Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 18, 2001 - Issue 2
212
Views
24
CrossRef citations to date
0
Altmetric
Original

EXTRAOCULAR PHOTOTRANSDUCTION AND CIRCADIAN TIMING SYSTEMS IN VERTEBRATES

, &
Pages 137-172 | Published online: 07 Jul 2009

REFERENCES

  • Benoit J. The role of the eye and of the hypothalamus in photostimulation of gonads in the duck. Ann. N.Y. Acad. Sci. 1964; 117: 204–216
  • McMillan J. P., Keatts H. C., Menaker M. On the role of eyes and brain photoreceptors in the sparrow: entrainment to light cycles. J. Comp. Physiol. 1975; 102: 251–256
  • Menaker M., Roberts R., Elliott J., Underwood H. Extraretinal light perception in the sparrow. III: The eyes do not participate in photoperiodic photoreception. Proc. Natl. Acad. Sci. U.S.A. 1970; 67: 320–325
  • Yokoyama K., Farner D. S. Induction of Zugunruhe by photostimulation of encephalic receptors in white-crowned sparrows. Science 1978; 201: 76–79
  • Ganong W. F., Shephard M. D., Wall I. R., et al. Penetration of light into the brain of mammals. Endocrinology 1963; 72: 962–963
  • Whitmore D., Foulkes N. S., Sassone-Corsi P. Light acts directly on organs and cells in culture to set the vertebrate circadian clock. Nature 2000; 404: 87–91
  • David-Gray Z. K., Janssen J. W., DeGrip W. J., et al. Light detection in a “blind” mammal. Nat. Neurosci. 1998; 1: 655–656
  • Foster R. G., Argamaso S, Coleman S., et al. Photoreceptors regulating circadian behavior: a mouse model. J. Biol. Rhythms 1993; 8: S17–S23
  • Foster R. G., Provencio I., Hudson D., et al. Circadian photoreception in the retinally degenerate mouse (rd/rd). J. Comp. Physiol. [A] 1991; 169: 39–50
  • Lucas R. J., Foster R. G. Photoentrainment in mammals: a role for cryptochrome?. J. Biol. Rhythms 1999; 14: 4–10
  • Underwood H. Circadian organization in lizards: the role of the pineal organ. Science 1977; 195: 587–589
  • Adler K. Extraocular photoreception in amphibians. Photophysiology 1976; 23: 275–298
  • Underwood H. Retinal and extraretinal photoreceptors mediate entrainment of circadian locomotor rhythm in lizards. J. Comp. Physiol. 1973; 83: 187–222
  • Menaker M. Extraretinal light perception in the sparrow. I. Entrainment of the biological clock. Proc. Natl. Acad. Sci. U.S.A. 1968; 59: 414–421
  • van Veen T., Hartwig H.-G., Muller K. Light-dependent motor activity and photonegative behavior in the eel (Anguilla anguilla L.). Evidence for extraretinal and extrapineal photoreception. J. Comp. Physiol. 1976; 111: 209–219
  • Kavaliers M., Ralph C. L. Encephalic photoreceptor involvement in the entrainment and control of circadian activity of young American alligators. Physiol. Behav. 1981; 26: 413–418
  • Vriend J. Endocrine effects of blinding in male Syrian hamsters are associated with increased hypothalamic 5-HIAA/serotonin ratios. J. Pineal Res. 1989; 7: 401–409
  • Leadem C. A., Burns D. M., Benson B. Possible involvement of hypothalamic dopaminergic system in the prolactin-inhibitory effects of the pineal gland in blind anosmic male rats. Neuroendocrinology 1988; 48: 1–7
  • Ibuka N. Circadian rhythms in sleep-wakefulness and wheel-running activity in a congenitally anophthalmic rat mutant. Physiol. Behav. 1987; 39: 321–326
  • Jagota A., Olcese J., Harinarayana Rao S., et al. Pineal rhythms are synchronized to light-dark cycles in congenitally anophthalmic mutant rats. Brain Res. 1999; 825: 95–103
  • Scheuch G. C., Johnson W., Conner R. L., et al. Investigation of circadian rhythms in a genetically anophthalmic mouse strain: correlation of activity patterns with suprachiasmatic nuclei hypogenesis. J. Comp. Physiol. 1982; 149: 333–338
  • Faradji H., Cespuglio R., Rondot G., et al. Absence of light-dark entrainment on the sleep-waking cycle in mice with intact visual perception. Brain Res. 1980; 202: 41–49
  • Rice C. E. Early blindness, early experience and perceptual enhancement. Res. Bull. Am. Found. Blind 1971; 22: 1–22
  • Kujala T., Alho K., Huotilainen M., et al. Electrophysiological evidence for cross-modal plasticity in humans with early- and late-onset blindness. Psychophysiology 1997; 34: 213–216
  • Kujala T., Alho K., Naatanen R. Cross-modal reorganization of human cortical functions. Trends Neurosci. 2000; 23: 115–120
  • Roder B., Rosler F., Henninghausen F. Different cortical activation patterns in blind and sighted humans during encoding and transformation of haptic images. Psychophysiology 1997; 34: 292–307
  • Uhl F., Franzen P., Lindinger G., et al. On the functionality of the visually deprived occipital cortex in early blind persons. Neuroscience Lett. 1991; 124: 256–259
  • Sack R. L., Lewy A. J., Blood M. L., et al. Circadian rhythm abnormalities in totally blind people: incidence and clinical significance. J. Clin. Endocrinol. Metab. 1992; 75: 127–134
  • Page T. L. Extraretinal photoreception in entrainment and photoperiodism in invertebrates. Experientia 1982; 38: 1007–1013
  • Steven D. M. The dermal light sense. Biol. Rev. Camb. Philos. Soc. 1963; 38: 204–240
  • Kavaliers M. Pineal involvement in control of circadian rhythmicity in the lake chub, Couesius plumbeus. J. Exp. Zool. 1979; 209: 33–40
  • Kavaliers M. Retinal and extraretinal entrainment action spectra for the activity rhythms of the lake chub, Couesius plumbeus. Behav. Neural Biol. 1980; 30: 56–67
  • Reed B. L. The control of circadian pigment changes in the pencil fish: a proposed role for melatonin. Life Sci. 1968; 7: 961–973
  • Adler K. Extraoptic phase shifting of circadian locomotor rhythm in salamanders. Science 1969; 164: 1290–1292
  • Demian J. J., Taylor D. H. Photoreception and locomotor rhythm entrainment by the pineal body of the newt, Notophthalamus viridescens (Amphibia, Urodela, Salamandriae). J. Herpetol. 1977; 11: 131–139
  • Scharrer E. Photo-neuro-endocrine system: general concepts. Ann. N.Y. Acad. Sci. 1964; 117: 13–22
  • Underwood H. Photoperiodic photoreception in the male lizard Anolis carolensis: the eyes are not involved. Comp. Biochem. Physiol. 1980; 67A: 191–194
  • Hunt J. M., Schlosberg H. The influence of illumination upon general activity in normal, blinded, and castrated white male rats. J. Comp. Physiol. 1939; 28: 285–298
  • Klein D. C., Weller J. L. Rapid light-induced decrease in pineal serotonin N-acetyltransferase. Science 1972; 177: 532–533
  • Zweig M., Snyder S. H., Axelrod J. Evidence for a nonretinal pathway of light to the pineal gland of newborn rats. Proc. Natl. Acad. Sci. U.S.A. 1966; 56: 515–520
  • Wetterberg L., Geller E., Yuwiler A. Harderian gland: an extraretinal photoreceptor influencing the pineal gland in neonatal rats?. Science 1970; 167: 884–885
  • Groos G. A., van der Kooy D. Functional absence of brain photoreceptors mediating entrainment of circadian rhythms in the adult rat. Experientia 1981; 37: 71–72
  • Andrade J. Learning during anaesthesia: a review. Br. J. Psychol. 1995; 86: 479–506
  • de la Motte I. Untersuchungen zur vergleichende Physiologie der Lichtempfindlichkeit geblendeter Fische. Z. Vegleichende Physiol. 1964; 49: 58–90
  • Nelson R. J., Zucker I. Absence of extraocular photoreception in diurnal and nocturnal rodents exposed to direct sunlight. Comp. Biochem. Physiol. 1981; 69A: 145–148
  • Goel N., Lee T. M. Olfactory bulbectomy impedes social but not photic reentrainment of circadian rhythms in female Octodon degus. J. Biol. Rhythms 1997; 12: 362–370
  • Yamazaki S., Goto M., Menaker M. No evidence for extraocular photoreceptors in the circadian system of the Syrian hamster. J. Biol. Rhythms 1999; 14: 197–201
  • Campbell S. S., Murphy P. J. Extraocular circadian phototransduction in humans. Science 1998; 279: 296–299
  • Meijer J. H., Thio B., Albus H., et al. Functional absence of extraocular photoreception in hamster circadian rhythm entrainment. Brain Res. 1999; 831: 337–339
  • Rao S. H., Diwan P. V. A behavioural profile of bilateral anophthalmic mutant rats. Exp. Anim. 1995; 44: 67–69
  • Oren D. A. Humoral phototransduction: blood is a messenger. Neuroscientist 1996; 2: 207–210
  • Erman M. K., Parry B. L., Stahl S. M. Successful treatment of disturbed sleep and circadian rhythms in a blind, enucleated individual with extraocular light therapy. Sleep 1999; 22: S96
  • Lindblom N., Heiskala H., Hatonen T., et al. No evidence for extraocular light induced phase shifting of human melatonin, cortisol and thyrotropin rhythms. Neuroreport 2000; 11: 713–717
  • Eastman C. I., Martin S. K., Herbert M. Failure of extraocular light to facilitate circadian rhythm entrainment in humans. Chronobiol. Int. 2000; 17: 807–826
  • Environmental Endocrinology, I. Assenmacher, D. S. Farner. Springer, Berlin 1978; 102
  • Benoit J. Le role des yeux dans l'action stimulante de la lumiere sur le developpment testiculaire chez le canard. C. R. Seances Soc. Biol. Fil. 1935; 118: 669–671
  • Benoit J. Stimulation par la lumiere artificielle du developpment testiculaire chez des canards aveugles par section du nerf optique. C. R. Seances Soc. Biol. Fil. 1935; 120: 133–136
  • Hutt F. B. Genetics of the Fowl. McGraw-Hill, New York 1943
  • Ookawa T. Effects of bilateral optic enucleation on body growth and gonad in young male chicks. Poultry Sci. 1970; 49: 333–334
  • Oishi T., Konishi T., Kato M. Investigations on photorecepting mechanisms to control gonadal development in Japanese quail. Environ. Control Biol. 1966; 3: 87–90
  • Olivier J. Photoreception et Mecanismes Regulateurs du Reflexe Photosexuel: Etude Chez la Caille; thesis. Universite de Montpellier. 1979
  • Sayler A., Wolfson A. Influence of the pineal gland on gonadal maturation in the Japanese quail. Endocrinology 1968; 83: 1237–1246
  • Gaston S., Menaker M. Pineal function: the biological clock in the sparrow?. Science 1968; 160: 1125–1127
  • Munns T. S. Effect of different photoperiods on melatonin synthesis in the pineal gland of the canary (Serinus canaris). Dissertation Abstracts 1971; 31: 1228B
  • Gwinner E., Turek F. W., Smith S. O. Extraocular light perception in photoperiodic response of the white-crowned sparrow (Zonotrichia leucophyris) and of the golden-crowned sparrow (Z. atricapilla). Z. Vergleichende Physiol. 1971; 75: 323–331
  • Turek F. K. Extraretinal photoreception during the gonadal photoreceptory period in the golden-crowned sparrow. J. Comp. Physiol. 1975; 96: 27–36
  • Oliver J., Bayle J. D. Brain photoreceptors for the photo-induced testicular response in birds. Experientia 1982; 38: 1021–1029
  • Wilson F. E. Extraocular control of photorefractoriness in American tree sparrows (Spizella arborea). Biol. Reprod. 1989; 41: 111–116
  • Ramachandran A. V., Ndukuba P. I. Preliminary evidence for pineal-mediated extraretinal photoreception in relation to tail regeneration in the Gekkonid lizard, Hemidactylus flaviviridis. J. Pineal Res. 1989; 6: 121–134
  • Urasaki H. The role of pineal and eyes in the photoperiodic effect on the gonad of the medaka, Oryzias latipes. Chronobiologia 1976; 3: 228–234
  • Borg B. Extraretinal photoreception involved in photoperiodic effects on reproduction in male three-spined sticklebacks, Gasterosteus aculeatus. Gen. Comp. Endocrinol. 1982; 47: 84–87
  • Urasaki H. Role of the pineal gland in gonadal development in the fish, Oryzias latipes. Annot. Zool. Japon. 1972; 45: 10–15
  • Pevet P., Heth G., Hiam A., et al. Photoperiod perception in the blind mole rat (Spalax ehrenbergi, Nehring): involvement of the Harderian gland, atrophied eyes, and melatonin. J. Exp. Zool. 1984; 232: 41–50
  • Cooper H. M., Herbin M., Nevo E. Ocular regression conceals adaptive progression of the visual system in a blind subterranean mammal. Nature 1993; 361: 156–159
  • Parker G. H. The skin and the eyes as receptive organs in the reactions of frogs to light. Am. J. Physiol. 1903; 10: 28–36
  • Pearse A. S. Reactions of amphibians to light. Proc. Am. Acad. Arts Sci. 1910; 45: 161–208
  • Kavaliers M. Extraretinal mediation of responses to temperature and light in hatchling alligators. J. Comp. Physiol. 1980; 136: 243–246
  • Ferguson D. E., Landreth H. F., McKeown J. P. Sun compass orientation of the northern cricket frog, Acris crepitans. Animal Behav. 1967; 15: 45–53
  • Landreth H. F., Ferguson D. E. Newts: sun-compass orientation. Science 1967; 158: 1459–1461
  • Taylor D. H. Extra-optic photoreception and compass orientation in larval and adult salamanders (Ambystoma tigrinum). Anim. Behav. 1972; 20: 233–236
  • Taylor D. H., Ferguson D. E. Extraoptic celestial orientation in the southern cricket frog Acris gryllus. Science 1970; 168: 390–392
  • Miyamoto Y., Sancar A. Vitamin B2-based blue-light photoreceptors in the retinohypothalamic tract as the photoactive pigments for setting the circadian clock in mammals. Proc. Natl. Acad. Sci. U.S.A. 1998; 95: 6097–6102
  • Thresher R. J., Vitaterna M. H., Miyamoto Y., et al. Role of mouse crypto-chrome blue-light photoreceptor in circadian photoresponses. Science 1998; 282: 1490–1494
  • Yamazaki S., Numano R., Abe M., et al. Resetting central and peripheral circadian oscillators in transgenic rats. Science 2000; 288: 682–685
  • Lisk R. D., Kannwischer L. R. Light: evidence for its direct effect on hypothalamic neurons. Science 1964; 146: 272–273
  • Homma K., Otha M., Sakaibara Y. Photo-inducible phase of the Japanese quail detected by direct stimulation to the brain. Biological Rhythms and Their Central Mechanisms, M. Sud, O. Hayaishi, H. Nakagawa. Elsevier, Amsterdam 1979; 85–94
  • Homma K., Sakakimara Y. Encephalic photoreceptors and their significance in photoperiodic control of sexual activity in Japanese quail. Biochronometry, M. Menaker. National Academy of Science U.S.A., Washington, DC 1971; 333–341
  • Wurtman R. J., Larin F., Axelrod J., et al. Formation of melatonin and 5-hydroxyindole acetic acid from 14C-tryptophan by rat pineal glands in organ culture. Nature 1968; 217: 953–954
  • Dodt E., Meissl H. The Pineal and Parietal Organs of Lower Vertebrates. Experientia 1982; 38: 996–1000
  • Underwood H., Menaker M. Extraretinal photoreception in lizards. Photophysiology 1976; 23: 227–243
  • Menaker M. Rhythms, reproduction, and photoreception. Biol. Reprod. 1971; 4: 295–308
  • Menaker M., Keatts H. Extraretinal light perception in the sparrow. II. Photoperiodic stimulation of testis growth. Proc. Natl. Acad. Sci. U.S.A. 1968; 60: 146–151
  • Menaker M., Underwood H. Extraretinal photoreception in birds. Photophysiology 1976; 23: 299–306
  • Zivkovic B. D., Underwood H., Siopes T. Circadian ovulatory rhythms in Japanese quail: role of ocular and extraocular pacemakers. J. Biol. Rhythms 2000; 15: 172–183
  • McDonagh A. F. Sunlight-induced mutation of bilirubin in a long-distance runner. N. Engl. J. Med. 1986; 314: 121–122
  • Gibson Q. H., Ainsworth S. Photosensitivity of haem compounds. Nature 1957; 180: 1416–1417
  • Venturini C. M., Palmer R. M., Moncada S. Vascular smooth muscle contains a depletable store of a vasodilator which is light-activated and restored by donors of nitric oxide. J. Pharmacol. Exp. Ther. 1993; 266: 1497–1500
  • Ding J. M., Chen D., Weber E. T., et al. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 1994; 266: 1713–1717
  • Melo L., Golombek D. A., Ralph M. R. Regulation of circadian photic responses by nitric oxide. J. Biol. Rhythms 1997; 12: 319–326
  • Furchgott R. F., Jothianandan D. Endothelium-dependent and -independent vasodilation involving cyclic GMP: relaxation induced by nitric oxide, carbon monoxide and light. Blood Vessels 1991; 28: 52–61
  • Kobayashi K., Kobayashi Y., Hashida-Okumura A., et al. Increase in peripheral blood flow due to extraocular direct irradiation of visible light in rats. Am. J. Physiol. Heart Circ. Physiol. 2000; 279: H1141–H1146
  • Lakin-Thomas P. L. Circadian rhythms: new functions for old clock genes. Trends Genet. 2000; 16: 135–142
  • Emery P., So W. V., Kaneko M., et al. CRY, a Drosophila clock and light-regulated cryptochrome, is a major contributor to circadian rhythm resetting and photosensitivity. Cell 1998; 95: 669–679
  • Whitmore D., Foulkes N. S., Strahle U., et al. Zebrafish clock rhythmic expression reveals independent peripheral circadian oscillators. Nat. Neurosci. 1998; 1: 701–707
  • Plautz J. D., Kaneko M., Hall J. C., et al. Independent photoreceptive circadian clocks throughout Drosophila. Science 1997; 278: 1632–1635
  • Harth M. S., Heaton M. B. Nonvisual photic responsiveness in newly hatched pigeons (Columba livia). Science 1973; 180: 753–755
  • Tosini G., Avery R. A. Dermal photoreceptors regulate basking behavior in the lizard Podarcis muralis. Physiol. Behav. 1996; 59: 195–198
  • Becker H. E., Cone R. A. Light-stimulated electrical responses from skin. Science 1966; 154: 1051–1053
  • Roberts A. Conducted impulses in the skin of young tadpoles. Nature 1969; 222: 1265–1266
  • Walker J. B. Temporary suppression of clonus in humans by brief photostimulation. Brain Res. 1985; 340: 109–113
  • Shen Z., Xiao J., Lin S. Z., et al. Effects of a low power laser beam guided by optic fiber on rat brain striatal monoamines and amino acids. Neurosci. Lett. 1982; 32: 203–208
  • Shen Z., Xiao J., Lin S. Z., et al. Effects of laser guided by optic fiber into rat brain on conditioned avoidance response and brain chemistry. Lasers Surg. Med. 1983; 2: 231–239
  • Wade P. D., Taylor J., Siekevitz P. Mammalian cerebral cortical tissue responds to low-intensity visible light. Proc. Natl. Acad. Sci. U.S.A. 1988; 85: 9322–9326
  • Kubaszewski E., Peters A., McClain S., et al. Light-activated release of nitric oxide from vascular smooth muscle of normotensive and hypertensive rats. Biochem. Biophys. Res. Commun. 1994; 200: 213–218
  • Vizi E. S. Acetylcholine release from guinea-pig ileum by parasympathetic ganglion stimulants and gastrin-like polypeptides. Br. J. Pharmacol. 1973; 47: 765–777
  • Vizi E. S., Mester E., Tisza S., et al. Acetylcholine releasing effect of laser irradiation on Auerbach's plexus in guinea-pig ileum. J. Neural Transm. 1977; 40: 305–308
  • Snyder S. H. Nitric oxide: first in a new class of neurotransmitters. Science 1992; 257: 494–496
  • Hartwig H. G., Oksche A. Neurobiological aspects of extraretinal photoreceptive systems: structure and function. Experientia 1982; 38: 991–996
  • Hartwig H. G., van Veen T. Spectral characteristics of visible radiation penetrating into the brain and stimulating extraretinal photoreceptors. J. Comp. Physiol. 1979; 130: 277–282
  • Oksche A., Hartwig H. G. (1975) Photoneuroendocrine systems and the third ventricle. Brain-Endocrine Interaction. II. The Ventricular System, 2nd International Symposium, Shizuoka, 1974, K. M. Knigge, D. E. Scott, H. Kobaiashi, S. Ishii. Karger, Basel, 40–53
  • Blackshaw S., Snyder S. H. Developmental expression pattern of phototransduction components in mammalian pineal implies a light-sensing function. J. Neurosci. 1997; 17: 8074–8082
  • David-Gray Z. K., Cooper H. M., Janssen J. W., et al. Spectral tuning of a circadian photopigment in a subterranean “blind” mammal (Spalax ehrenbergi). FEBS Lett. 1999; 461: 343–347
  • Foster R. G., Grace M. S., Provencio I., et al. Identification of vertebrate deep brain photoreceptors. Neurosci Biobehav. Rev. 1994; 18: 541–546
  • Foster R. G., Soni B. G. Extraretinal photoreceptors and their regulation of temporal physiology. Rev. Reprod. 1998; 3: 145–150
  • Garcia-Fernandez J. M., Jimenez A. J., Gonzalez B., et al. An immunocytochemical study of encephalic photoreceptors in three species of lamprey. Cell Tissue Res. 1997; 288: 267–278
  • Oren D. A. Bilirubin, REM sleep, and phototransduction of environmental time cues. A hypothesis. Chronobiol. Int. 1997; 14: 319–329
  • Jerison H. J. Evolution of the Brain and Intelligence. Academic Press, New York 1973
  • Rusak B., Zucker I. Neural regulation of circadian rhythms. Physiol. Rev. 1979; 59: 449–526

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.