48
Views
3
CrossRef citations to date
0
Altmetric
Research Article

Fungal morphogenesis and virulence

, , , , , , , , , , , & show all
Pages 79-86 | Published online: 01 Apr 2010

References

  • Cutler JE. Putative virulence factors of Candida albicans. Annu Rev Microbiol 1991; 45: 187–218.
  • Gow NAR. Germ tube growth in Candida albicans. Curr Top Med Mycol 1997; 8: 43–55.
  • Sherwood J, Gow NAR, Gooday GW, Gregory D, Marshall D. Contact sensing in Candida albicans: a possible aid to epithelial penetration. J Med Vet Mycol 1992; 30: 461–469.
  • Gardner JP, Pinches RA, Roberts DJ, Newbold CI. Variant antigens and endothelial receptor adhesion in Plasmodium falci-parum. Proc Natl Acad Sci USA 1996; 93: 3503–3508.
  • Vuji M, Makepeace K, Ferguson DJ, Achtman M, Moxon ER. Meningococcal Opa and Opc proteins: their role in colonization and invasion of human epithelial and endothelial cells. Mol Microbiol 1993; 10: 499–510.
  • Schwan TG, Hinnebush BJ. Bloodstream-versus tick associated variants of a relapsing fever bacterium. Science 1998; 280: 1938–1940.
  • Powderly W. Therapy for cryptococcal meningitis with AIDS. Clin Infect Dis 1992; 14: 54–59.
  • Chemiak R, Morris LC, Belay T, Spitzer ED, Casadevall A. Variation in the structure of glucuronoxylomannan in isolates from patients with recurrent cryptococcal meningitis. Infect Immun 1995; 63: 1899–1905.
  • Currie BS, Ibrahim AS, Edwards JE, Casadevall A, Ghannoum MA. Sterol compositions and susceptibilities to amphotericin B of environmental Cryptococcus neoformans isolates are changed by murine passage. Antimicrob Agents Chem.other 1995; 39: 1934–1937.
  • Franzot SP, Mukherjee J, Chernak R, Chen LC, Hamidan JS, Casadevall A. Microevolution of a standard strain of Crypto-coccus neoformans resulting in differences in virulence and other phenotypes. Infect Immun 1998; 66: 89–97.
  • Fries BC, Casadevall A. Serial isolates of Cryptococcus neofor-mans from patients with AIDS differ in virulence for mice. J Infect Dis 1998; 178: 1761–1766.
  • Goldman DL, Fries BC, Franzot SP, Montella L, Casadevall A. Phenotypic switching in the human pathogenic fungus Cryp-tococcus neoformans is associated with changes in virulence and pulmonary inflammatory response in rodents. Proc Natl Acad Sci USA 1998; 95: 14967–14972.
  • Fries BC, Goldman DL, Chemiak R, Ju R, Casadevall A. Phenotypic switching in Cryptococcus neoformans results in changes in cellular morphology and glucuronoxylomannan structure. Infect Immun 1999; 67: 6076–6083.
  • Neilson JB, Fromtling RA, Bulmer GS. Pseudohyphal forms of Cryptococcus neoformans: decreased survival in vivo. Myco-pathologia 1981; 73: 57–59.
  • Neilson JB, Ivey MH, Bulmer GS. Cryptococcus neoformans: Pseudohyphal forms surviving culture with Acanthamoeba polyphaga. Infect Immun 1978; 20: 262–266.
  • Chemiak R, Morris LC, Anderson BC, Meyer SA. Facilitated isolation, purification, and analysis of glucuronoxylomannan of Cryptococcus neoformans. Infect Immun 1991; 59: 59–64.
  • Chemiak R, Valafar H, Morris LC, Valafar F. Cryptococcus neoformans chemotyping by quantitative analysis of 1H nuclear magnetic resonance spectra of glucuronxylomannans with a computer-simulated artificial neural network. Clin Diagn Lab Immunol 1998; 5: 146–159.
  • Silverman M, Zieg J, Hihnen M, Simon M. Phase variation in Salmonella: genetic analysis of a recombinational switch. Proc Natl Acad Sci USA 1979; 76: 391–395.
  • Bucci C, Lavitola A, Salvatore P, et al. Hypermutation in pathogenic bacteria: frequent phase variation in meningococci is a phenotypic trait of a specialized mutator biotype. Mol Cell 1999; 3: 435–445.
  • Myler P, Allison J, Agabian N, Stuart K. Antigenic variation in African trypanosomes by gene replacement or activation of alternate telomeres. Cell 1984; 39: 203–211.
  • Brandt ME, Pfaller MA, Hajjeh RA, et al. Molecular subtypes and antifungal susceptibilities of serial Cryptococcus neoformans isolates in human immunodeficiency virus-associated cryptococ-cosis. Cryptococcal Disease Active Surveillance Group. J Infect Dis 1996; 174: 812–820.
  • Fries BC, Chen F, Currie BP, Casadevall A. Karyotype insta-bility in Cryptococcus neoformans infection. J Gun Microbiol 1996; 34: 1531–1534.
  • Slutsky B, Buffo J, Soli DR High-frequency switching of colony morphology in Candida albicans. Science 1985; 230: 666–669.
  • Soli DR. High-frequency switching in Candida albicans. Gun Microbiol Rev 1992; 5: 183–203.
  • Perez-Martin J, Uria JA, Johnson AD. Phenotypic switching in Candida albicans is controlled by a SIR2 gene. EMBO J 1999; 18: 2580–2592.
  • San-Blas G, San-Blas F. Biochemistry of Paracoccidioides brasiliensis dimorphism. In: Franco M, Lacaz CS, Restrepo-Moreno A, Del Negro G, eds. Paracoccidioidomycosis. Boca Raton: CRC Press, 1993: 49–66.
  • Vicentini AP, Gesztesi JL, Franco MF, et al. Binding of Paracoccidioides brasiliensis to laminin through surface glyco-protein gp43 leads to enhancement of fungal pathogenesis. Infect Immun 1994; 6/. 1465–1469.
  • Puccia R, Travassos LR. 43-Kilodalton glycoprotein from Paracoccidioides brasiliensis: immunochemical reactions with sera from patients with paracoccidiodomycosis, histoplasmosis, and Jorge Lobo's disease. J Gun Microbiol 1991; 29: 1610-1615.
  • Rodrigues EG, Travassos LR. Nature of the reactive epitopes in Paracoccidioides brasiliensis polysaccharide antigen. J Med Vet Mycol 1994; 32: 77–81.
  • Saraiva ECO, Altemani A, Franco MF, Unterkircher CS, Camargo ZP. Paracoccidioides brasiliensis-gp43 used as para-coccidioidin. J Med Vet Mycol 1996; 34: 155–161.
  • Pinto AR, Puccia R, Diniz SN, Franco MF, Travassos LR. DNA-based vaccination against murine paracoccidioidomycosis using the gp43 gene from Paracoccidioides brasiliensis. Vaccine 2000; 18: 3050–3058.
  • Taborda C, Juliano MA, Puccia R, Travassos LR. Mapping of the T-cell epitope in the major 43 kDa glycoprotein of Paracoc-cidioides brasiliensis which induces a Th-1 response protective against fungal infection in mice. Infect Immun 1998; 66: 786–793.
  • Morais FV, Fukada MK, Barros TF, Cisalpino PS, Puccia, R. Comparison of the gp43 gene sequence from different Paracoc-cidioides brasiliensis isolates. 1999. VIIth International Meeting on Paracoccidioidomycosis, Campos do Jordão, SP, Brazil, Ab-stract A–05.
  • Puccia R, Carmona AK, Gesztesi JL, Juliano L, Travassos LR. Exocellular proteolytic activity of Paracoccidioides brasiliensis: cleavage of components associated with the basement mem-brane. Med Mycol 1998; 36: 345–348.
  • Gesztesi JL, Puccia R, Travassos LR, Vicentini AP, Franco MF, Lopes JD. Monoclonal antibodies against the 43000 Da glycoprotein from Paracoccidioides brasiliensis modulate laminin-mediated fungal adhesion to epithelial cells and patho-genesis. Hybridoma 1996; 15: 415–422.
  • San-Blas G, Sorais F, Nifio-Vega G, Méndw C, San-Bias F. Cytosolic neutral proteinases of Paracoccidioides brasiliensis. Curr Microbiol 1998; 37: 141–143.
  • Carmona AK, Puccia R, Oliveira MCF, Rodrigues E, Juliano L, Travassos LR. Characterization of an exocellular serine-thiol aproteinase activity in Paracoccidioides brasiliensis. Biochem J 1995; 309: 209–214.
  • Chagas JR, Juliano L, Prado ES. Intramolecularly quenched fluorogenic tetrapeptide substrates for tissue and plasma kallikreins. Anal Biochem 1991; 192: 419–425.
  • Oliveira MC, Hirata IY, Chagas JR, et al. Intramolecularly quenched fluorogenic peptide substrates for human renin. Anal Biochem 1992; 203: 39–46.
  • Puccia R, Juliano MA, Juliano L, Travassos LR, Carmona AK. Detection of the basement membrane-degrading prote-olytic activity of Paracoccidioides brasiliensis after SDS-PAGE using agarose overlays containing Abz-MKALTLQ-EDDnp. Braz J Med Biol 1999; 32: 645–649.
  • Puccia R, Schenkman S, Gorin PAJ, Travassos LR. Exocellular components of Paracoccidioides brasiliensis. Identification of a specific antigen. Infect Immun 1986; 53: 193–203.
  • Langer T, Neupert W. Regulated protein degradation in mito-chondria. Experientia 1996; 52: 1069–1076.
  • Robertson GT, Kovach ME, Allen CA, Ficht TA, Roop RM. The BruceIla abortus lon functions as a generalized stress re-sponse protease and is required for wild-type virulence in BALB/c mice. Mol Microbiol 2000; 35: 577–588.
  • Kanbe T, Cutler JE. Evidence for adhesin activity in the acid-stable moiety of the phosphomannoprotein cell wall com-plex of Candida albicans. Infect Immun 1994; 6/ 1662-1668.
  • Barki M, Kollin Y, Yanko M, Tamarkin A, Rosenberg M. Isolation of a Candida albicans DNA sequence conferring adhe-sion and aggregation on Saccharomyces cerevisiae. J Bacteriol 1993; 175: 5683–5689.
  • Yu L, Lee KK, Ens K, et al. Partial characterization of a Candida albicans fimbrial adhesin. Infect Immun 1994; 6/ 2834–2842.
  • Gale C, Finkel D, Tao N, et al. Cloning and expression of a gene encoding an integrin-like protein in Candida albicans. Proc Natl Acad Sci USA 1996; 93: 357–361.
  • Bendel CM, Hostetter MK. Distinct mechanisms of epithelial adhesion for Candida albicans and Candida tropicalis. Identifi-cation of the participating ligands and development of in-hibitory peptides. J Clin Invest 1993; 92: 1840–1849.
  • Gale CA, Bendel CM, McClellan M, et al. Linkage of adhe-sion, filamentous growth, and virulence in Candida albicans to a single gene, INT 1. Science 1998; 279: 1355–1358.
  • Penn C, Klotz SA. Binding of plasma fibronectin to Candida albicans occurs through the cell binding domain. Microb Patho-gen 1994; 17: 387–393.
  • Negre E, Vogel T, Levanon A, Guy R, Walsh TJ, Roberts DD. The collagen binding domain of fibronectin contains a high affinity binding site for Candida albicans. J Biol Chem 1994; 269: 22039–22045.
  • Yan S, Rodrigues RG, Roberts DD. Hemoglobin-induced binding of Candida albicans to the cell-binding domain of fibronectin is independent of the Arg-Gly-Asp sequence. Infect Immun 1998; 66: 1904–1909.
  • Santoni G, Gismondi A, Liu JH, et al. Candida albicans ex-presses a fibronectin receptor antigenically related to alpha 5 beta 1 integrin. Microbiology 1994; 140: 2971–2979.
  • DeMuri GP, Hostetter MK. Evidence for a bl integrin-like fibronectin receptor in Candida tropicalis. J Infect Dis 1996; 174: 127–132.
  • Gozalbo D, Gil-Navarro I, Azorin I, Renau-Piqueras J, Mar-tinez J, Gil ML. The cell wall-associated glyceraldehyde-3-phos-phate dehydrogenase of Candida albicans is also a fibronectin and laminin binding protein. Infect Immun 1998; 66: 2052–2059.
  • Spreghini E, Gismondi A, Piccoli M, Santoni G. Evidence for alphavbeta3 and alphavbeta5 integrin-like vitronectin (VN) receptors in Candida albicans and their involvement in yeast cell adhesion to VN. J Infect Dis 1999; 180: 156–166.
  • Tsai HF, Wheeler MH, Chang YC, Kwon-Chung KJ. A devel-opmentally regulated gene cluster involved in conidial pigment biosynthesis in Aspergillus fumigatus. J Bacteriol 1999; 181: 6469–6477.
  • Mukherjee J, Nussbaum G, Scharff MD, Casadevall A. Protec-tive and nonprotective monoclonal antibodies to Cryptococcus neoformans originating from one B cell. J Exp Med 1995; 181: 405–409.
  • Han Y, Kanbe T, Chemiak R, Cutler JE. Biochemical charac-terization of Candida albicans epitopes that can elicit protective and nonprotective antibodies. Infect Immun 1997; 65: 4100–4107.
  • Hostetter MK. Integrin-like proteins in Candida spp. and other microorganisms. Fungal Genet Biol 1999; 28: 135–145.
  • Kinneberg KM, Bendel CM, Jechorek RP, et al. Effect of INT1 gene on Candida albicans murine intestinal colonization. J Surg Res 1999; 87: 245–251.
  • Bendel CM, Kinneberg KM, Jechorek RP, et al. Systemic infection following intravenous inoculation of mice with Candida albicans INT1 mutant strains. Mol Genet Metab 1999; 67: 343–351.
  • Forsyth CB, Mathews HL. Lymphocytes utilize CD11b/CD18 for adhesion to Candida albicans. Cell Immunol 1996; 170: 91–100.
  • Monteagudo C, Lopez-Ribot JL, Murgui A, Casanova M, Chaffin WL, Martinez JP. Immunodetection of CD45 epitopes aon the surface of Candida albicans cells in culture and infected human tissues. Am J Clin Pathol 2000; 113: 59–63.
  • Lo HJ, Kohler JR, DiDomenico B, LoenbenbergD, Cacciapuoti A, Fink GR. Nonfilamentous Candida albicans mutants are avirulent. Cell 1997; 90: 939–949.
  • Bartnicki-Garcia S, Bartnicki DD, Gierz G, Lóp@r-Franco R, Bracker CE. Evidence that SpitzenkOrper behavior determines the shape of a fungal hypha: a test of the hyphoid model. Exp Mycol 1995; 19: 153–159.
  • Gow NAR, Perera THS, Sherwood-Higham J, Gooday GW, Gregory DW, Marshall D. Investigation of touch-sensitive re-sponses by hyphae of the human pathogenic fungus Candida albicans. Scan Microsc 1994; 8: 705–710.
  • Sherwood-Higham J, Thu W-Y, Devine CA, Gregory DW, Gooday GW, Gow NAR. Helical growth of Candida albicans. J Med Vet Mycol 1995; 32: 437–445.
  • Crombie T, Gow NAR, Gooday GW. Influence of applied electrical fields on yeast and hyphal growth of Candida albicans. J Gen Microbiol 1990; 136: 311–317.
  • Gow NAR. Non-chemical signals used for host location and invasion by fungal pathogens. Trends Microbiol 1993; 1: 45–50.
  • Watts H, Very A-A, Perera THS, Davies J, Gow NAR Thig-motropism and stretch-activated channels in the pathogenic fungus Candida albicans. Microbiology 1998; 144: 689–695.
  • Brown DH, Giusani AD, Chen X, Kumamota CA. Filamentous growth of Candida albicans in response to physical environmen-tal cues and its regulation by the unique CZF1 gene. Mol Microbiol 1999; 34: 651–662.
  • Lever M, Robertson B, Buchan ADB, Gooday GW, Gow NAR pH and Ca' dependent galvanotropism of filamentous fungi: implications and mechanisms. Mycol Res 1994; 98: 301–306.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.