64
Views
5
CrossRef citations to date
0
Altmetric
Research Article

Candida albicans : adherence, signaling and virulence

, , , , , , , , , , , , , , , , , , & show all
Pages 125-137 | Published online: 01 Apr 2010

References

  • Brown Al, Gow NAR. Regulatory networks controlling Can-dida albicans morphogenesis. Trends Microbiol 1999; 7: 333–338.
  • Gimeno CJ, Ljungdahl PO, Styles CA, Fink GR. Unipolar cell division in the yeast Saccharomyces cerevisiae leads to filamen-tous growth: regulation by starvation and RAS. Cell 1992; 68: 1077–1090.
  • Liu H, Kohler J, Fink GR. Suppression of hyphal formation in Candida albicans by mutation of a STE12 homolog. Science 1994; 266: 1723–1726.
  • Kohler JR, Fink GR Candida albicans strains heterozygous and homozygous for mutations in mitogen-activated protein kinase signaling components have defects in hyphal develop-ment. Proc Nail Acad Sci USA 1996; 93: 13223–13228.
  • Csank C, Makris C, Meloche S, et al. Derepressed hyphal growth and reduced virulence in a VH1 family-related protein phosphatase mutant of the human pathogen Candida albicans. Mol Biol Cell 1997; 8: 2539–2551.
  • Leberer E, Ziegelbauer K, Schmidt A, et al. Virulence and hyphal formation of Candida albicans require the Ste20p-like protein kinase CaCla4p. Curr Biol 1997; 7: 539–546.
  • Csank C, Schroppel K, Leberer E, et al. Roles of the Candida albicans mitogen-activated protein kinase homolog, Ceklp, in hyphal development and systemic candidiasis. Infect Immun 1998; 66: 2713–2720.
  • Leberer E, Harcus D, Broadbent ID, et al. Signal transduction through homologs of the Ste2Op and Ste7p protein kinases can trigger hyphal formation in the pathogenic fungus Candida albicans. Proc Nail Acad Sci USA 1996; 93: 13217–13222.
  • Stoldt VR, Sonnebom A, Leuker CE, Ernst JF. Efglp, an essential regulator of morphogenesis of the human pathogen Candida albicans, is a member of a conserved class of bHLH proteins regulating morphogenetic processes in fungi. EMBO J 1997; 16: 1982–1991.
  • Lo HJ, Kohler JR, DiDomenico B, Loebenberg D, Cacciapuoti A, Fink GR. Nonfilamentous Candida albicans mutants are avirulent. Cell 1997; 90: 939–949.
  • Braun BR, Johnson AD. Control of filament formation in Candida albicans by the transcription repressor TUP1. Science 1997; 277: 105–109.
  • Ishii N, Yamamoto M, Yoshihara F, Arisawa M, Aoki Y. Biochemical characterization of Rbflp, a putative transcription factor of Candida albicans. Microbiology 1998; 143: 429–435.
  • Birse CE, Irwin MY, Fonzi WA, Sypherd PS. Cloning and characterization of ECE1, a gene expressed in association with cell elongation of the dimorphic pathogen Candida albicans. Infect Immun 1993; 61: 3648–3655.
  • Sundstrom P. Adhesins in Candida albicans. Curr Opin Micro-biol 1999; 2: 353–357.
  • Hoyer LL, Payne TL, Bell M, Myers AM, Scherer S. Candida albicans ALS3 and insights into the nature of the ALS gene family. Curr Genet 1998; 334: 451–459.
  • Barrett JF, Hoch JA. Two-component signal transduction as a target for microbial anti-infective therapy. Antimicrob Agents Chemother 1998; 42: 1529–1536.
  • Posas F, Wurgler-Murphy SM, Maeda T, Witten EA, Thai TC, Saito H. Yeast HOG1 MAP kinase cascade is regulated by a multistep phosphorelay mechanism in the SLN1-YPD1-SSK1 two-component osmosensor. Cell 1996; 86: 865–875.
  • Posas F, Saito H. Activation of the yeast 55K2 MAP kinase by the SSK1 two-component response regulator. EMBO J 1998; 17: 1385–1394.
  • Nagahashi S, Mio T, Ono N, et al. Isolation of CaSLN1 and CaNIK1, the genes for osmosensing histidine kinase homo-logues, from the pathogenic fungus, Candida albicans. Microbi-ology 1998; 144: 425–432.
  • Alex LA, Korch C, Selitrennikoff CP, Simon MI. COS/, a two-component histidine kinase that is involved in hyphal development in the opportunistic pathogen, Candida albicans. Proc Nail Acad Sci USA 1998; 95: 7069–7073.
  • Srikantha T, Tsai L, Daniels K, et al. The two-component hybrid kinase regulator CaNIK1 of Candida albicans. Microbi-ology 1998; 144: 2715–2729.
  • Calera JA, Cho G, Calderone RA. Identification of a putative histidine kinase two-component phosphorelay gene (CaHK1) in Candida albicans. Yeast 1998; 14: 665–674.
  • Calera JA, Calderone RA. Flocculation of hyphae is associated with a deletion in the putative CaHK1 two-component histidine kinase gene from Candida albicans. Microbiology 1999; 145: 1431–1442.
  • Calera JA, Zhao XJ, Sheridan M, Calderone RA. Avirulence of Candida albicans CaHK1 mutants in a murine model of he-matogenously disseminated candidiasis. Infect Immun 1999; 67: 4280–4284.
  • Calera JA, Calderone RA. Identification of a putative response regulator, two-component phosphorelay gene (CaSSK1) from Candida albicans. Yeast 1999; 15: 1243–1254.
  • Calera JA, Zhao Xi, Calderone RA. Defective hyphal forma-tion and avirulence caused by a deletion of the CSSIC/ response regulator gene in Candida albicans. Infect Immun 2000; 68: 518–525.
  • Calera JA, Herman D, Calderone RA. Identification of YPD1, a gene of Candida albicans which encodes a two-component phospho-histidine intermediate protein. Yeast 2000; 16: 1053–1059.
  • Alex LA, Borkovich SMI. Hyphal development in Neurospora crassa: involvement of a two-component histidine kinase. Proc Nat Acad Sci USA 1996; 93: 3416–3421
  • Cottarel G. Mcs4, a two-component system response regulator homologue, regulates the Schizosaccharomyces pombe cell cycle control. Genetics 1997; 147: 1043–1051.
  • Shieh JC, Wilkinson MG, Buck V, Morgan BA, Makino K, Millar JBA. The Mcs4 response regulator coordinately controls the stress-activated Wakl-Wisl-Styl MAP kinase pathway and fission yeast cell cycle. Genes Dev 1997; 11: 1008–1022.
  • Yamada-Okabe T, Mio T, Non T, et al. Roles of three histidine kinase genes in hyphal development and virulence of the patho-genic fungus Candida albicans. J Bacteriol 1999; 181: 7243–7247.
  • Davie JR, et al. Expression and characterization of branched-chain alpha-ketoacid dehydrogenase kinase from the rat. Is it a histidine-protein kinase? J Biol Chem 1995; 270: 19861–19867.
  • Barrett JF, et al. Antibacterial agents that inhibit two-compo-nent signal transduction systems. Proc Natl Acad Sci USA 1998; 95: 5317–5322.
  • Cho T, Hamatake H, Kaminishi H, Hagihara Y, Watanabe K. The relationship between cyclic adenosine 3',5'-monophosphate and morphology in exponential phase Candida albicans. J Med Vet Mycol 1992; 30: 35–42.
  • De Luca A, Esposito V, Baldi A, Giordano A. The retinoblas-toma gene family and its role in proliferation, differentiation and development. Histol Histopathol 1996; 11: 1029–1034.
  • Aliaga JC, Deschenes C, Beaulieu JF, Calvo EL, Rivard N. Requirement of the MAP kinase cascade for cell cycle progression and differentiation of human intestinal cells. Am J Physiol 1999; 277: G631–G641.
  • Cho T, Hagihara Y, Kaminishi H, Watanabe K. The relation-ship between the glucose uptake system and growth cessation in Candida albicans. J Med Vet Mycol 1994; 3/ 461–466.
  • Cho T, Hamatake H, Hagihara Y, Kaminishi H. Inhibitors of protein phosphorylation including the retinoblastoma protein induce germination of Candida albicans. Med Mycol 2000; 38: 41–45.
  • Ralph D, McClelland M, Welsh J. RNA fingerprinting using arbitrarily primed PCR identifies differentially regulated RNAs in mink lung (MylLu) cells growth arrested by transforming growth factor Bl. Proc Natl Acad Sci USA 1993; 90: 10710–10714.
  • Shirayama M, Kawakami K, Matsui Y, Tanaka K, Toh-e A. MS13, a multicopy suppressor of mutants hyperactivatekl in the RAS-cAMP pathway, encodes a novel HSP70 protein of Sac-charomyces cerevisiae. Mol Gen Genet 1993; 240: 323–332.
  • Lida H, Yahara I. Durable synthesis of high molecular weight heat shock proteins in GO cells of the yeast and other eucary-otes. J Cell Biol 1984; 99: 199–207.
  • Boorstein WR, Craig EA. Regulation of a yeast HSP70 gene by a cAMP response transcriptional control element. EMBO J 1990; 9: 2543–2553.
  • Cannon RD, Chaffin WL. Oral colonization by Candida albi-cans. Crit Rev Oral Biol Med 1999; 10: 359–383.
  • Khoory BJ, Vmo L, Dall'Agnola A, Fanos V. Candida infec-tions in newborns: a review. J Chem.other 1999; 11: 367–378.
  • Martin MV. The use of fiuconazole and itraconazole in the treatment of Candida albicans infections: a review. J Antimicrob Chemother 1999; 44: 429–437.
  • Whittaker CJ, Klier CM, Kolenbrander PE Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 1996; 50: 513–552.
  • Edgerton M, Scannapieco FA, Reddy MS, Levine MJ. Human submandibular-sublingual saliva promotes adhesion of Candida albicans to polymethylmethacrylate. Infect Immun 1993; 61: 2644–2652.
  • Rudney JD, Ji Z, Larson CJ, Liljemark WF, Hickey KL. Saliva protein binding to layers of oral streptococci in vitro and in vivo. J Dent Res 1995; 74: 1280–1288.
  • Clark WB, Bammann LL, Gibbons RJ. Comparative estimates of bacterial affinities and adsorption sites on hydroxyapatite surfaces. Infect Immun 1978; 19: 846–853.
  • Cannon RD, Nand AK, Jenkinson HF. Adherence of Candida albicans to human salivary components adsorbed to hydroxyla-patite. Microbiology 1995; 141: 213–219.
  • O'Sullivan JM, Cannon RD, Sullivan PA, Jenkinson HF. Iden-tification of salivary basic proline-rich proteins as receptors for Candida albicans adhesion. Microbiology 1997; 143: 341–348.
  • Schmid J, Hunter PR, White GC, Nand AK, Cannon RD. Physiological traits associated with success of Candida albicans strains as commensal colonizers and pathogens. J Clin Micro-biol 1995; 33: 2920–2926.
  • Hoyer LL, Scherer S, Shatzman AR, Livi GP. Candida albicans ALSI: domains related to a Saccharomyces cerevisiae sexual agglutinin separated by a repeating motif. Mol Microbiol 1995; 15: 39–54.
  • Gaur NK, Klotz SA. Expression, cloning, and characterization of a Candida albicans gene ALAI, that confers adherence properties upon Saccharomyces cerevisiae for extracellular ma-trix proteins. Infect Immun 1997; 65: 5289–5294.
  • Staab JF, Bradway SD, Fidel PL, Sundstrom P. Adhesive and mammalian transglutaminase substrate properties of Candida albicans Hwpl. Science 1999; 283: 1535–1538.
  • Enache E, Eskandari T, Boda L, Wadsworth E, Hoxter B, Calderone R. Candida albicans adherence to a human oesophageal cell line. Microbiology 1996; 142: 2741–2746.
  • Branting C, Sund ML, Linder LE. The influence of Streptococ-cus mutans on adhesion of Candida albicans to acrylic surfaces in vitro. Arch Oral Biol 1989; 34: 347–353.
  • Verran J, Motteram KL. The effect of adherent oral strepto-cocci on the subsequent adherence of Candida albicans to acrylic in vitro. J Dent 1987; 15: 73–76.
  • Holmes AR, Gopal PK, Jenkinson HF. Adherence of Candida albicans to a cell surface polysaccharide receptor on Streptococ-cus gordonii. Infect Immun 1995; 63: 1827–1834.
  • Holmes AR, Cannon RD, Jenkinson HF. Interactions of Can-dida albicans with bacteria and salivary molecules in oral bi-ofilms. J Indust Microbiol 1995; 15: 208–213.
  • Lamont RJ, Rosan B. Adherence of mutans streptococci to other oral bacteria. Infect Immun 1990; 58: 1738–1743.
  • O'Sullivan JM, Jenkinson HF, Cannon RD. Adhesion of Can-dida albicans to oral streptococci is promoted by selective adsorption of salivary proteins to the streptococcal cell surface. Microbiology 2000; 146: 41–48.
  • Sangeman JA, Bradley SF, He X, et al. Epidemiology of oral candidiasis in HIV-infected patients: colonization infection, treatment, and emergence of fluconazole resistance. Am J Med 1994; 97: 339–346.
  • Turner MW. Mannose-binding lectin: the pluripotent molecule of the innate immune system. Immunol Today 1996; 17: 532–540.
  • Otto BR, Verweij-van Vught AMJJ, Mackaren DM. Transfer-fins and heme-compounds as iron source for pathogenic bacte-ria. Grit Rev Microbiol 1992; 18: 217–233.
  • Yan S, Negre E, Cashel J, et al. Specific induction of fibronectin-binding activity by hemoglobin in Candida albicans grown in defined media. Infect Immun 1996; 64: 2930–2935.
  • Yan S, Rodrigues R, Cahn-Hidalgo D, Walsh T, Roberts D. Hemoglobin induces binding of several extracellular matrix proteins to Candida albicans. Identification of a common recep-tor for fibronectin, fibrinogen and laminin. J Biol Chem 1998; 273: 5638–5644.
  • Yan S, Rodrigues R, Roberts D. Hemoglobin-induced binding of Candida albicans to a cell-binding domain of fibronectin is independent of the Arg-Gly-Asp sequence. Infect Immun 1994; 66: 1904–1909.
  • Klotz S, Hein R, Smith R, Rouse J. The fibronectin adhesin of Candida albicans. Infect Immun 1994; 62: 4679–4681.
  • Watanabe T, Tanaka H, Nakso N, Mikami T, Matsumoto T. Hemoglobin is utilized by Candida albicans in the hyphal form but not the yeast form. Biochem Biophys Res Commun 1997; 232: 350–353.
  • Watanabe T, Tanako M, Murakami M, et al. Characterization of hemolytic factor from Candida albicans. Microbiology 1999; 145: 689–694.
  • Mikami T, Hoshi T, Sugawara K, et al. Candida albicans mannan-binding receptor on human red blood cells. In: Suzuki S, Suzuki M, eds. Biodefense Mechanisms in Fungal Cells. Proceedings of the International Symposium on Fungal Cells in Biodefense Mechanisms. Tokyo: Saikon Publishers, 1997: 195–198.
  • Shibata N, Fukasawa S, Kobayashi H, et al. Structural analysis of phospho-d-mannan-protein complexes isolated from yeast and mold forms of Candida albicans NIH A-207 serotype A strain. Carbohyd Res 1989; 187: 239–253.
  • Okubo K, Kang D, Hamasaki N, Jennings ML. Red blood cells band 3: lysine 539 and lysine 551 react with the same H2-DIDS (4,4'-diisothiocyanodihydrostilbebe-2,2-disullonic acid) molecule. J Biol Chem 1994; 269: 1918-1926.
  • Malmgrist M. Biospecific interaction analysis using biosensor technology. Nature 1993; 361: 186–187.
  • Watanabe T. Red blood cell—Candida albicans interactions. PhD thesis, Tohoku, Japan, 2000.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.