Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 17, 2000 - Issue 4
177
Views
34
CrossRef citations to date
0
Altmetric
Original

PACEMAKER OSCILLATIONS IN HEART AND BRAIN: A KEY ROLE FOR HYPERPOLARIZATION-ACTIVATED CATION CHANNELS

&
Pages 453-469 | Published online: 07 Jul 2009

REFERENCES

  • Aiba H, Fujimoto S, Ozaki N. Molecular cloning and nucleotide sequencing of the gene for E. coli cAMP receptor protein. Nucleic Acid Res. 1982; 10: 1345–61
  • Altenhofen W, Ludwig J, Eismann E, et al. Control of ligand specificity in cyclic nucleotide-gated channels from rod photoreceptors and olfactory epithelium. Proc Natl Acad Sci USA 1991; 88: 9868–72
  • Anderson J A, Huprikar S S, Kochian L V, et al. Functional expression of a probable Arabidopsis thaliana potassium channel in Saccharomyces cerevisiae. Proc Natl Acad Sci USA 1992; 89: 3736–40
  • Attwell D, Wilson M. Behaviour of the rod network in the tiger salamander retina mediated by membrane properties of individual rods. J Physiol. 1980; 309: 287–315
  • Bader C R, Bertrand D, Schwartz E A. Voltage-activated and calcium-activated currents studied in solitary rod inner segments from the salamander retina. J Physiol. 1982; 331: 253–84
  • Bader C R, MacLeish P R, Schwartz E A. A voltage-clamp study of the light response in solitary rods of the tiger salamander. J Physiol. 1979; 296: 1–26
  • Bal T, McCormick D A. What stops synchronized thalamocortical oscillations?. Neuron 1996; 17: 297–308
  • Bal T, von Krosigk M, McCormick D A. Role of the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. J Physiol. 1995a; 483: 665–85
  • Bal T, von Krosigk M, McCormick D A. Synaptic and membrane mechanisms underlying synchronized oscillations in the ferret lateral geniculate nucleus in vitro. J Physiol. 1995b; 483: 641–63
  • Biel M, Ludwig A, Zong X, et al. Hyperpolarization-activated cation channels: a multi-gene family. Rev Physiol Biochem Pharmacol. 1999; 136: 165–81
  • Brown H F, DiFrancesco D. Voltage clamp investigations of currents underlying pacemaker activity in rabbit sino-atrial node. J Physiol. 1980; 308: 331–51
  • Brown H F, DiFrancesco D, Noble S J. Adrenaline action on rabbit sino-atrial node. J Physiol. 1979a; 290: 31P–32P
  • Brown H F, DiFrancesco D, Noble S J. How does adrenaline accelerate the heart?. Nature 1979b; 280: 235–36
  • Budde T, Biella G, Munsch T. Lack of regulation by intracellular Ca2+ of the hyperpolarization-activated cation current in rat thalamic neurones. J Physiol. 1997; 503: 79–85
  • Catterall W A. Voltage-dependent gating of sodium channels: correlating structure and function. Trends Neurosci. 1986; 9: 7–10
  • Clapham D E. Not so funny anymore: pacing channels are cloned. Neuron 1998; 21: 5–7
  • Crunelli V, Kelly J S, Leresche N, et al. The ventral and dorsal lateral geniculate nucleus of the rat: intracellular recordings in vitro. J Physiol. 1987; 384: 587–601
  • DiFrancesco D. A new interpretation of the pace-maker current in calf Purkinje fibres. J Physiol. 1981a; 314: 359–76
  • DiFrancesco D. A study of the ionic nature of the pace-maker current in calf Purkinje fibres. J Physiol. 1981b; 314: 377–93
  • DiFrancesco D. Characterization of single pacemaker channels in cardiac sino-atrial node cells. Nature 1986; 324: 470–73
  • DiFrancesco D. Pacemaker mechanisms in cardiac tissue. Annu Rev Physiol. 1993; 55: 455–72
  • DiFrancesco D, Ducouret P, Robinson R B. Muscarinic modulation of cardiac rate at low acetylcholine concentrations. Science 1998; 243: 669–71
  • DiFrancesco D, Tortora P. Direct activation of cardiac pacemaker channels by intracellular cyclic AMP. Nature 1991; 351: 145–47
  • Dossi R C, Nunez A, Steriade M. Electrophysiology of a slow (0.5–4 Hz) intrinsic oscillation of cat thalamocortical neurones in vivo. J Physiol. 1992; 447: 215–34
  • Doyle D A, Morais Cabral J, Pfuetzner R A, et al. The structure of the potassium channel: molecular basis of K+ conduction and selectivity. Science 1998; 280: 69–77
  • Edman A, Gestrelius S, Grampp W. Current activation by membrane hyperpolarization in the slowly adapting lobster stretch receptor neurone. J Physiol. 1987; 384: 671–90
  • Fain G L, Quandt F N, Bastian B L. Contribution of a caesium-sensitve conductance increase to the rod photoresponse. Nature 1978; 272: 467–69
  • Gauss R, Seifert R, Kaupp U B. Molecular identification of a hyperpolarization-activated channel in sea urchin sperm. Nature 1998; 393: 583–87
  • Gordon S E, Oakley J C, Varnum M D, et al. Altered ligand specificity by protonation in the ligand binding domain of cyclic nucleotide-gated channels. Biochemistry 1996; 35: 3994–4001
  • Guy H R, Conti F. Pursuing the structure and function of voltage-gated channels. Trends Neurosci. 1990; 13: 201–6
  • Guy H R, Seetharamulu P. Molecular model of the action potential sodium channel. Proc Natl Acad Sci USA 1986; 83: 508–12
  • Hageman G R, Urthaler F, James T N. Differential sensitivity to neurotransmitters in denervated canine sinus node. Am J Physiol. 1977; 233: H211–16
  • Halliwell J V, Adams P R. Voltage-clamp analysis of muscarine excitation in hippocampal neurons. Brain Res. 1982; 250: 71–92
  • Heginbotham L, Lu Z, Abramson T, et al. Mutations in the K+ channel signature sequence. Biophys J. 1994; 66: 1061–67
  • Hestrin S. The properties and function of inward rectification in rod photoreceptors of the tiger salamander. J Physiol. 1987; 390: 319–33
  • Ishii T M, Takano M, Xie L-H, et al. Molecular characterization of the hyperpolarization-activated cation channel in rabbit heart sinoatrial node. J Biol Chem. 1999; 274: 12835–39
  • Kamondi A, Reiner P B. Hyperpolarization-activated inward current in histaminergic tuberomammillary neurons of the rat hypothalamus. J Neurophysiol. 1991; 66: 1902–11
  • Kaupp U B. The cyclic nucleotide-gated channels of vertebrate photoreceptors and olfactory epithelium. Trends Neurosci. 1991; 14: 150–57
  • Kaupp U B, Niidome T, Tanabe T, et al. Primary structure and functional expression from complementary DNA of the rod photoreceptor cyclic GMP-gated channel. Nature 1989; 342: 762–66
  • Krieger J, Stobel J, Vogl A, et al. Identification of a cyclic nucleotide- and voltage-activated ion channel from insect antennae. Insect Biochem Mol Biol. 1999; 29: 255–67
  • Kumar V D, Weber I T. Molecular model of the cyclic GMP-binding domain of the cyclic GMP-gated ion channel. Biochemistry 1992; 31: 4643–49
  • Ludwig A, Zong X, Hofmann F, et al. Structure and function of cardiac pacemaker channels. Cell Physiol Biochem. 1999; 9: 179–86
  • Ludwig A, Zong X, Jeglitsch M, et al. A family of hyperpolarization-activated mammalian cation channels. Nature 1998; 393: 587–91
  • Ludwig A, Zong X, Stieber J, et al. Two pacemaker channels from human heart with profoundly different activation kinetics. EMBO J. 1999; 18: 2323–29
  • Lüthi A, McCormick D A. H-current: properties of a neuronal and network pacemaker. Neuron 1998a; 21: 9–12
  • Lüthi A, McCormick D A. Periodicity of thalamic synchronized oscillations: the role of Ca2+-mediated upregulation of Ih. Neuron 1998b; 20: 553–63
  • Lü A, McCormick D A. Modulation of a pacemaker current through Ca2−-induced stimulation of cAMP production. Nat Neurosci. 1999; 2: 634–41
  • Maccaferri G, Mangoni M, Lazzari A, et al. Properties of the hyperpolarization-activated current in rat hippocampal CA1 pyramidal cells. J Neurophysiol. 1993; 69: 2129–36
  • Maricq A V, Korenbrot J I. Inward rectification in the inner segment of single retinal cone photoreceptors. J Neurophysiol. 1990; 64: 1917–28
  • Marx T, Gisselmann G, Stoertkuhl K F, et al. Molecular cloning of a putative voltage- and cyclic nucleotide-gated ion channel present in the antennae and eyes of Drosophila melanogaster. Invert Neurosci. 1999; 4: 55–63
  • Mayer M L, Westbrook G L. A voltage-clamp analysis of inward (anomalous) rectification in mouse spinal sensory ganglion neurones. J Physiol. 1983; 340: 19–45
  • McCormick D A, Huguenard J R. A model of the electrophysiological properties of thalamocortical relay neurons. J Neurophysiol. 1992; 68: 1384–1400
  • McCormick D A, Pape H-C. Acetylcholine inhibits identified interneurons in the cat lateral geniculate nucleus. Nature 1988; 334: 246–48
  • McCormick D A, Pape H-C. Properties of a hyperpolarization-activated cation current and its role in rhythmic oscillation in thalamic relay neurones. J Physiol. 1990; 431: 291–318
  • McKay D B, Steitz T A. Structure of catabolite gene activator protein at 2.9 Å resolution suggests binding to left-handed B-DNA. Nature 1981; 290: 744–49
  • Moosmang S, Biel M, Hofmann F, et al. Differential distribution of four hyperpolarization-activated cation channels in mouse brain. Biol Chem. 1999; 380: 975–80
  • Numa S. A molecular view of neurotransmitter receptors and ionic channels. The Harvey lectures, Series 83., H R Kaback, M W Kirschner, S Numa, et al. Liss, New York 1989; 121–65
  • Pape H. Queer current and pacemaker: the hyperpolarization-activated cation current in neurons. Annu Rev Physiol. 1996; 58: 299–327
  • Pongs O, Kecskemethy N, Müller R, et al. Shaker encodes a family of putative potassium channel proteins in the nervous system of Drosophila. EMBO J. 1988; 7: 1087–96
  • Prystowsky E N, Grant A O, Wallace A G, et al. An analysis of the effects of acetylcholine on conduction and refractoriness in the rabbit sinus node. Circ Res. 1979; 44: 112–20
  • Santoro B, Grant S GN, Bartsch D, et al. Interactive cloning with the SH3 domain of N-src identifies a new brain specific ion channel protein, with homology to Eag and cyclic nucleotide-gated channels. Proc Natl Acad Sci USA 1997; 94: 14815–20
  • Santoro B, Liu D T, Yao H, et al. Identification of a gene encoding a hyperpolarization-activated pacemaker channel of brain. Cell 1998; 93: 717–29
  • Santoro B, Tibbs G R. The HCN gene family: molecular basis of the hyperpolarization-activated pacemaker channels. Ann NY Acad Sci. 1999; 868: 741–64
  • Schönherr R, Heinemann S H. Molecular determinants for activation and inactivation of HERG, a human inward rectifier potassium channel. J Physiol. 1996; 493: 635–42
  • Scott S P, Harrison R W, Weber I T, et al. Predicted ligand interactions of 3′5′-cyclic nucleotide-gated channel binding sites: comparison of retina and olfactory binding site models. Protein Eng. 1996; 4: 333–44
  • Seifert R, Scholten A, Gauss R, et al. Molecular characterization of a slowly gating human hyperpolarization-activated channel predominantly expressed in thalamus, heart, and testis. Proc Natl Acad Sci USA 1999; 96: 9391–96
  • Shi W, Wymore R, Yu H, et al. Distribution and prevalence of hyperpolarization-activated cation channel (HCN) mRNA expression in cardiac tissues. Circ Res. 1999; 85: e1–e6
  • Smith P L, Baukrowitz T, Yellen G. The inward rectification mechanism of the HERG cardiac potassium channel. Nature 1996; 379: 833–36
  • Solomon J S, Nerbonne J M. Hyperpolarization-activated currents in isolated superior colliculus-projecting neurons from rat visual cortex. J Physiol. 1993; 462: 393–420
  • Soltesz I, Lightowler S, Leresche N, et al. Two inward currents and the transformation of low-frequency oscillations of rat and cat thalamocortical cells. J Physiol. 1991; 441: 175–97
  • Spector P S, Curran M E, Zou A, et al. Fast inactivation causes rectification of the IKr channel. J Gen Physiol. 1996; 107: 611–19
  • Steriade M, DeschênesM. The thalamus as a neuronal oscillator. Brain Res. 1984; 320: 1–63
  • Steriade M, McCormick D A, Sejnowski T J. Thalamocortical oscillations in the sleeping and aroused brain. Science 1993; 262: 679–85
  • Su Y, Dostmann W R, Herberg F W, et al. Regulatory subunit of protein kinase A: structure of deletion mutant with cAMP binding domains. Science 1995; 269: 807–13
  • Takahashi T. Inward rectification in neonatal rat spinal motoneurones. J Physiol. 1990; 423: 47–62
  • Taylor S S, Buechler J A, Yonemoto W. cAMP-dependent protein kinase: framework for a diverse family of regulatory enzymes. Annu Rev Biochem. 1990; 59: 971–1005
  • Titani K, Sasagawa T, Ericsson L H, et al. Amino acid sequence of the regulatory subunit of bovine type I adenosine cyclic 3′5′-phosphate dependent protein kinase. Biochemistry 1984; 23: 4193–99
  • Vaccari T, Moroni A, Rocchi M, et al. The human gene coding for HCN2, a pacemaker channel of the heart. Biochem Biophys Acta. 1999; 1446: 419–25
  • Varnum M D, Black K D, Zagotta W N. Molecular mechanism for ligand discrimination of cyclic nucleotide-gated channels. Neuron 1995; 15: 619–25
  • von Krosigk M, Bal T, McCormick D A. Cellular mechanisms of a synchronized oscillation in the thalamus. Science 1993; 261: 361–64
  • Warmke J W, Ganetzky B. A family of potassium channel genes related to eag in Drosophila and mammals. Proc Natl Acad Sci USA 1994; 91(8)3438–42
  • Weber I T, Steitz T A, Bubis J, et al. Predicted structures of cAMP binding domains of type I and II regulatory subunits of cAMP-dependent protein kinase. Biochemistry 1987; 26: 343–51
  • Wollmuth L P, Wollmuth L P, Hille B. Ionic selectivity of Ih channels of rod photoreceptors in tiger salamanders. J Gen Physiol. 1992; 100: 749–65
  • Yanagihara K, Irisawa H. Inward current activated during hyperpolarization in the rabbit sino atrial node cell. Pflügers Arch. 1980; 385: 11–19

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.