620
Views
23
CrossRef citations to date
0
Altmetric
Original

Primary Osteoblasts Response to Shock Wave Therapy Using Different Parameters

, M.D.V., , M.D., , M.D., , B.S., , M.D., , D.D.S. & , M.D. show all
Pages 449-466 | Published online: 24 Aug 2009

References

  • Augat P., Claes L., Suger G. In vivo effect of shock‐waves on the healing of fractured bone. Clin. Biomech. 1995; 10: 374–378
  • Birnbaum K., Wirtz D. C., Siebert C. H., Heller K. D. Use of extracorporeal shock‐wave therapy (ESWT) in the treatment of non‐unions. A review of the literature. Arch. Orthop. Trauma Surg. 2002; 122: 324–330
  • Chen L., Huang T. Treatment of painful heel syndrome with shock waves. Clin. Orthop. 2001; 387: 41–46
  • Chenoufi H. L., Diamant M., Rieneck K., Hund B., Stein G. S., Lian J. B. Increased mRNA expression and protein secretion of interleukin‐6 in primary human osteoblasts differentiated in vitro from rheumatoid and osteoarthritic bone. J. Cell. Biochem. 2001; 81(4)666–678
  • Daghight F., Borgahei R. C., Thornton R. D., Bee J. H. Human gingival fibroblasts produce nitric oxide in response to proinflammatory cytokines. J. Periodontol. 2002; 73(4)392–400
  • Damolius P. D., Hauschka P. V. Nitric oxide acts in conjuction with proinflammatory cytokine to promote cell death in osteoblasts. J. Bone Miner. Res. 1997; 12: 412–422
  • Delius M., Adams G. Shock wave permeabilization with ribosome inactivating proteins: a new approach to tumor therapy. Cancer Res. 1999; 59: 5227–5232
  • Delius M., Draenert K., Al Diek Y., Draener Y. T. Biological effects of shock waves: in vivo effect of high energy impulses on rabbit bone. Ultrasound Med. Biol. 1995a; 21: 1219–1225
  • Delius M., Ueberle F., Gambilher S. Acoustic energy determines haemoglobin release from erythrocytes by extracorporeal shock waves in vitro. Ultrasound Med. Biol. 1995b; 21: 707–710
  • Delius M., Ueberle F., Eisenmenger W. Extracorporeal shock wave act by shock wave–bubble interaction. Ultrasound Med. Biol. 1998; 24: 1055–1059
  • Diwan A. D., Wang M. X., Jang D., Zhu W., Murrel G. A. Nitric oxide modulates fracture healing. J. Bone Miner. Res. 2001; 15: 342–351
  • Endl E., Steinbach P., Scharfe J., Fickweiler S., Workle K., Hofstadter F. Cell‐type‐specific response to shock waves of suspended or pelleted cells as analysed by flow cytometry or electrical cell volume determination. Ultrasound Med. Biol. 1996; 22: 515–525
  • Forriol F., Solchaga J., Moreno L., Canadell J. The effect of shockwaves on mature and healing cortical bone. Int. Orthop. 1994; 18: 325–329
  • Gambilher S., Delius M. Influence of dissolved and free gases on iodine release and cell killing by shock waves in vitro. Ultrasound Med. Biol. 1992; 18: 617–623
  • Hammer D. S., Rupp S., Ensslin S. Extracorporeal shock wave therapy in patients with tennis elbow and painful hell. Arch. Orthop. Trauma Surg. 2000; 120: 304–307
  • Haupt G. Use of extracorporeal shock waves in the treatment of pseudoarthrosis, tendopathy and other orthopaedic diseases. J. Urol. 1997; 158: 4–11
  • Haupt G., Chvapil M. Effect of shock waves on the healing of partial‐thickness wounds in piglets. J. Surg. Res. 1990; 49: 45–48
  • Haupt G., Haupt A., Ekkernkamp A., Gerety B., Chvapil M. Influence of shock waves on fracture healing. J. Urol. 1992; 39: 529–532
  • Ikeda K., Tomita K., Takayama K. Application of extracorporeal shock wave on bone: preliminary report. J. Trauma 1999; 47: 946–950
  • Johannes E. J., Kaulesar Sukul D. M.K.S., Bijma A. M. Effects of high‐energy shockwaves on normal human fibroblasts in suspension. J. Surg. Res. 1994a; 57: 677–681
  • Johannes E. J., Kaulesar Sukul D. M.K.S., Mutura E. High energy shock waves for the treatment of non‐union: an experiment in dogs. J. Surg. Res. 1994b; 57: 246–252
  • Kambe M., Iorami N., Kanamaru R. Enhancement of chemotherapeutic effects with focused shock wave: extracorporeal shock wave chemotherapy (ESWC). Human Cell 1997; 10: 87–94
  • Kanamaru Y., Takada T., Saura R., Mizuno K. Effect of nitric oxide on mouse clonal osteogenic cell, MC3‐E1, proliferation in vitro. Kobe J. Med. Sci. 2001; 47: 1–11
  • Kaulesar Sukul D. M.K.S., Johannes E. J., Pierik E. G., van Eijck G. J., Kristelijn M. J. The effect of high energy shock waves focused on cortical bone: an in vitro study. J. Surg. Res. 1993; 54: 46–51
  • Ko J., Chen H., Chen L. Treatment of lateral epicondylitis of the elbow with shock waves. Clin. Orthop. 2001; 387: 60–67
  • Laudone V. P., Morgan T. R., Huryk R. F., Heston W. D., Fair W. R. Cytotoxicity of high energy shock waves: methodologic consideration. J. Urol. 1989; 141: 965–968
  • Lifshitz D. A., Williams J. C., Sturtevant B., Connors B. A., Evan A. P., McAteer J. A. Quantitation of shock wave cavitation damage in vitro. Ultrasound Med. Biol. 1997; 23: 461–471
  • Loew M., Jurgowski W., Mau H. C., Thomsen M. Treatment of calcifying tendinitis of rotator cuff by extracorporeal shock waves: a preliminary report. J. Shoulder Elbow Surg. 1995; 4: 101–106
  • Loew M., Daecke W., Kusnierczak D., Rahmanzadeh M., Ewerbeck V. Shock‐wave therapy is effective for chronic calcifying tendonitis of the shoulder. J. Bone Jt. Surg. 1999; 81B: 863–867
  • Ludwig J., Lauber S., Lauber H., Dreislker U., Raedel R., Hotzinger H. High‐energy shock wave treatment of femoral head necrosis in adults. Clin. Orthop. 2001; 387: 119–126
  • Maier M., Stäbler A., Lienemann A., Kohler S., Feitenhansl A., Durr H. R., Pfahler M., Refior H. J. Shock wave application in calcifying tendonitis of the shoulder—prediction of outcome by imaging. Arch. Orthop. Trauma Surg. 2000a; 120: 493–498
  • Maier M., Steinborn M., Schmitz C., Stabler A., Kohler S., Pfahler M., Durr H. R. Extracorporeal shock wave application for chronic plantar fasciitis associated with heel spurs: prediction of outcome by magnetic resonance imaging. J. Rheumatol. 2000b; 27: 2455–2462
  • Maier M., Steinborn M., Schmitz C., Stabler A., Kohler S., Veihelmann A., Pfahler M., Refior H. J. Extracorporeal shock wave therapy for chronic lateral tennis elbow—prediction of outcome by imaging. Arch. Orthop. Trauma Surg. 2001; 121: 379–384
  • Martini L., Fini M., Giavaresi G., Giardino R. Sheep model in orthopaedic research: a literature review. Comp. Med. 2001; 51(4)292–299
  • Martini L., Giavaresi G., Fini M., Torricelli P., de Pretto M., Schaden W., Giardino R. Effect of extracorporeal shock wave therapy on osteoblast‐like cells. Clin. Orthop. 2003; 413: 269–280
  • Miller D. L., Thomas R. M. The role of cavitation in the induction of cellular DNA damage by ultrasound and lithotriptor shock wave in vitro. Ultrasound Med. Biol. 1996; 22: 681–687
  • Odgen J. A., Alvarez R., Levitt R. Shock wave therapy for chronic proximal plantar fasciitis. Clin. Orthop. 2001; 387: 47–59
  • Park S. H., Park J. B., Weinstein J. N., et al. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopaedics. I. Foundations and overview. J. Appl. Biomater. 1991a; 2: 115–126
  • Park J. B., Park S. H., Weinstein J. N., Loening S., Oster D. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopaedics. II. Dose–response and pressure distribution measurements. J. Appl. Biomater. 1991b; 2: 161–170
  • Ralston S. H., Ho L. P., Helfrich M. P., Grabowski P. S., Johnston P. W., Benjamin N. Nitric oxide: a cytokine‐induced regulation of bone resorption. J. Bone Miner. Res. 1995; 10: 1040–1049
  • Randazzo R. F., Chaussy C. G., Fuchs G. J., Bhuta S. M., Lovrekovich H., deKernion J. B. The in vitro and in vivo effects of extracorporeal shockwaves on malignant cells. Urol. Res. 1988; 16: 419–426
  • Rompe J. D., Rumler F., Hopf C., Nafe B., Heine J. Extracorporeal shock wave therapy for calcifying tendonitis of the shoulder. Clin. Orthop. 1995; 321: 196–201
  • Rompe J. D., Hopf C., Kullmer K., Heine J., Burger R. Analgesic effect of extracorporeal shockwave therapy on chronic tennis elbow. J. Bone Jt. Surg. 1996a; 78B: 233–237
  • Rompe J. D., Hopf C., Kullmer K., Heine J., Burger R., Nafe B. Low‐energy extracorporeal shock wave therapy for persistent tennis elbow. Int. Orthop. 1996b; 20: 23–27
  • Rompe J. D., Küllmer K., Riehle H. M. Effectiveness of low‐energy extracorporeal shock waves for chronic plantar fasciitis. Foot Ankle Surg. 1996c; 2: 215–221
  • Rompe J. D., Kirkpatrick C. J., Kullmer K., Scwitalle M., Krischek O. Dose‐related effects of shock waves on rabbit tendo Achillis. A sonographic and histological study. J. Bone Jt. Surg. 1998; 80B: 546–552
  • Rompe J. D., Zoellner J., Nafe B. Shock wave therapy versus conventional surgery in the treatment of calcifying tendonitis of the shoulder. Clin. Orthop. 2001a; 387: 72–82
  • Rompe J. D., Rosendahl T., Schollner C., Theis C. High‐energy extracorporeal shock wave treatment of nonunions. Clin. Orthop. 2001b; 387: 102–111
  • Schaden W., Fischer A., Sailler A. Extracorporeal shock wave therapy of nonunion or delayed osseous union. Clin. Orthop. 2001; 387: 90–94
  • Schleberger R., Senge T. Non‐invasive treatment of long‐bone pseudarthrosis by shock waves (ESWL). Arch. Orthop. Trauma Surg. 1992; 111: 224–227
  • Skjodt H., Russel G. Bone cell biology and the regulation of bone turnover. Cytokine and Bone Metabolism, M. Gowen. CRC Press, Boca Raton, FL 1994; 1–70
  • Smits G. A., Oosterhof G. O., de Ruyter A. E., Schalken J. A., Debruyene F. M. Cytotoxic effects of high energy shock in different in vitro models: influence of the experimental set‐up. J. Urol. 1991; 145: 171–175
  • Speed C. A., Nichols D., Richards C., Humphreys H., Wies J. T., Burnet S., Hazleman B. L. Extracorporeal shock wave therapy for lateral epicondylitis a double blind randomised controlled trial. J. Orthop. Res. 2002a; 20: 895–898
  • Speed C. A., Richards C., Nichols D., Burnet S., Wies J. T., Humphreys H., Hazleman B. L. Extracorporeal shock‐wave therapy for tendonitis of the rotator cuff: a double‐blind randomized, controlled trials. J. Bone Jt. Surg., Br. 2002b; 84B: 509–512
  • Spindler A., Berman A., Lucero E., Braier M. Extracorporeal shock wave treatment for chronic calcific tendinitis of the shoulder. J. Rheumatol. 1998; 25: 1161–1163
  • Suhr D., Brummer F., Irmer U., Hulser D. F. Disturbance of cellular calcium homeostasis by in vitro application of shock waves. Ultrasound Med. Biol. 1996; 22: 671–679
  • Thiel M. Application of shock wave in medicine. Clin. Orthop. 2001; 387: 18–21
  • Torricelli P., Fini M., Giavaresi G., Borsari V., Carpi A., Nicolini A., Giardino R. Comparative interspecies investigation on osteoblast cultures: data on cell viabilità and synthetic activity. Biomed. Pharmacother. 2003; 57(1)57–62, in press
  • Valchanow V., Michailow P. High energy shock waves in the treatment of delayed and non‐union fracture. Int. Orthop. 1991; 15: 181–184
  • van't Hof R. J., Ralson S. H. Cytokine‐induced nitric oxide inhibits bone resorption by inducing apoptosis of osteoclast progenitors and suppressing osteoclast activity. J. Bone Miner. Res. 1997; 12: 1797–1804
  • Vaterlein N., Lussenhop S., Hahn M., Delling G., Meiss A. L. The effect of extracorporeal shock waves on joint cartilage—an in vivo study in rabbits. Arch. Orthop. Trauma Surg. 2000; 120: 403–406
  • Vogel J., Hopf C., Eysel P., Rompe J. D. Application of extracorporeal shock‐waves in the treatment of pseudarthrosis of the lower extremity. Preliminary results. Arch. Orthop. Trauma Surg. 1997; 116: 480–483
  • Wang F. S., Wang C. J., Huang H. J., Chung H., Chen R. F., Yang K. D. Physical shock wave mediates membrane hyperpolarization and ras activation for osteogenesis in human bone marrow stromal cells. Biochem. Biophys. Res. Commun. 2000; 287: 648–655
  • Wang C. J., Ko J., Chen H. Treatment of calcifying tendonitis of the shoulder with shock wave therapy. Clin. Orthop. 2001a; 387: 83–89
  • Wang C. J., Chen H. S., Chen C. E., Yang K. D. Treatment of nonunions of long bone fractures with shock waves. Clin. Orthop. 2001b; 387: 95–101
  • Wang C. J., Huang H. Y., Yang K., Wang F. S., Wong M. Pathomechanism of shock wave injury on femoral artery, vein and nerve. An experimental study in dogs. Inj., Int. Care Inj. 2002a; 33: 439–446
  • Wang C. J., Huang H. Y., Pai C. H. Shock wave‐enhanced neovascularization at the tendon–bone junction: an experiment in dogs. J. Foot Ankle Surg. 2002b; 41(1)16–22
  • Wang F. S., Yang K. D., Chen R. F., Wang C. J., Sheen‐Chen S. M. Extracorporeal shock wave promotes growth and differentation of bone‐marrow stromal cells towards osteoprogenitors associated with induction of TGF‐β1. J. Bone Jt. Surg., Br. 2002c; 84: 457–461
  • Watanuki M., Sakai A., Sakata T., et al. Role of inducible nitric oxide synthase in skeletal adaptation to acute increase in mechanical loading. J. Bone Miner. Res. 2002; 17(6)1015–1025
  • Weinstein J. N., Loening S., Park J. B., Park S. H., Oster D. L. Application of extracorporeal shock wave lithotripter (ECSWL) in orthopaedics. III. In vitro and in vivo studies. J. Appl. Biomater. 1991; 2: 171–181
  • Wörle K., Steinbach P., Hofstädter F. The combined effects of high‐energy shock waves and cytostatic drugs or cytokines on human bladder cancer cells. R. J. Cancer 1994; 69: 58–65
  • Yeaman L. D., Jerome C. P., McCullough D. L. Effects of shock waves on the structure and growth of the immature rat epiphysis. J. Urol. 1989; 141: 670–674

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.