17
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Knockout mice as experimental models of virulence

, , , , , & show all
Pages 87-98 | Published online: 01 Apr 2010

References

  • Deepe GS Jr., Bullock WE. Histoplasmosis: A granulomatous inflammatory response. In: Gallin JI, Goldstein IM, Synderman R, eds. Inflammation Basic Principles and Clinical Correlates. 2nd edn. New York: Raven Press, 1992: 943–948.
  • Wheat LJ, Slama TG, Zeckel ML. Histoplasmosis in the acquired immune deficiency syndrome. Am J Med 1985; 78: 203–210.
  • Wheat LJ, Connolly-Stringfold P, Baker RL, etal. Disseminated histoplasmosis in the acquired immune deficiency syndrome: clinical findings, diagnosis and treatment, and review of the literature. Medicine (Baltimore) 1990; 69: 361–374.
  • Allendörfer-Fernandez R, Brunner GD, Deepe GS Jr. Complex requirements for nascent and secondary immunity in pulmonary histoplasmosis. J Immunol 1999; 162: 7389–7396.
  • Gomez AM, Bullock WE, Taylor CL, Deepe GS Jr. The role of L3T4 ± T cells in host defense against Histoplasma capsulatum. Infect Immun 1988; 56: 1685–1691.
  • Thou P, Seder RA. CD40 ligand is not essential for induction of type 1 cytokineresponses or protectiveimmunity after primary of secondary infection with Histoplasma capsulatum. J Exp Med 1998; 187: 1315–1324.
  • Newman SL, Gootee L. Colony-stimulating factors activate human macrophages to inhibit intracellular growth of Histo-plasma capsulatum yeasts. Infect Immun 1992; 60: 4593–4597.
  • Fleischmann J, Wu-Hsieh B, Howard DH. The intracellular fate of Histoplasma capsulatum in human macrophages is unaffected by recombinant human interferon-7. J Infect Dis 1990; 161: 143–145.
  • Deepe GS Jr. Role of CD8 ± T cells in host resistance to systemic infection with Histoplasma capsulatum in mice. J Immuno11994; 152: 3491–3500.
  • Cain JA, Deepe GS Jr. Evolution of the primary immune response to Histoplasmacapsulatum in murinelung. Infect Immun 1998; 66: 1473–1481.
  • Campbell KA, Ovendale PJ, Kennedy Mk, Fanslow WC, Reed SG, Maliszewski CR. CD40 ligand is required for protective cell-mediated immunity to Leishmania major. Immunity 1996; 4: 283–289.
  • Kamanaka M, Yu P, Yasui T, et al. Protective role of CD40 in Leishmania major infection at two distinct phases of cell-mediated immunity. Immunity 1996; 4: 275–281.
  • Wiley JA, Harmsen AG. CD40 ligand is required for resolution of Pneumocystis carinii pneumonia in mice. J Immuno11995; 155: 3525–3529.
  • Gomez FJ, Cain JA, Gibbons R, Allendoerfer R, De pe GS Jr. VI34 ± T cells exert protection in murinepulmonary histoplasmo-sis. J Clin Invest 1998; 102: 984–995.
  • Thou P, Sieve MC, Bennett J, et al. IL-12 prevents mortality in mice infected Histoplasma capsulatum through induction of IFN-7. J Immunol 1995; 155: 785–795.
  • Allendoerfer R, Boivin GP, Deepe GS Jr. Modulation of immune responses in murine pulmonary histoplasmosis. J Infect Dis 1997; 175: 905–914.
  • Thou P, Sieve MC, Tewari RP, Seder RA. Interleukin-12 modulates the protectiveimmuneresponse to S CID mice infected with Histoplasma capsulatum. Infect Immun 1997; 65: 936–942.
  • Allendoerfer R, Deepe GS Jr. Intrapulmonary response to Histoplasma capsulatum in interferon-7 knockout mice. Infect Immun 1997; 65: 2564–2569.
  • Thou P, Miller G, Seder RA. Factors involved in regulating primary and secondary immunity to infection with Histoplasma capsulatum: TNF-ot plays a critical role in maintaining immunity in the absence of IFN-7. J Immunol 1998; 160: 1359–1368.
  • Smith JG, Magee DM, Williams DM, Graybill JR. Tumor necrosis factor-a plays a role in host defense against Histoplasma capsulatum J Infect Dis 1990; 162: 1349–1353.
  • Wu-Hsieh BA, Lee GS, Franco M, Hofman FM. Early activation of splenic macrophages by tumor necrosis factor alpha is important in determining the outcome of experimental histoplas-mosis in mice. Infect Immun 1992; 60: 4230–4238.
  • Allendoerfer R, Deepe GS Jr. Blockade of endogenous TNF-ot exacerbates primary and secondary pulmonary histoplasmosis by differential mechanisms. J Immunol 1998; 160: 6072–6082.
  • Deepe GS Jr, Gibbons R, Woodward E. Neutralization of endogenous GM-CSF subverts the protective immune response to Histoplasma capsulatum. J Immunol 1999; 163: 4985–4993.
  • Romani L, Puccetti P, Bistoni F. Biological role of helper T-cell subsets in candidiasis. Chem Immunol 1996; 63: 113–137.
  • Romani L, Bistoni F, Puccetti P. Initiation of T-helper cell immunity to Candida albicans: the role of neutrophils. Chem Immunol 1997; 68: 110–135.
  • Romani L. Immunity to Candida albicans: Thl, Th2 cells and beyond. Curr Opin Microbiol 1999; 2: 363–367.
  • Mencacci A, Cenci E, Bistoni F, et al. Specific and non-specific immunity to Candida albicans: a lesson from genetically modified animals. Res Immunol 1998; 149: 352–361.
  • Mencacci A, Cenci E, Del Sero G, et al. Defective costimulation and impaired Thl development in TNF/LT-a-double deficient mice infected with Candida albicans. Int Immuno11998; 10:37–48.
  • Romani L, Mencacci A, Cenci E, et al. Impaired neutrophil response and CD4 + T helper cell 1 development in interleukin-6-deficient mice infected with Candida albicans. J Exp Med 1996; 183: 1–11.
  • Mencacci A, Bacci A, Bistoni F, Flavell R, Romani L. IL-18 restores defective anticandidal Thl immunity in caspase-1-defi-cient mice. Infect Immun 2000; 68: 5126–5131.
  • Menaccci A, Cenci E, Del Sero G, et al. IL-10 is required for development of protective CD4 + T helper type 1 cell responses to Candida albicans. J Immunol 1998; 161: 6228–6237.
  • Mencacci A, Del Sero G, Cenci E, etal. Endogenous interleukin-4 is required for development of protective CD4 + T helper type 1 cell responses to Candida albicans. J Exp Med 1998; 187: 307–317.
  • Cenci E, Mencacci A, Del Sero G, et al. IFN-7 is required for IL-12 responsiveness in mice with Candida albicans infection. J Immunol 1998; 161: 3543–3550.
  • Del Sero G, Mencacci A, Cenci E, etal. Antifungal T helper type 1 responses are upregulatekl in IL-10-deficient mice. Microbes Infect 1999; 1: 1169–1180.
  • Denning DW. Invasive Aspergillosis. Clin Infect Dis 1998; 26: 781–805.
  • Cenci E, Mencacci A, Fe d'Ostiani C, et al. Cytokine- and T-helper-dependent immunity in murine aspergillosis. Res Im-munol 1998; 149: 445–454.
  • Cenci E, Mencacci A, Fe d'Ostiani C, et al. Cytokine-and T helper-dependent lung mucosal immunity in mice with invasive pulmonary aspergillosis. J Infect Dis 1998; 178: 1750–1760.
  • Cenci E, Mencacci A, Del Sero G, et al. IL-4 is responsible for susceptibility to invasive pulmonary aspergillosis through sup-pression of protective type 1 responses. J Infect Dis 1999; 180: 1957-1968.
  • Roilides E, Katsifa H, Walsh TJ. Pulmonary host defences against Aspergillus fumigatus. Res Immuno11998; 149: 454–465.
  • Grazziutti ML, Rex JH, Cowart ER, Anaissie AJ, Ford A, Savary CA. Aspergillus fitmigatus conidia induce a Thl-type cytokine response. J Infect Dis 1997; 176: 1579–1583.0 2000 ISHAM, Medical Mycology, 38, Suppl. I, 87-98
  • Cenci E, Perito S, Enssle K-H, et al. Thl and Th2 cytokines in mice with invasive aspergillosis. Infect Immun 1997; 65: 64–70.
  • Franco M. Host-parasite relationships in paracoccidioidomyco-sis. J Med Vet Mycol 1987; 25: 5–18.
  • Calich VLG, Singer-Vermes LM, Siqueira AM, Burger E. Susceptibility and resistance of inbred mice to Paracoccidioides brasiliensis. Br J Exp Pathol 1985; 66: 585–594.
  • Kashino SS, Fazioli RA, Caffali-Favati C, et al. Resistance to Paracoccidioides brasiliensis infection is linked to preferentialTh1 immune response, whereas susceptibility is associated with ab-sence of IFN-7 production. J Int Cyt Res 2000; 20: 89–97.
  • Calich VLG, Vaz CAC, Burger E. Immunity to Paracoccidioides brasiliensis infection. Res Immunol 1998; 149: 407–416.
  • Calich VLG, Burger E, Kashino SS, Fazioli RA, Singer-Vermes LM. Resistance to Paracoccidioides brasiliensis in mice is con-trolled by a single dominant autosomal gene. Infect Immun 1987; 55: 1919–1923.
  • Cano LE, Singer-Vermes LM, Vaz CAC, Russo M, Calich VLG. Pulmonary paracoccidioidomycosis in resistant and susceptible mice: relationship among progression of infection, bronchoalve-olar cell activation, cellular immune response and specific isotype patterns. Infect Immun 1995; 63: 1777–1783.
  • Cano LE, Kashino SS, Arruda C, et al. Protective role of gamma-interferon in experimental pulmonary paracoccid-ioidomycosis. Infect Immun 1998; 66: 800–806.
  • Seder MD, Paul WE. Acquisition of lymphocyte producing phenotypeby CD4 + T cells. Ann Rev Immun 1994;12:635–674.
  • Sadick MD, Heinzel FP, Holaday BJ, Pu RT, Dawkins RS, Locksley RM. Cure of murine leishmaniasis with anti-inter-leukin-4 monoclonal antibody. J Exp Med 1990; 171: 115–127.
  • Romani L, Mencacci A, Grohmann U, Mocci S, Puccetti P, Bistoni F. Neutralizing antibody to interleukin-4 induces sys-temic protection and T helper type 1-associated immunity in murine candidiasis. J Exp Med 1992; 176: 19–25.
  • Magee DM, Cox R. Roles of gamma interferon and interleukin-4 in genetically determined resistance to Coccidioides immitis. Infect Immun 1995; 63: 3514–3519.
  • Hostetler JS, Brummer E, Coffman RL, Stevens DA. Effect of anti-IL-4, interferon-gamma and an antifungal triazole (SCH 42427) in paracoccidioidomycosis: correlation of IgE with out-come. Clin Exp Immunol 1993; 94: 11–16.
  • Tonneti L, Spaccapelo R, Cenci E, et al. Interleukin-4 and -10 exacerbate candidiasis in mice. Eur J Immuno11995; 25: 1559–1565.
  • Káposzta R, Tree P, Maródi L, Gordon S. Characteristics of invasive candidiasis in gamma interferon and interleukin-4 defi-cient mice: role of macrophages in host defense against Candida albicans. Infect Immun 1998; 66: 1708–1717.
  • Magee DM, Cox R. Interleukin-12 regulation of host defenses against Coccidioides immitis. Infect Immun 1996; 64:3609–3613.
  • Kawakami K, Tohyama M, Xie Q, Saito A. IL-12 protects mice against pulmonary and disseminated infection caused by Crypto-coccus neoformans. Clin Exp Immunol 1996; 104: 208–214.
  • Romani L, Bistoni F, Mencacci A, Cenci E, Spaccapelo R, Puccetti P. IL-12 in Candida albicans infections. Res Immunol 1996; 146: 532–538.
  • Lavigne LM, Schopf LR, Cung CL, Maylor R, Sypek JP. The role of murine IL-12 and IFN-7 the pathogenesis of a murine systemic Candida albicans infection. J Immuno11998; 160: 284–292.
  • Huffnagle GB, Toews GB, Burdick MD, et al. Afferent phase production of TNF-ot is required for the development of protec-tive T cell immunity to Cryptococcus neoformans. J Immunol 1996; 157: 4529–4536.
  • Romani L, Mencacci A, Tonnetti L, et al. Interleukin-12 is both required and prognostic in vivo for T helper type 1 differentiation in murine candidiasis. J Immunol 1994; 153: 5157–5175.
  • Edman JC, Kwon-Chung KJ. Isolation of the URA5 gene from Cryptococcus neoformans var. neoformans and its use as a selective marker for transformation. Mol Cell Biol 1990; 10: 4538–4544.
  • Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR. Gene transfer in Crypt ococcus neoformans using biolistic delivery of DNA. J Bacteriol 1993; 175: 1405–1411.
  • Davidson RC, Cruz MC, Sia RAL, Allen B, Alspaugh JA, Heitman J. Gene disruption by biolistic transformation in serotypeD strains of Cryptococcus neoformans. Fungal Genet Biol 2000; 24: 38–46.
  • Cox GM, Toffaletti D, Rude TH, Perfect JR. Dominant selection system for use in Cryptococcus neoformans. J Med Vet Mycol 1996; 34: 385–391.
  • Del Poeta M, Toffaletti DL, Rude TH, Dykstra CC, Heitman J, Perfect JR. Topoisomerase I is essential in Cryptococcus neoformans: role in pathobiology and as an antifungal target. Genetics 1999; 152: 167–178.
  • Thompson JR, Douglas CM, Li N, etal. A glucan synthaseFKS1 homolog in Cryptococcus neoformans is a single copy and encodes an essential function. J Bacteriol 1999; 181: 444–453.
  • Lodge JK, Jackson-Machelski E, Toffaletti DL, Perfect JR, Gordon JI. Targeted gene replacement demonstrates that myris-toyl CoA: protein N-myristoyl transferase is essential for the viability of Cryptococcus neoformans. Proc Natl Acad Sci USA 1994; 91: 12008–12012.
  • Perfect JR, Toffaletti DL, Rude TH. The gene encoding for phosphoaminoimidazole carboxylase (ADE2) is essential for growth of Cryptococcus neoformans in cerebrospinal fluid. Infect Immun 1993; 61: 4446–4451.
  • Odom A, Muir S, Lim E, Toffaletti DL, Perfect JR, Heitman J. Calcineurin is required for virulence of Cryptococcus neoformans. EMBO J 1997; 16: 2576–2589.
  • Salas SD, Bennett JE, Kwon-Chung KJ, Perfect JR, Williamson PR. Effect of the laccase gene, CnLaC1 or virulence of Crypto-coccus neoformans. J Exp Med 1996; 184: 377–386.
  • Alspaugh JA, Perfect JR, Heitman J. Cryptococcus neoformans mating and virulence are regulated by the G-protein alpha-sub-unit GPA1 and cAMP. Gene Dev 1997; 11: 3206–3217.
  • Cox GM, Mukherjee J, Cole GT, Casadevall A, Perfect JR. Urease as a virulence factor in experimental cryptococcosis. Infect Immun 2000; 68: 443–448.
  • Alspaugh JA, Cavallo LA, Perfect JR, Heitman J. Cryptococcus neoformans RAS1 regulates filamentation and virulence in this human fungal pathogen. Mol Microbiol 2000; 36: 352–365.
  • Chang YC, Kwon-Chung KJ. Complementation of a capsule-deficiency mutation of Cryptococcus neoformans restores its virulence. Mol Cell Biol 1994; 14: 4912–4919.
  • Chang YC, Penoyer LA, Kwon-Chung KJ. The second capsule gene of Cryptococcus neoformans, CAP64, is essential for viru-lence. Infect Immun 1996; 64: 1977–1983.
  • Chang YC, Kwon-Chung KJ. Isolation of the third capsule-as-sociated gene, CAP60, required for virulence in Cryptococcus neoformans. Infect Immun 1998; 66: 2230–2236.
  • Cruz MC, Cavallo L, Gorlach J, Perfect JR, Cardenas ME, Heitman J. Rapamycin antifungal action is mediated via con-served complexes with FKBP12 and TOR kinase homologs in Cryptococcus neoformans. Mol Cell Biol 1999; 19: 4101–4112.
  • Yue C, Cavallo L, Alspaugh JA, Cox GM, Perfect JR, Heitman J. The STE12" homolog is required for haploid filamentation but dispensablefor mating and virulence in Cryptococcus neoformans. Genetics 1999; 153: 1601–1615.
  • Wang P, Perfect JR, Heitman J. The g-protein B subunit GPB1 is required for mating and haploid fruiting in Cryptococcus neoformans. Mol Cell Biol 2000; 20: 352–362.
  • Falkow S. Molecular Koch's postulates applied to microbial pathogenicity. Rev Infect Dis 1988; 10 (Suppl. 2): 5274–5276.
  • Hoag KA, Street NE, Huffnagle GB, Lipscomb MF. Early cytokine production in pulmonary Cryptococcus neoformans infections distinguishes susceptible and resistant mice. Am J Respir Cell Mol Biol 1995; 13: 487–495.
  • Huffnagle GB, Boyd MB, Street NE, Lipscomb MF. IL-5 is required for eosinophil recruitment, crystal deposition, and mononuclear cell recruitment during a pulmonary Cryptococcus neoformans infection in genetically susceptible mice (C57BL/6). J Immunol 1998; 160: 2393–2400.
  • Huffnagle GB, Chen GH, Curtis JL, McDonald RA, Strider RM, Toews GB. Down-regulation of the afferent phase of T cell-mediated pulmonary inflammation and immunity by a high melanin-producing strain of Cryptococcus neoformans. J Immunol 1995; 155: 3507–3516.
  • Mukherjee J, Scharff MD, Casadevall A. Protective murine monoclonal antibodies to Cryptococcus neoformans. Infect Im-man 1992; 60: 4534–4541.
  • MukherjeeJ, Pirofski LA, Scharff MD, Casadevall A. Antibody-mediated protection in mice with lethal intracerebral Cryptococ-cus neoformans infection. Proc Natl Acad Sci USA 1993; 90: 3636–3640.
  • Feldmesser M, CasadevallA. Effect of serum IgG1 to Cryptococ-cus neoformans glucuronoxylomannan on murine pulmonary infection. J Immunol 1997; 158: 790–799.
  • Huffnagle GB, Lipscomb MF. Cells and cytokines in pulmonary cryptococcosis. Res Immunol 1998; 149: 387–396.
  • Huffnagle GB, Yates JL, Lipscomb MF. T cell-mediated immu-nity in the lung: a Cryptococcus neoformans pulmonary infection model using SCID and athymic nude mice. Infect Immun 1991; 59: 1423–1433.
  • HuffnagleGB, Lipscomb MF, Loychik JA, Hoag KA, Street NE. The role of CD4 + and CD8 + T cells in the protective inflammatory response to a pulmonary cryptococcal infection. J Leukoc Biol 1994; 55: 35–42.
  • Traynor TR, Kuziel WA, Toews GB, Huffnagle GB. CCR2 expression determines Ti versus T2 polarization during pul-monary ryptococcus neoformans infection. J Immuno12000; 164: 2021-2027.
  • Huffnagle GB, McNeil LK, McDonald RA, et al. Cutting edge: Role of C-C chemokine receptor 5 in organ-specific and innate immunity to Cryptococcus neoformans. J Immunol 1999; 163: 4642–4646.
  • Huffnagle GB, Strider RM, McNeil LK, et al. Macrophage inflammatory protein-1 (MIP-1(X) is required for the efferent phase of pulmonary cell-mediated immunity to a Cryptococcus neoformans infection. J Immunol 1997; 159: 318–327.
  • Huffnagle GB, McNeil LK. Dissemination of Cryptococcus neoformans to the central nervous system: role of chemokines, Thl immunity and leukocyte recruitment. J Neurovirol 1999; 5: 76–81.
  • Kwon-Chung KJ, Polacheck I, Popkin TJ. Melanin-lacking mutants of Cryptococcus neoformans and their virulence for mice. J Bacteriol 1982; 150: 1414–1421.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.