Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 17, 2000 - Issue 6
65
Views
20
CrossRef citations to date
0
Altmetric
Original

pH HOMEOSTASIS OF THE CIRCADIAN SPORULATION RHYTHM IN CLOCK MUTANTS OF NEUROSPORA CRASSA

, , , &
Pages 733-750 | Received 09 Jun 2000, Accepted 20 Jun 2000, Published online: 07 Jul 2009

REFERENCES

  • Aronson B D, Johnson K A, Dunlap J C. Circadian clock locus frequency: protein encoded by a single open reading frame defines period length and temperature compensation. Proc Natl Acad Sci USA 1994; 91: 7683–87
  • Aronson B D, Johnson K A, Loros J J, et al. Negative feedback defining a circadian clock: autoregulation of the clock gene frequency. Science 1994; 263: 1578–84
  • Blatt M R, Maurousset L, Meharg A A. High-affinity NO3−H+ cotransport in the fungus Neurospora: induction and control by pH and membrane voltage. J Membr Biol. 1997; 160: 59–76
  • Blatt M R, Rodriguez-Navarro A, Slayman C L. Potassium-proton symport in Neurospora: kinetic control by pH and membrane potential. J Membr Biol. 1987; 98: 169–89
  • Davis R H, De Serres F J. Genetic and microbiological research techniques for Neurospora crassa. Methods in enzymology, H Tabor, C W Tabor. Academic, New York 1970; 17A: 79–143
  • Dharmanda S, Feldman J F. Spatial distribution of circadian clock phase in aging cultures of Neurospora crassa. Plant Physiol. 1979; 63: 1049–54
  • Dunlap J. Circadian rhythms. An end in the beginning. Science 1998; 280: 1548–49
  • Dunlap J C. Molecular bases for circadian clocks. Cell 1999; 96: 271–90
  • Dunlap J C, Loros J J, Liu Y, et al. Eukaryotic circadian systems: cycles in common. Genes Cells 1999; 4: 1–10
  • Edmunds L N. Cellular and molecular bases of biological clocks. Springer Verlag, New York 1988
  • Garceau N Y, Liu Y, Loros J J, et al. Alternative initiation of translation and time-specific phosphorylation yield multiple forms of the essential clock protein FREQUENCY. Cell 1997; 89: 469–76
  • Gardner G F, Feldman J F. The frq locus in Neurospora crassa: a key element in circadian clock organization. Genetics 1980; 96: 877–86
  • Gardner G F, Feldman J F. Temperature compensation of circadian period length in clock mutants of Neurospora crassa. Plant Physiol. 1981; 68: 1244–48
  • Gonze D, Leloup J-C, Goldbeter A. Theoretical models for circadian rhythms in Neurospora and Drosophila. C R Acad Sci Paris, Life Sci. 2000; 323: 57–67
  • Goodwin B C. Oscillatory behavior in enzymatic control processes. Advances in enzyme regulation, G Weber. Pergamon, OxfordEngland 1965; 3: 425–38
  • Hong C I, Tyson J J. A proposal for temperature compensation of the circadian rhythm in Drosophila based on dimerization of the PER protein. Chronobiol Int. 1997; 14: 521–30
  • Iwasaki H, Dunlap J C. Microbial circadian oscillatory systems in Neurospora and Synechococcus: models for cellular clocks. Curr Opin Microbiol 2000; 3: 189–96
  • Johnson C H. Changes in intracellular pH are not correlated with the circadian rhythm of Neurospora. Plant Physiol. 1983; 72: 129–33
  • Kondo T, Ishiura M. The circadian clocks of plants and cyanobacteria. Trends Plant Sci. 1999; 4: 171–75
  • Kruse M. Beeinflussung der Circadianen Rhythmik von Neurospora crassa durch verschiedene Protonenkonzentrationen im Medium. University of Bremen. 1984, Diploma work
  • Lakin-Thomas P L. Circadian rhythms: new functions for old clock genes. Trends Genet 2000; 16: 135–42
  • Lakin-Thomas P L, Brody S. Circadian rhythms in Neurospora crassa: interactions between clock mutations. Genetics 1985; 109: 49–66
  • Lakin-Thomas P L, Brody S. Circadian rhythms in Neurospora crassa: lipid deficiencies restore robust rhythmicity to null frequency and white-collar mutants. Proc Natl Acad Sci USA 2000; 97: 256–61
  • Lakin-Thomas P L, Brody S, Cotè G G. Temperature compensation and membrane composition in Neurospora crassa. Chronobiol Int. 1997; 14: 445–54
  • Lakin-Thomas P L, Cotè G G, Brody S. Circadian rhythms in Neurospora crassa: biochemistry and genetics. Crit Rev Microbiol. 1990; 17: 365–416
  • Legerton T L, Kanamori K, Weiss R L, et al. Measurements of cytoplasmic and vacuolar pH in Neurospora using nitrogen-15 nuclear magnetic resonance spectroscopy. Biochemistry 1983; 22: 899–903
  • Leloup J-C, Goldbeter A. Temperature compensation of circadian rhythms: control of the period in a model for circadian oscillations of the PER protein in Drosophila. Chronobiol Int. 1997; 14: 511–20
  • Leloup J-C, Goldbeter A. A model for circadian rhythms in Drosophila incorporating the formation of a complex between PER and TIM proteins. J Biol Rhythms 1998; 13: 70–87
  • Leloup J-C, Goldbeter A. Modelling the molecular regulatory mechanism of circadian rhythms in Drosophila. BioEssays 2000; 22: 84–93
  • Liu Y, Loros J J, Dunlap J C. Phosphorylation of the Neurospora clock protein FREQUENCY determines its degradation rate and strongly influences the period length of the circadian clock. Proc Natl Acad Sci USA 2000; 97: 234–39
  • Luo C, Loros J J, Dunlap J C. Nuclear localization is required for function of the essential clock protein FRQ. EMBO J. 1998; 17: 1228–35
  • Mattern D L, Forman L R, Brody S. Circadian rhythms in Neurospora crassa: a mutation affecting temperature compensation. Proc Natl Acad Sci USA 1982; 79: 825–29
  • Merrow M, Brunner M, Roenneberg T. Assignment of circadian function for the Neurospora clock gene frequency. Nature 1999; 399: 584–86
  • Murray R K, Granner D K, Mayes P A, et al. Harper's biochemistry. 24th ed., Prentice Hall, London 1996
  • Pilatus U, Techel D. 31P-NMR-studies on intracellular pH and metabolite concentrations in relation to the circadian rhythm, temperature and nutrition in Neurospora crassa. Biochim Biophys Acta 1991; 1091: 349–55
  • Pittendrigh C S. Temporal organization: reflections of a Darwinian clock-watcher. Annu Rev Physiol. 1993; 55: 17–54
  • Pittendrigh C S, Caldarola P C. General homeostasis of the frequency of circadian oscillations. Proc Natl Acad Sci USA 1973; 70: 2697–2701
  • Rábai G, Hanazaki I. Temperature compensation in the oscillatory hydrogen peroxide-thiosulfate-sulfite flow system. Chem Commun. 1999; 1965–66
  • Rodriguez-Navarro A, Blatt M R, Slayman C L. A potassium-proton symport in Neurospora crassa. J Gen Physiol. 1986; 87: 649–74
  • Ruoff P. Introducing temperature compensation in any reaction kinetic oscillator model. J Interdiscipl Cycle Res. 1992; 23: 92–99
  • Ruoff P. Antagonistic balance in the Oregonator: about the possibility of temperature compensation in the Belousov-Zhabotinsky reaction. Physica D. 1995; 84: 204–11
  • Ruoff P. Special issue: temperature-compensation of circadian and ultradian clocks. Chronobiol Int. 1997; 14(5)
  • Ruoff P, Mohsenzadeh S, Rensing L. Circadian rhythm and protein turnover: the influence of temperature on the period lengths of clock mutants simulated by the Goodwin oscillator. Naturwissenschaften 1996; 83: 514–17
  • Ruoff P, Rensing L. The temperature compensated Goodwin model simulates many circadian clock properties. J Theor Biol. 1996; 179: 275–85
  • Ruoff P, Rensing L, Kommedal R, et al. Modelling temperature compensation in chemical and biological oscillators. Chronobiol Int. 1997; 14: 499–511
  • Ruoff P, Vinsjevik M, Mohsenzadeh S, et al. The Goodwin model: simulating the effect of cycloheximide and heat shock on the sporulation rhythm of Neurospora crassa. J Theor Biol. 1999; 196: 483–94
  • Ruoff P, Vinsjevik M, Monnerjahn C, et al. The Goodwin oscillator: on the importance of degradation reactions in the circadian clock. J Biol Rhythms 1999; 14: 37–47
  • Sanders D, Slayman C L. Control of intracellular pH. Predominant role of oxidative metabolism, not proton transport, in the eukaryotic microorganism Neurospora. J Gen Physiol. 1982; 80: 377–402
  • Sargent M L, Kaltenborn S H. Effects of medium composition and carbon dioxide on circadian conidiation in Neurospora. Plant Physiol. 1972; 50: 171–75
  • Skoog D A, West D M, Holler F J. Fundamentals of analytical chemistry. 7th ed., Saunders College Publishing, Fort Worth, Texas 1996, chap. 11I
  • Tipton K F, Dixon H BF. Effects of pH on enzymes. Methods in enzymology, D L Purich. Academic, New York 1979; 63A: 183–234
  • Tyson J J, Hong C I, Thron C D, et al. A simple model of circadian rhythms based on dimerization and proteolysis of PER and TIM. Biophys J. 1999; 77: 2411–17
  • Versaw W K, Metzenberg R L. Repressible cation-phosphate symporters in Neurospora crassa. Proc Natl Acad Sci USA 1995; 92: 3884–87
  • Vogel H A. A convenient growth medium for Neurospora (medium N). Microbiol Gen Bull 1956; 15: 42–43
  • Weast R C. CRC handbook of chemistry and physics. 50th ed., Chemical Rubber Company, Cleveland, Ohio 1969
  • West D J. Effect of pH and biotin on a circadian rhythm of conidiation in Neurospora crassa. J Bacteriol 1975; 123: 387–89
  • Winfree A T. The geometry of biological time. Springer Verlag, New York 1980
  • Yang Y C, Bastos M, Chen K Y. Effects of osmotic stress and growth stage on cellular pH and polyphosphate metabolism in Neurospora crassa as studied by 31P nuclear magnetic resonance spectroscopy. Biochim Biophys Acta 1993; 1179: 141–47

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.