14
Views
4
CrossRef citations to date
0
Altmetric
Research Article

Combined treatment: antifungal drugs with antibodies, cytokines or drugs

, , , , &
Pages 305-315 | Published online: 01 Apr 2010

References

  • Nassar F, Brummer E, Stevens DA. Different components in human serum inhibit multiplication of Cryptococcus neoformans and enhance fluconazole activity. Antimicrob Agents Chemother 1995; 39: 2490–2493.
  • Duvvuru S, Brummer E, Morelli R, Stevens DA. Isolation of a human serum protein that inhibits the growth of Cryptococcus neoformans. Mycopathologia 1999; 144: 1–7.
  • Sridhar S, Ahluwalia M, Brummer E, Stevens DA. Characteri-zation of an anticryptococcal protein isolated from human serum. Infect Immun 2000; 68: 3787–3791.
  • Nassar F, Brummer E, Stevens DA. Macrophage colony-stimu-lating factor (M-CSF) induction of enhanced anticryptococcal activity in human monocyte-derived macrophages: synergy with fluconazole for killing. Cell Immunol 1995; 164: 113–118.
  • Minn Y, Brummer E, Stevens DA Effect of iron on fluconazole activity against Candida albicans in presence of human serum or monocyte-derived macrophages. Mycopathologia 1997; 138: 29–53.
  • Brummer E, Stevens DA. Synergy of human neutrophils with fluconazole in killing Candida albicans species. Mycopathologia 1996; 134: 115–120.
  • Natarajan U, Brummer E, Stevens DA. Effect of granulocyte colony-stimulating factor on the candidacidal activity of poly-morphonuclear neutrophils and their collaboration with fluconazole. Antimicrob Agents Chemother 1997; 41: 1575–1578.
  • Natarajan U, Randhawa N, Brummer E, Stevens DA. Effect of granulocyte-macrophage colony-stimulating factor on candi-dacidal activity of neutrophils, monocytes or monocyte-derived macrophages and synergy with fluconazole. J Med Microbiol 1998; 47: 359–363.
  • Vora S, Purimetla N, Brummer E, Stevens DA. Activity of voriconazole, a new triazole, combined with neutrophils or monocytes against Candida albicans: Effect of granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor. Antimicrob Agents Chemother 1998; 42: 907–910.
  • Vora S, Chauhan S, Brummer E, Stevens DA. Activity of voriconazole combined with neutrophils or monocytes against Aspergillus fumigatus: Effects of granulocyte colony-stimulat-ing factor and granulocyte-macrophage colony-stimulating fac-tor. Antimicrob Agents Chemother 1998; 42: 2299–2303.
  • Spitzer ED, Spitzer SG, Freundlich LF, Casadevall A. Persis-tence of the initial infection in recurrent cryptococcal meningi-tis. Lancet 1993; 341: 595–596.
  • Casadevall A, Perfect JR. Cryptococcus neoformans. Washing-ton, D.C: American Society for Microbiology, 1998.
  • Diamond RD, Bennett JE. Prognostic factors in cryptococcal meningitis. Ann Intern Med 1974; 80: 176–181.
  • Thong Z, Pirofski L. Opsonization of Cryptococcus neoformans by human anticryptococcal glucuronoxylomannan antibodies. Infect Immun 1996; 64: 3446–3450.
  • Thong Z, Robbins JB, Schneerson R, Pirofski L. Phagocytosis of Cryptococcus neoformans by serum from recipients of crypto-coccal polysaccharide vaccine. 95th ASM meeting, Washington, DC 1995; Abstract.
  • DeShaw M, Pirofski L-A. Antibodies to the Cryptococcus neoformans capsular glucuronoxylomannan are ubiquitous in serum from HIV + and HIV— individuals. Clin Exp Immunol 1995; 99: 425–432.
  • Dromer F, Aucouturier P, Clauvel J-P, Saimot G, Yeni P. Cryptococcus neoformans antibody levels in patients with AIDS. Scand J Infect Dis 1988; 20: 283–285.
  • Shapiro LL, Neal JB. Torula meningitis. Arch Neurol Psychiat 1925; 13: 174–190.
  • Littman ML. Cryptococcosis (Torulosis). Am J Med 1959; 27: 976–998.
  • Gordon MA, Casadevall A. Serum therapy of cryptococcal meningitis. Clin Infect Dis 1995; 21: 1477–1479.
  • Dromer F, Charreire J. Improved amphotericin B activity by a monoclonal anti-Cryptococcus neoformans antibody: study dur-ing murine cryptococcosis and mechanisms of action. J Infect Dis 1991; 163: 1114–1120.
  • Dromer F, Salamero J, Contrepois A, Carbon C, Yeni P. Production, characterization, and antibody specificity of a mouse monoclonal antibody reactive with Cryptococcus neofor-mans capsular polysaccharide. Infect Immun 1987; 55: 742–748.
  • Dromer F, Charreire J, Contrepois A, Carbon C, Yeni P. Protection of mice against experimental cryptococcosis by anti-Cryptococcus neoformans monoclonal antibody. Infect Immun 1987; 55: 749–752.
  • Fleuridor R, Thong Z, Pirofski L. A human IgM monoclonal antibody prolongs survival of mice with lethal cryptococcosis. J Infect Dis 1998; 178: 1213–1216.
  • Sanford JE, Lupan DM, Schlagetter AM, Kozel TR. Passive immunization against Cryptococcus neoformans with an isotype-switch family of monoclonal antibodies reactive with cryptococ-cal polysaccharide. Infect Immun 1990; 58: 1919–1923.
  • Mukherjee J, Scharff MD, Casadevall A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect Im-mun 1992; 60: 4534–4541.
  • Casadevall A. Antibody immunity and invasive fungal infec-tions. Infect Immun 1995; 63: 4211–4218.
  • Vecchiarelli A, Casadevall A. Antibody-mediated effects against Cryptococcus neoformans: evidence for interdependency and collaboration between humoral and cellular immunity. Res Immunol 1998; 149: 321–333.
  • Mukherjee J, Pirofski L, Scharff MD, Casadevall A. Antibody mediated protection in mice with lethal intracerebral Crypto-coccus neoformans infection. Proc Natl Acad Sci 1993; 90: 3636–3640.
  • Mukherjee J, Kozel TR, Casadevall A. Monoclonal antibodies reveal additional epitopes of serotype D Cryptococcus neofor-mans capsular glucuronoxylomannan that elicit protective anti-bodies. J Immunol 1998; 161: 3557–3568.
  • Mukherjee S, Lee S, Mukherjee J, Scharff MD, Casadevall A. Monoclonal antibodies to Cryptococcus neoformans capsular polysaccharide modify the course of intravenous infection in mice. Infect Immun 1994; 62: 1079–1088.
  • Casadevall A, Cleare W, Feldmesser M, et al. Characterization of a murine monoclonal antibody to Cryptocococcus neofor-mans polysaccharide that is a candidate for human therapeutic studies. Antimicrob Agents Chemother 1998; 42: 1437–1446.
  • Casadevall A, Scharff MD. Return to the past: the case for antibody-based therapies in infectious diseases. Clin Infect Dis 1995; 21: 150–161.
  • Mukherjee J, Zuckier L, Scharff MD, Casadevall A. Therapeu-tic efficacy of monoclonal antibodies to Cryptococcus neofor-mans glucuronoxylomannan alone and in combination with amphotericin B. Antimicrob Agents Chemother 1994; 38: 580–587.
  • Mukherjee J, Feldmesser M, Scharff MD, Casadevall A. Mono-clonal antibodies to Cryptococcus neoformans glucuronoxylo-mannan enhance fluconazole activity. Antimicrob Agents Chemother 1995; 39: 1398–1405.
  • Feldmesser M, Mukherjee J, Casadevall A. Combination of 5-flucytosine and capsule binding monoclonal antibody in ther-apy of murine Cryptococcus neoformans infections and in vitro. J Antimicrob Chemother 1996; 37: 617–622.
  • Hirano A, Zimmerman HM, Levine S. The fine structure of cerebral fluid accumulation. VII. Reactions of astrocytes to cryptococcal polysaccharide implantation. J Neuropath Exp Neurol 1965; 24: 386–396.
  • Denning DW, Armstrong RW, Lewis BH, Stevens DA. Ele-vated cerebrospinal fluid pressures in patients with cryptococcal meningitis and acquired immunodeficiency syndrome. Am J Med 1991; 91: 267–272.
  • Lendvai N, Casadevall A, Liang Z, Goldman DL, Mukherjee J, Zuckier L. Effect of immune mechanisms on the pharmacoki-netics and organ distribution of cryptococcal polysaccharide. J Infect Dis 1998; 177: 1647–1659.
  • Goldman DL, Casadevall A, Cho Y, Lee SC. Cryptococcus neoformans meningitis in the rat. Lab Invest 1996; 75: 759–770.
  • Flexner S. The results of the serum treatment in thirteen hundred cases of epidemic meningitis. J Exp Med 1913; 17: 553.
  • Harrison TS, Nong S, Levitz SM. Induction of human im-munodeficiency virus type 1 expression in monocytic cells by Cryptococcus neoformans and Candida albicans. J Infect Dis 1997; 176: 485–491.
  • Pettoello-Mantovani M, Casadevall A, Kollman TR, Ru-binstein A, Goldstein H. Enhancement of HIV-1 infection by the capsular polysaccharide of Cryptococcus neoformans. Lancet 1992; 339: 21–23.
  • Pettoello-Mantovani M, Casadevall A, Smarnworawong P, Goldstein H. HIV-1 infectivity is increased in vitro by the presence of the capsular polysaccharide of Cryptococcus neofor-mans and Haemophilus influenzae. AIDS Human Retroviruses 1994; 10: 1079–1087.
  • Goldman DL, Casadevall A, Zuckier LS. Pharmacokinetics and biodistribution of a monoclonal antibody to Cryptococcus neoformans capsular polysaccharide antigen in a rat model of cryptococcal meningitis: implications for passive immunother-apy. J Med Vet Mycol 1997; 35: 271–278.
  • Goldman DL, Lee SC, Casadevall A. Tissue localization of Cryptococcus neoformans glucuronoxylomannan in the presence and absence of specific antibody. Infect Immun 1995; 63: 2448–2453.
  • Savoy AC, Lupan DM, Mananlo PB, et al. Acute lethal toxicity following passive immunization for treatment of murine crypto-coccosis. Infect Immun 1997; 65: 1800–1807.
  • Lendvai N, Casadevall A. Antibody mediated toxicity in Cryp-tococcus neoformans infection: mechanism and relationship to antibody isotype. J Infect Dis 1999; 180: 791–801.
  • Lendvai N, Qu X, Hsueh W, Casadevall A. Mechanism for the isotype dependence of antibody-mediated toxicity in Cryptococ-cus neoformans infected mice. J Immunol 2000; (in press).
  • Kullberg BJ, Van't Wout JW, Van Furth R. Role of granulo-cytes in enhanced host resistance to Candida albicans induced by recombinant interleukin-1. Infect Immun 1990; 58: 3319–3324.
  • Djeu JY, Blanchard DK, Halkias D, Friedman H. Growth inhibition of Candida albicans by human polymorphonuclear neutrophils: activation by interferon-7 and tumor necrosis fac-tor. J Immunol 1986; 137: 2980–2984.
  • Roilides E, Uhlig K, Venzon D, Pizzo PA, Walsh TJ. Enhance-ment of oxidative response and damage caused by human neutrophils to Aspergillus fumigatus hyphae by granulocyte colony-stimulating factor and gamma interferon. Infect Immun 1993; 61: 1185–1193.
  • Brummer E, Morrison CJ, Stevens DA. Recombinant and natural gamma-interferon activation of macrophages in vitro: different dosage requirements for induction of killing activity against phagocytizable and nonphagocytizable fungi. Infect Im-man 1985; 49: 724–730.
  • Kullberg BJ, Van't Wout JW, Hoogstraten C, Van Furth R. Recombinant interferon-7 enhances resistance to acute dissemi-nated Candida albicans infection in mice. J Infect Dis 1993; 168: 436–443.
  • Kaposzta R, Tree P, Marodi L, Gordon S. Characteristics of invasive candidiasis in gamma interferon- and interleukin-4-deficient mice: role of macrophages in host defense against Candida albicans. Infect Immun 1998; 66: 1708-1717.
  • Lavigne LM, Schopf LR, Chung CL, Maylor R, Sypek JP. The role of recombinant murine IL-12 and IFN-gamma in the pathogenesis of a murine systemic Candida albicans infection. J Immunol 1998; 160: 284–292.
  • Ibrahim AS, Filler SG, Ghannoum MA, Edwards JE Jr. Inter-feron-7 protects endothelial cells from damage by Candida albicans. J Infect Dis 1993; 167: 1467–1470.
  • Jeremias J, Kalo-Klein A, Witkin SS. Individual differences in tumour necrosis factor and interleukin-1 production induced by viable and heat-killed Candida albicans. J Med Vet Mycol 1991; 29: 157–163.
  • Diamond RD, Lyman CA, Wysong DR. Disparate effects of interferon-7 and tumor necrosis factor-a on early neutrophil respiratory burst and fungicidal responses to Candida albicans hyphae in vitro. J Clin Invest 1991; 87: 711–720.
  • Netea MG, Blok WL, Kullberg BJ, et al. Pharmacological inhibitors of tumor necrosis factor production exert differential effects in lethal endotoxemia and in infection with live microor-ganisms in mice. J Infect Dis 1995; 171: 393–399.
  • Netea MG, Van Tits LHJ, Curfs JAHJ, et al. Increased suscep-tibility of TNFaLTa double knockout mice to systemic can-didiasis through impaired recruitment of neutrophils and phagocytosis of Candida albicans. J Immuno11999; 163: 1498–1505.
  • Steinshamn S, Bemelmans MHA, Van Tits LHJ, Bergh K, Buunnan WA, Waage A. TNF receptors in murine Candida albicans infection. Evidence for an important role of TNF receptor p55 in antifungal defense. J Immuno11996; 157:2155–2159.
  • Netea MG, Van der Meer JWM, Kullberg BJ. CD4O-CD4OL interactions are necessary for host defense against disseminated candidiasis. ASM Conference on Candida and Candidiasis, Charleston, SC, 1998, Abstract A28.
  • Netea MG, Van der Meer JWM, Meis JFGM, Kullberg BJ. Fas-FasL interactions modulate host defense against systemic Candida albicans infection. J Infect Dis 1999; 180: 1648–1652.
  • Sata M, Walsh K. TNF a regulation of Fas ligand expressionon the vascular endothelium modulates leukocyte extravasa-tion. Nat Med 1998; 4: 415–420.
  • Clemons KV, Brummer E, Stevens DA. Cytokine treatment in central nervous system infection: efficacy of interleukin-12 alone and synergy with conventional antifungal therapy in experimental cryptococcosis. Antimicrob Agents Chemother 1994; 38: 460–464.
  • Romani L, Mencacci A, Tonnetti L, et al. IL-12 is both required and prognostic in vivo for T helper type 1 differentia-tion in murine candidiasis. J Immunol 1994; 153: 5167–5175.
  • Romani L, Bistoni F, Mencacci A, Cenci E, Spaccapelo R, Puccetti P. IL12 in Candida albicans infections. Res Immunol 1995; 146: 532–538.
  • Romani L, Mencacci A, Cenci E, et al. Neutrophil production of IL-12 and IL-10 in candidiasis and efficacy of IL-12 therapy in neutropenic mice. J Immunol 1997; 158: 5349–5356.
  • Karbassi A, Backer JM, Foster JS, Moore RN. Enhanced killing of Candida albicans by murine macrophages treated with macrophage colony-stimulating factor: evidence for augmented expression of mannose receptors. J Immunol 1987; 139: 417–421.
  • Brummer E, Stevens DA. Macrophage colony-stimulating fac-tor induction of enhanced macrophage anticryptococcal activ-ity: synergy with fluconazole for killing. J Infect Dis 1994; 170: 173–179.
  • Levitz SM. Activation of human peripheral blood mononuclear cells by interleukin-2 and granulocyte-macrophagecolony-stim-ulating factor to inhibit Cryptococcus neoformans. Infect Immun 1991; 59: 3393–3397.
  • Yamamoto Y, Klein TW, Friedman H, Kimura S, Yamaguchi H. Granulocyte colony-stimulating factor potentiates anti-Can-dida albicans growth inhibitory activity of polymorphonuclear cells. FEMS Immunol Med Microbiol 1993; 7: 15–22.
  • Roilides E, Holmes A, Blake C, Pizzo PA, Walsh TJ. Effects of granulocyte colony-stimulating factor and interferon-7 on anti-fungal activity of human polymorphonuclear neutrophils against pseudohyphae of different medically important Candida species. J Leukoc Biol 1995; 57: 651–656.
  • Liles WC, Huang JE, Van Bunk JA, Bowden RA, Dale DC. Granulocyte colony-stimulating factor administered in vivo aug-ments neutrophil-mediated activity against opportunistic fungal pathogens. J Infect Dis 1997; 175: 1012–1015.
  • Uchida K, Yamamoto Y, Klein TW, Friedman H, Yamaguchi H. Granulocyte-colony stimulating factor facilitates the restora-tion of resistance to opportunistic fungi in leukopenic mice. J Med Vet Mycol 1992; 30: 293–300.
  • Kullberg BJ, Netea MG, Curls JHAJ, Keuter M, Meis JFGM, Van der Meer JWM. Recombinant murine granulocyte colony-stimulating factor protects against acute disseminated Candida albicans infection in non-neutropenic mice. J Infect Dis 1998; 177: 175–181.
  • Kullberg BJ, Netea MG, Vonk AG, Van der Meer JWM. Modulation of neutrophil function in host defense against disseminated Candida albicans infection in mice. FEMS Im-munol Med Microbiol 1999; 26: 299–307.
  • Herbrecht R, Waller J, Koenig H, Morier P, Letscher V. Synergistic efficacy of recombinant human granulocyte colony-stimulating factor and amphotericin B against disseminated candidosis in non neutropenic mice. J Mycol Med 1996; 6: 43–48.
  • Graybill JR, Bocanegra R, Luther M. Antifungal combination therapy with granulocyte colony-stimulating factor and fluconazole in experimental disseminated candidiasis. Eur J Gun Microbiol Infect Dis 1995; 14: 700–703.
  • Cenci E, Bartocci A, Puccetti P, Mocci S, Stanley ER, Bistoni F. Macrophage colony-stimulating factor in murine candidiasis-serum and tissue levels during infection and protective effect of exogenous administration. Infect Immun 1991; 59: 868–872.
  • Vitt CR, Fidler JM, Ando D, Zimmerman RJ, Aukerman SL. Antifungal activity of recombinant human macrophage colony-stimulating factor in models of acute and chronic candidiasis in the rat. J Infect Dis 1994; 169: 369–374.
  • Hume DA, Denkins Y. The deleterious effect of macrophage colony-stimulating factor (CSF-1) on the pathology of experi-mental candidiasis in mice. Lymphokine Cytokine Res 1992; 11: 95–98.
  • Kullberg BJ, Vandewoude K, Herbrecht R, Jacobs F, Aoun M, Kujath P. A double-blind, randomized, placebo-controlled Phase II study of filgrastim (recombinant granulocyte colony-stimulating factor) in combination with fluconazole for treat-ment of invasive candidiasis and candidemia in nonneutropenic patients. 38th Interscience Conference on Antimicrobial Agents and Chemotherapy. Washington, DC: American Society for Mi-crobiology 1998; Abstract.
  • Sugar AM. Use of amphotericin B with azole antifungal drugs: what are we doing? Antimicrob Agents Chemother 1995; 39: 1907-1912.
  • Sugar AM, Hitchcock CA, Troke PF, Picard M. Combination therapy of murine invasive candidiasis with fluconazole and amphotericin B. Antimicrob Agents Chemother 1995; 39: 598–601.
  • Sanati H, Ramos CF, Bayer AS, Ghannoum MA. Combination therapy with amphotericin B and fluconazole against invasive candidiasis in neutropenic-mouse and infective-endocarditis rab-bit models. Antimicrob Agents Chemother 1997; 41: 1345–1348.
  • Louie A, Liu W, Miller DA, et al. Efficacies of high-dose fluconazole plus amphotericin B and high-dose fluconazole plus 5-fluorocytosine versus amphotericin B, fluconazole, and 5-fluorocytosinemonotherapies in treatment of experimental endo-carditis, endophthalmitis, and pyelonephritis due to Candida albicans. Antimicrob Agents Chemother 1999; 43: 2831–2840.
  • Louie A, Banerjee P, Drusano GL, Shayegani M, Miller MH. Interaction between fluconazole and amphotericin B in mice with systemic infection due to fluconazole-susceptible or -resistant strains of Candida albi cans. Antimicrob Agents Chem.other 1999; 43: 2841–2847.
  • Scheven M, Schwegler F. Antagonistic interactions between azoles and amphotericinB with yeasts depend on azolelipophilia for special test conditions in vitro. Antimicrob Agents Chemother 1995; 39: 1779–1783.
  • Sugar AM, Liu X-P. Interactions of itraconazole with ampho-tericin B in the treatment of murine invasive candidiasis. J Infect Dis 1998; 177: 1660–1663.
  • Sugar AM. Antifungal combination therapy: where we stand. Drug Resistance Update 1998; 1: 89–92.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.