glucocorticoid receptor immunoreactivity in mono- amine neurons of rat brain. Proc Natl Acad Sci USA 1986; 83:9779–83.
  • Honkaniemi J, Pelto-Huikko M, Rechardt L, Isola J, Lammi A, Fuxe K, et al. Colocalization of peptide and glucocorticoid receptor immunoreactivities in rat central amygdaloid nu- cleus. Neuroendocrinology 1992;55:451–9.
  • Burnstein KL, Cidlowski JA. Regulation of gene expression by glucocorticoids. Ann Rev Physiol 1989;51:683–99.
  • Kitayama I, Janson AM, Cintra A, Fuxe K, Agnati LF, Ogren SO, et al. Effects of chronic imipramine treatment on gluco- corticoid receptor immunoreactivity in various regions of the rat brain: evidence for selective increases of glucocorticoid receptor immunoreactivity in the locus coeruleus and in 5- hydroxytryptamine nerve cell groups of the rostral ventro- medial medulla. J Neural Transm 1988;73:191–203.
  • Pepin MC, Beaulieu S, Barden N. Antidepressants regulate glucocorticoid receptor messenger RNA concentrations in primary neuronal cultures. Brain Res Mol Brain Res 1989; 6:77–83.
  • Budziszewska B, Siwanowicz J, Przegalin´ ski E. The effect of chronic treatment with antidepressant drugs on the cortico- steroid receptor levels in the rat hippocampus. Pol J Pharma- col 1994;46:14752.
  • Peiffer A, Veilleux S, Barden N. Antidepressant and other centrally acting drugs regulate glucocorticoid receptor mes- senger RNA levels in rat brain. Psychoneuroendocrinology 1991;16:505–15.
  • Seckl JR, Fink G. Antidepressants increase glucocorticoid and mineralocorticoid receptor mRNA expression in rat hip- pocampus in vivo. Neuroendocrinology 1992;55:621–6.
  • Pepin MC, Pothier F, Barden N. Antidepressant drug action in a transgenic mouse model of the endocrine changes seen in depression. Mol Pharmacol 1992;42:991–5.
  • Stec I, Barden N, Reul JM, Holsboer F. Dexamethasone non- suppression in transgenic mice expressing antisense RNA to the glucocorticoid receptor. J Psychiatr Res 1994;28:1–5.
  • Barden N, Reul JMHM, Holsboer F. Do antidepressants sta- bilize mood through actions on the hypothalamic-pituitary- adrenocortical system? Trends Neurosci 1995;18:6–11.
  • Brady LS, Gold PW, Herkenham M, Lynn AB, Whitfield HJ Jr. The antidepressants fluoxetine, idazoxan and phenelzine alter corticotropin-releasing hormone and tyrosine hydroxy- lase mRNA levels in rat brain: therapeutic implications. Brain Res 1992;572:117–25.
  • Plotsky PM, Owens MJ, Nemeroff CB. Psychoneuroendocrin- ology of depression: hypothalamic-pituitary-adrenal axis. Psychiatr Clin North Am 1998;21:293–307.
  • Arborelius L, Owens MJ, Plotsky PM, Nemeroff CB. The role of corticotropin-releasing factor in depression and anxiety disorders. J Endocrinol 1999;160:1–12.
  • Nemeroff CB, Widerlov E, Bissette G, Walleus H, Karlsson I, Eklund K, et al. Elevated concentrations of CSF corticotropin- releasing factor–like immunoreactivity in depressed pa- tients. Science 1984;226:1342–4.
  • Banki CM, Karmacsi L, Bissette G, Nemeroff CB. Cerebro- spinal fluid neuropeptides in mood disorder and dementia. J Affect Disord 1992;25:39–45.
  • Nemeroff CB, Owens MJ, Bissette G, Andorn AC, Stanley M. Reduced corticotropin releasing factor binding sites in the frontal cortex of suicide victims. Arch Gen Psychiatry 1988; 45:577–9.
  • Arato M, Banki CM, Bissette G, Nemeroff CB. Elevated CSF CRF in suicide victims. Biol Psychiatry 1989;25:355–9.
  • Sawchenko PE, Swanson LW. The organization of noradren- ergic pathways from the brainstem to the paraventricular and supraoptic nuclei in the rat. Brain Res 1982;4:275–325.
  • Plotsky PM. Facilitation of immunoreactive corticotropin- releasing factor secretion into the hypophyseal-portal circu- lation after activation of catecholaminergic pathways or central norepinephrine injection. Endocrinology 1987;121:924–30.
  • Cunningham ET Jr, Sawchenko PE. Anatomical specificity of noradrenergic inputs to the paraventricular and supraoptic nuclei of the rat hypothalamus. J Comp Neurol 1988; 274:60–76.
  • Brady LS, Whitfield HJ Jr, Fox RJ, Gold PW, Herkenham M. Long-term antidepressant administration alters corticotro- pin-releasing hormone, tyrosine hydroxylase, and mineralo- corticoid receptor gene expression in rat brain: therapeutic implications. J Clin Invest 1991;87:831–7.
  • Brady LS. Stress, antidepressant drugs, and the locus coeru- leus. Brain Res Bull 1994;35:545–56.
  • Curtis AL, Valentino RJ. Corticotropin-releasing factor neu- rotransmission in locus coeruleus: a possible site of anti- depressant action. Brain Res Bull 1994;35:581–7.
  • Delbende C, Contesse V, Mocaer E, Kamoun A, Vaudry H. The novel antidepressant, tianeptine, reduces stress-evoked stimulation of the hypothalamo-pituitary-adrenal axis. Eur J Pharmacol 1991;202:391–6.
  • Skutella T, Montkowski A, Sto¨hr T, Probst JC, Landgraf R, Holsboer F, et al. Corticotropin-releasing hormone (CRH) antisense oligodeoxynucleotide treatment attenuates social defeat–induced anxiety in rats. Cell Mol Neurobiol 1994;14:579–88.
  • Mansbach RS, Brooks EN, Chen YL. Antidepressant-like ef- fects of CP-154,526, a selective CRF1 receptor antagonist. Eur J Pharmacol 1997;323:21–6.
  • Duman RS, Heninger GR, Nestler EJ. Molecular psychiatry: adaptations of receptor-coupled signal transduction path- ways underlying stress- and drug-induced neural plasticity. J Nerv Ment Dis 1994;182:692–700.
  • Smith MA, Makino S, Kvetnansky R, Post RM. Stress and glucocorticoids affect the expression of brain-derived neuro- trophic factor and neurotrophin-3 mRNAs in the hippocam- pus. J Neurosci 1995;15:1768–77.
  • Siuciak JA, Lewis DR, Wiegand SJ, Lindsay RM. Anti- depressant-like effect of brain-derived neurotrophic factor (BDNF). Pharmacol Biochem Behav 1997;56:131–7.
  • Nibuya M, Morinobu S, Duman RS. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 1995;15:7539–47.
  • Gold PW, Kling MA, Whitfield HJ, Rabin D, Margioris A, Ka- logeras K, et al. The clinical implications of corticotropin- releasing hormone. Adv Exp Med Biol 1988;245:507–19.
  • Dunn AJ, Berridge CW. Is corticotropin-releasing factor a mediator of stress responses? Ann NY Acad Sci 1990;579:183–91.
  • Dunn AJ, Berridge CW. Physiological and behavioral re- sponses to corticotropin-releasing factor administration: is CRF a mediator of anxiety or stress responses? Brain Res Brain Res Rev 1990;15:71–100.
  • Watanabe Y, Gould E, Daniels DC, Cameron H, McEwen BS. Tianeptine attenuates stress-induced morphological changes in the hippocampus. Eur J Pharmacol 1992;222:157–62.
  • Sapolsky RM, Krey LC, McEwen BS. Prolonged glucocorti- coid exposure reduces hippocampal neuron number: implica- tions for aging. J Neurosci 1985;5:1222–7.
  • Sapolsky RM, Uno H, Rebert CS, Finh CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci 1990;10:2897–902.
  • Uno H, Tarara R, Else JG, Suleman MA, Sapolsky RM. Hip- pocampal damage associated with prolonged and fatal stress in primates. J Neurosci 1989;9:1705–11.
  • Woolley CS, Gould E, McEwen BS. Exposure to excess gluco- corticoids alters dendritic morphology of adult hippocampal pyramidal neurons. Brain Res 1990;531:225–31.
  • Stein-Behrens B, Mattson MP, Chang I, Yeh M, Sapolsky R. Stress exacerbates neuron loss and cytoskeletal pathology in the hippocampus. J Neurosci 1994;14:5373–80.
  • Magarin˜ os AM, McEwen BS, Flu¨ gge G, Fuchs E. Chronic psychosocial stress causes apical dendritic atrophy of hippo- campal CA3 pyramidal neurons in subordinate tree shrews. J Neurosci 1996;16:3534–40.
  • Sapolsky RM. Why stress is bad for your brain. Science 1996;273:749–75.
  • Sheline YI, Wang PW, Gado MH, Csernansky JG, Vannier MW. Hippocampal atrophy in recurrent major depression. Proc Natl Acad Sci USA 1996;93:3908–13.
  • Nestler EJ, McMahon A, Sabban EL, Tallman JT, Duman RS. Chronic antidepressant administration decreases the ex- pression of tyrosine hydroxylase in the rat locus coeruleus. Proc Natl Acad Sci USA 1990;87:7522–6.
  • Morinobu S, Nibuya M, Duman RS. Chronic antidepressant treatment down-regulates the induction of c-fos mRNA in response to acute stress in rat frontal cortex. Neuropsycho- pharmacology 1995;12:221–8.
  • Rossby SP, Manier DH, Liang S. Pharmacological actions of the antidepressant venlafaxine beyond aminergic receptors. Int J Neuropsychopharmacol 1999;2:1–8.
  • Skolnick P. Antidepressants for the new millennium. Eur J Pharmacol 1999;375:31–40.
  • Trullas R, Skolnick P. Functional antagonists at the NMDA receptor complex exhibit antidepressant actions. Eur J Phar- macol 1990;185:1–10.
  • Papp M, Moryl E. Similar effects of chronic treatment with imipramine and the NMDA antagonists CGP37849 and MK- 801 in a chronic mild stress model of depression in rats. Eur Neuropsychopharmacol 1993;3:348–9.
  • Papp M, Moryl E. Antidepressant activity of non-competitive and competitive NMDA receptor antagonists in a chronic mild stress model of depression. Eur J Pharmacol 1994;263:1–7.
  • Papp M, Moryl E. Antidepressant-like effects of 1- aminocyclopropanecarboxylic acid and D-cycloserine in an animal model of depression. Eur J Pharmacol 1996;316:145–51.
  • Krystal JH, D’Souza DC, Petrakis IL, Belger A, Berman RM, Charney DS, et al. NMDA agonists and antagonists as probes of glutamatergic dysfunction and pharmacotherapies in neuropsychiatric disorders. Harvard Rev Psychiatry 1994; 7:125–43.
  • Kornhuber J, Weller M. Psychotogenicity and N-methyl-D- aspartate receptor antagonism: implications for neuroprotec- tive pharmacotherapy. Biol Psychiatry 1997;41:135–44.
  • Parsons CG, Danysz W. Quack G. Memantine is a clinically well tolerated N-methyl-D-aspartate (NMDA) receptor antagonist—a review of preclinical data. Neuropharma- cology 1999;38:735–67.
  • Evoniuk GE, Hertzman RP, Skolnick P. A rapid method for evaluating the behavioral effects of phencyclidine-like dis- sociative anesthetics in mice. Psychopharmacology 1991; 105:125–8.
  • Cherkofsky SC. 1-Aminocyclopropanecarboxylic acid; mouse to man interspecies pharmacokinetic comparisons and allo- metric relationships. J Pharm Science 1995;84:1231–5.
  • Nowak G, Trullas R, Layer RT, Skolnick P, Paul IA. Adaptive changes in the N-methyl-D-aspartate receptor complex af- ter chronic treatment with imipramine and 1-aminocyclo- propanecarboxylic acid. J Pharmacol Exp Ther 1993;265:1380–6.
  • Boyer PA, Skolnick P, Fossom LH. Chronic administration of imipramine and citalopram alters the expression of NMDA receptor subunit mRNAs in mouse brain: a quantitative in situ hybridization study. J Mol Neurosci 1998;10:219–33.
  • Brandoli C, Sanna A, De Bernardi MA, Follesa P, Brooker G, Mocchetti I. Brain-derived neurotrophic factor and basic fibroblast growth factor downregulate NMDA receptor func- tion in cerebellar granule cells. J Neurosci 1998;18:7953–61.
  • Keller MB, Boland RJ. Implications of failing to achieve suc- cessful long-term maintenance treatment of recurrent unipo- lar major depression. Biol Psychiatry 1998;44:348–60.
  • Liang P, Pardee AB. Differential display of eukaryotic mes- senger RNA by means of the polymerase chain reaction. Sci- ence 1992;257:967–71.
  • Hyman SE. Introduction to the complex genetics of mental disorders. Biol Psychiatry 1999;45:518–21.
  • Russo-Neustadt A, Beard RC, Cotman CW. Exercise, anti- depressant medications, and enhanced brain derived neuro- trophic factor expression. Neuropsychopharmacology 1999; 21:679–82.
  • Huang NY, Strakhova M, Layer RT, Skolnick P. Chronic anti- depressant treatments increase cytochrome b mRNA levels in mouse cerebral cortex. J Mol Neurosci 1997;9:167–76.
  • Rossby SP, Perrin C, Burt A, Nalepa I, Sulser F. Fluoxetine increases steady-state levels of preproenkephalin mRNA in rat amygdala by a serotonin dependent mechanism. J Seroto- nin Res 1996;3:69–74.
  • Hosoda K, Duman RS. Regulation of �1-adrenergic receptor mRNA and ligand binding by antidepressant treatments and norepinephrine depletion in rat frontal cortex. J Neurochem 1993;60:1335–43.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.