Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 19, 2002 - Issue 1
155
Views
46
CrossRef citations to date
0
Altmetric
Original

Chronobiology of the mammalian response to ionizing radiation potential applications in oncology

Pages 77-100 | Published online: 07 Jul 2009

REFERENCES

  • Breus T.K., Halberg F., Cornelissen G. Influence of Solar Activity on the Physiological Rhythms of Biological Systems. Biophysics 1995; 40: 719–730
  • Butler G.C., Nicholas J., Lackland D.T., Friedberg W. Perspectives of Those Impacted: Airline Pilots Perspective. Health Phys. 2000; 79: 602–607
  • Friedberg W., Duke F.E., Snyder L., Faultner D.N., O'Brien K., Darden E.B., Jr, Parker D.E. The Cosmic Radiation Environment at Air Carrier Flight Altitudes and Possible Associated Health Risks. Radiat. Prot. Dosim. 1993; 48: 21–25
  • Nicholas J.S., Lackland D.T., Butler G.C., Mohr L.C., Jr, Dunbar J.B., Kaune W.T., Grosche B., Hoel D.G. Cosmic Radiation and Magnetic Field Exposure to Airline Flight Crews. Am. J. Ind. Med. 1998; 34: 574–580
  • Rafnsson V., Tulinius H., Jonasson J.G., Hrafnkelsson J. Risk of Breast Cancer in Female Flight Attendants: A Population-Based Study (Iceland). Cancer Causes Control 2001; 12: 95–101
  • Space Radiation Biology and Related Topics, C.A. Tobias, P. Todd. Academic Press, New York 1974; 590
  • Parker R.G., Withers R.H. Principles of Radiation Oncology. Cancer Treatment, C.M. Haskell. W.B. Saunders, Philadelphia 2001; 52–62
  • Puck T.T. Effect of Radiation on Mammalian Cells. The Mammalian Cell as a Microorganism, T.T. Puck. Holden-Day, San Francisco 1972
  • Puck T.T., Marcus P.I. Action of X-Rays on Mammalian Cells. J. Exp. Med. 1956; 103: 653–666
  • Sinclair W.K. Cyclic X-Ray Responses in Mammalian Cells In Vitro. Radiat. Res. 1968; 33: 620–643
  • Anderson R.E., Berthrong M., Fajardo L.F. Radiation Injury. Anderson's Pathology, I. Damjanov, J. Linder. 10th Ed., Mosby, St. Louis 1996; 484–512
  • Geske F.J., Gerschenson L.E. The Biology of Apoptosis. Hum. Pathol. 2001; 32(10)1029–1038
  • Rubin N.H. Influence of the Circadian Rhythm in Cell Division on Radiation-Induced Mitotic Delay In Vivo. Radiat. Res. 1982; 89: 65–76
  • Radiology of Cultured Mammalian Cells, M.M. Elkind, G.F. Whitmore. Gordon and Breach, New York 1967
  • Warren S. Histopathology of Radiation Lesions. Physiol. Rev. 1944; 24: 225–238
  • White D.C. An Atlas of Radiation Histopathology. ERDA Rep TID-26676. Technical Information Center, Office of Public Affairs, US Energy Research and Development Administration, Washington, DC 1975
  • The Effects on Populations of Exposure to Low Levels of Ionizing Radiation (BEIR Report). National Academy of Sciences—National Research Council, Washington, DC 1990
  • Radiation Carcinogenesis: Epidemiology and Biological Significance. Progress in Cancer Research and Therapy, J.D. Boice, J.F. Fraumeni. Raven Press, New York 1984; Vol. 26
  • Reinhold H.S., Fajardo L.F., Hopewell J.W. The Vascular System. Adv. Radiat. Biol. 1990; 14: 177–225
  • Pena L.A., Fuks Z., Kolesnick R.N. Radiation-Induced Apoptosis of Endothelial Cells in the Murine Central Nervous System: Protection by Fibroblast Growth Factor and Sphingomyelinase Deficiency. Cancer Res. 2000; 60: 321–327
  • Santana P., Pena L.A., Haimovitz-Friedman A., Martin S., Green D., McLoughlin M., Cordon-Cardo C., Schuchman E.H., Fuks Z., Kolesnick R. Acid Sphingomyelinase-Deficient Human Lymphoblasts and Mice Are Defective in Radiation-Induced Apoptosis. Cell 1996; 86: 189–199
  • Paris F., Fuks Z., Kang A., Capodieci P., Juan G., Ehleiter D., Haimovitz-Friedman A., Cordon-Cardo C., Kolesnick R. Endothelial Apoptosis as the Primary Lesion Initiating Intestinal Radiation Damage in Mice. Science 2001; 293: 293–297
  • Houchen C.W., George R.J., Sturmoski M.A., Cohn S.M. FGF-2 Enhances Intestinal Stem Cell Survival and Its Expression Is Induced After Radiation Injury. Am. J. Physiol. 1999; 276: G249–G258
  • Okunieff P., Mester M., Wang J., Maddox T., Gong X., Tang D., Coffee M., Ding I. In Vivo Radioprotective Effects of Angiogenic Growth Factors on the Small Bowel of C3H Mice. Radiat. Res. 1998; 150: 204–211
  • Khan W.B., Shui C., Ning S., Knox S.J. Enhancement of Murine Intestinal Stem Cell Survival After Irradiation by Keratinocyte Growth Factor. Radiat. Res. 1997; 148: 248–253
  • Scheving L.E., Tsai T.H., Sothern R.B., Hrushesky W.J.M. Circadian Susceptibility-Resistance Cycles to Radiation and Their Manipulability by Methylene Blue. Pharmacol. Ther. 1988; 19: 397–402
  • Marathe S., Schissel S.L., Yellin M.J., Beatini N., Mintzer R., Williams K.J., Tabas I. Human Vascular Endothelial Cells Are a Rich and Regulatable Source of Secretory Sphingomyelinase. J. Biol. Chem. 1998; 273(7)4081–4088
  • Cordon-Cardo C., Vlodavsky I., Haimovitz-Friedman A., Hicklin D., Fuks Z. Expression of Basic Fibroblast Growth Factor in Normal Human Tissues. Lab. Invest. 1990; 63: 832–840
  • Lushbaugh C.C. Human Radiation Tolerance. Space Radiation Biology and Related Topics, C.A. Tobias, P. Todd. Academic Press, New York 1974; 476–521
  • Haus E., Halberg F., Loken M.K., Kim Y.S. Circadian Rhythmometry of Mammalian Radiosensitivity. Space Radiation Biology and Related Topics, C.A. Tobias, P. Todd. Academic Press, New York 1974; 435–474
  • Scheving L.E. Circadian Rhythms in Cell Proliferation: Their Importance When Investigating the Basic Mechanism of Normal Versus Abnormal Growth. Biological Rhythms in Structure and Function, H. von Meyersbach, L.E. Scheving, J.E. Pauly. Alan R. Liss, New York 1981; 39–79
  • Scheving L.E., Tsai T.H., Scheving L.A., Feuers R.J. The Potential of Using the Natural Rhythmicity of Cell Proliferation in Improving Cancer Chemotherapy in Rodents. Ann. NY Acad. Sci. 1991; 618: 182–227
  • Scheving L.E., Feures R.J., Tsai T.H., Scheving L.A. Experimental Background for Cancer Chronotherapy. Circadian Cancer Therapy, W.J.M. Hrushesky. CRC Press, Boca Raton, FL 1994; 19–40
  • Halberg F., Halberg E., Barnum C.P., Bittner J.J. Physiologic 24-hour Periodicity in Human Beings and Mice, the Lighting Regimen and Daily Routine. Photoperiodism and Related Phenomena in Plants and Animals, R. Withrow. American Association for the Advancement of Science, Washington, DC 1959; 803–878
  • Mayersbach H. von. Cellular Aspects of Bioryhthms, Symposium on Biorhythms. Springer-Verlag, Berlin 1967
  • Haus E., Halberg F., Loken M.K. Circadian Susceptibility–Resistance Cycle of Bone Marrow Cells to Whole Body X-Irradiation in Balb/c Mice. Chronobiologia 1974; 1: 115–122
  • Pizzarello D.J., Witcofski R.L., Lyons E.A. Variations in Survival Time After Whole-Body Radiation at Two Times of the Day. Science 1963; 139: 349–365
  • Pizzarello D.J., Isaak D., Kian Eng C., Rhyn A.L. Circadian Rhythmicity in the Sensitivity of Two Strains of Mice to Whole-Body Radiation. Science 1964; 145: 286–291
  • Nelson R.F. Variation in Radiosensitivity of Mice with Time of Day. Acta Radiol. Ther. 1965; 64: 91–96
  • Kortländer F. Untersuchungen über die Strahlensensitivität der Weissen Maus in Abhängigkeit vom Tagersrhythmus. Medizinische Fakultät der Westfälischen Wilhelms-Universität zu Münster, Germany
  • Hellwig G., Rosenkranz J. Uber Circadiane Schwankungen der Strahlensensibilität von Ratten. Strahlentherapie 1968; 135: 220–222
  • Scheving L.E., Tsai T.H., Scheving L.A. Chronobiology of the Intestinal Tract of the Mouse. Am. J. Anat. 1983; 168: 433–465
  • Gerbes A.L., Arbogast B.J. The Influence of Timeshift on Circadian Rhythm of Sensitivity to X-Irradiation in Mice. Chronobiol. Int. 1984; 1(3)177–184
  • Gerbes A.L., Arbogast B., Schick P., Messerschmidt O. Acute Radiation Injury of Mice and the Influence of Sudden Time Shift. Radiat. Res. 1984; 99: 285–293
  • Garcia-Sainz M., Halberg F., Moore V. Periodicidad en la Respuesta Biologica a la Radiacion Bio-ensayo en Roedores. Rev. Mex. Radiol. 1968; 19: 676–681
  • Kallman R.F., Silini G., Taylor H.M., III. Recuperation from Lethal Injury by Whole Body Irradiation. II. Kinetic Aspects in Radiosensitive Balb/c Mice and Cyclic Fine Structure During the Four Days After Conditioning Irradiation. Radiat. Res. 1966; 29: 362–394
  • Kallman R.F., Silini G. Recuperation from Lethal Injury by Whole Body Irradiation. I. Kinetic Aspects and the Relationship with Conditioning Dose in C57B1 Mice. Radiat. Res. 1964; 22: 622–642
  • Peters K. Verländerung der Überlebenszeit von Ratten nach Ganzkörperbestrahlung zu Verschiedenen Tageszeiten. Strahlentherapie 1963; 122: 554–557
  • Fochem K., Michalia W., Picha E. Über die Pharmakologische Beeinflussung der Tagersrhythmischen Unterschiede in der Strahlenwirkung und zur Frage der Jahreszeitlich Bedingten Unterschiede der Strahlensensibilitaet bei Ratten und Mäussen. Strahlentherapie 1967; 133: 356–361
  • Fochem K., Michalia W., Picha E. Über tages- und Jahreszeitliche Unterschiede der Strahlenwirkung bei Versuchstieren und die Möglichkeiten einer Pharmakologischen Beeinflussung. Strahlentherapie 1968; 135: 223–226
  • Haus E., Lakatua D.J., Sackett-Lundeen L. Circannual Variation of Cell Proliferation in Lymphoid Organs and Bone Marrow of BDF1 Male Mice on Three Lighting Regimens. Chronobiol. Int. 1997; 14(4)347–362
  • Smaaland R., Sothern R.B., Laerum O.D., Abrahamsen J.F. Rhythms in Human Bone Marrow and Blood Cells. Chronobiol. Int. 2002; 19(1)101–127
  • Dethmers J.K., Meister A. Glutathione Export by Human Lymphoid Cells: Depletion of Gluthione by Inhibition of Its Synthesis Decreases Export and Increases Sensitivity to Irradiation. Proc. Natl Acad. Sci. USA 1981; 78: 7492–7496
  • Biaglow J.E., Varnes M.E., Clark E.P., Epp E.P. The Role of Thiols in Cellular Response to Radiation and Drugs. Radiat. Res. 1983; 94: 437–455
  • Smaaland R., Svardal A.M., Lote K., Ueland P.M., Laerum O.D. Glutathione Content in Human Bone Marrow and Circadian Stage Relation to DNA Synthesis. J. Natl Cancer Inst. 1991; 83: 1092–1098
  • Ueno Y. Diurnal Rhythmicity in the Sensitivity of Hematopoietic Cells to Whole-Body Irradiation of Mice. Int. J. Radiat. Biol. 1968; 14: 301–312
  • Vacek A., Davidova E., Druzhinin Yu., Hosek B., Chlumecky J. Circadian Rhythmicity in the Effect of Irradiation on the Endogenous Colony Formation in the Spleen of Irradiated Mice. Int. J. Radiat. Biol. 1968; 13: 539–548
  • Vacek A., Rotkovska D. Circadian Variations in the Effect of X-Irradiation on the Hematopoietic Stem Cells of Mice. Strahlentherapie 1970; 140: 302–306
  • Newsome-Tabatabai R., Rushton P.S. Daily Variations in Radiosensitivity of Circulating Blood Cells and Bone Marrow Cellularity in Mice. Comp. Biochem. Physiol. 1984; 78A: 779–783
  • Bernabei P.A., Balzi M., Saccardi R., Becciolini A., Ferrini P.R. Time-Dependent Sensitivity of Rat CFU-GM to Total Body Irradiation. Haematologica 1992; 77: 21–24
  • Vriesendorp H.M., Quadri S.M., Andersson B.S., Dicke K.A. Hematologic Side Effects of Radiolabeled Immunoglobulin Therapy. Exp. Hematol. 1996; 24: 1183–1190
  • Blumenthal R.D., Reising A., Lew W., Dunn R., Ying Z., Goldenberg D.M. Chronotolerance of Experimental Radioimmunotherapy: Clearance, Toxicity, and Maximal Tolerated Dose of 131I-Anti-carcinoembryonic Antigen (CEA) IgG as a Function of Time of Day of Dosing in a Murine Model. Eur. J. Cancer 1999; 35(5)815–824
  • Bond V.P., Fliedner T.M., Archambeau J.O. Mammalian Radiation Lethality, a Disturbance in Cellular Kinetics. Academic Press, New York 1965
  • Scheving L.E., Tsai T.H., Scheving L.A., Feures R.J., Kanabrocki E.L. Normal and Abnormal Cell Proliferation in Mice Especially as It Relates to Cancer. Biological Rhythms in Clinical and Laboratory Medicine, Y. Touitou, E. Haus. Springer-Verlag, Berlin 1992; 566–599
  • Moore J.G. Circadian Cytokinetics of Murine and Human Gut: Implications for Colon Cancer Chemotherapy. Circadian Cancer Therapy, W.J.M. Hrushesky. CRC Press, Boca Raton, FL 1994; 105–116
  • Moore J.G. Chronobiology of the Gastrointestinal System. Biological Rhythms in Clinical and Laboratory Medicine, Y. Touitou, E. Haus. Springer-Verlag, Berlin 1992; 410–417
  • Bjarnason G.A., Jordan R. Circadian Variation of Cell Proliferation and Cell Cycle Protein Expression in Man: Clinical Implications. Prog. Cell Cycle Res. 2000; 4: 193–206
  • Bjarnason G.A., Jordan R. Rhythms in Human Gastrointestinal Mucosa and Skin. Chronobiol. Int. 2002; 19(1)129–140
  • Scheving L.E., Tsai T.H., Powell E.W., Pasley J.N., Halberg F. Bilateral Lesions of Suprachiasmatic Nuclei Effect on Circadian Rhythms in [3H]-Thymidine Incorporation into Deoxyribonucleic Acid in Mouse Intestinal Tract, in Mitotic Index of Corneal Epithelium, and in Serum Corticosterone. Anat. Res. 1983; 205: 239–249
  • Scheving L.E., Burns E.R., Pauly J.E., Tsai T.H., Betterton H.O., Halberg F. Meal Scheduling, Cellular Rhythms and the Chronotherapy of Cancer. Nutrition, H. Kioshi. Victory-sha, Kyoto 1976; 141–175
  • Scheving L.A., Scheving L.E., Tsai T.H., Pauly J.E. Circadian Stage-Dependent Effects of Insulin and Glucagon on Deoxyribonucleic Acid Synthesis in the Esophagus, Stomach, Duodenum, Jejunum, Ileum, Caccum, Rectum and Spleen of the Adult Female Mouse. Endocrine 1982; 111: 308–315
  • Buchi K.N., Moore J.G., Hrushesky W.J.M., Sothern R.B., Rubin N.R. Circadian Rhythm of Cellular Proliferation in the Human Rectal Mucosa. Gastroenterology 1991; 101: 410–415
  • Marra G., Anti M., Percesepe A., Armelao F., Ficarelli R., Coco C., Rinelli A., Vecchio F.M., D'Arcangelo E. Circadian Variations of Epithelial Cell Proliferation in Human Rectal Crypts. Gastroenterology 1994; 106: 982–987
  • Warnakulasuriya K.A.A.S., MacDonald D.G. Diurnal Variation in Labelling Index in Human Buccal Epithelium. Arch. Oral Biol. 1993; 38: 1107–1111
  • Bjarnason G.A., Jordan R., Sothern R.B. Circadian Variation in the Expression of Cell-Cycle Proteins in Human Oral Epithelium. Am. J. Pathol. 1999; 154(2)613–622
  • Bjarnason G.A., Jordan R.C.K., Wood P.A., Li Q., Lincoln D.W., Sothern R.B., Hrushesky W.J.M., Ben-David Y. Circadian Expression of Clock Genes in Human Oral Mucosa and Skin. Association with Specific Cell Cycle Phases. Am. J. Pathol. 2001; 158(5)1793–1801
  • Haus E., Lakatua D.J., Sackett-Lundeen L.L., White M. Circannual Variation of Intestinal Cell Proliferation in BDF1 Mice on Three Lighting Regimens. Chronobiol. Int. 1984; 1(3)185–194
  • Potten C.S. A Comprehensive Study of the Radiobiological Response of the Murine (BDF1) Small Intestine. Int. J. Radiat. Biol. 1990; 58(6)925–973
  • Ijiri K., Potten C.S. The Circadian Rhythm for the Number and Sensitivity of Radiation-Induced Apoptosis in the Crypts of Mouse Small Intestine. Int. J. Radiat. Biol. 1990; 58(1)165–175
  • Potten C.S., Booth C., Prichard D.M. The Intestinal Epithelial Stem Cell: The Mucosal Governor. Int. J. Exp. Pathol. 1997; 78: 219–243
  • Booth C., Potten C.S. Gut Instincts: Thoughts on Intestinal Epithelial Stem Cells. J. Clin. Invest. 2000; 105: 1493–1499
  • Potten C.S. The Significance of Spontaneous and Induced Apoptosis in the Gastrointestinal Tract of Mice. Cancer Metast. Rev. 1992; 11: 179–195
  • Potten C.S., Al-Barwari S.E., Hume W.J., Searle J. Circadian Rhythms of Presumptive Stem Cells in Three Different Epithelia of the Mouse. Cell Tissue Kinet. 1977; 10: 557–568
  • Ruifrok A.C.C., Weil M.M., Thames H.D., Mason K.A. Diurnal Variations in the Expression of Radiation-Induced Apoptosis. Radiat. Res. 1998; 149: 360–365
  • Ijiri K., Potten C.S. Circadian Rhythms in the Incidence of Apoptotic Cells and Number of Clonogenic Cells in Intestinal Crypts After Radiation Using Normal and Reversed Light Conditions. Int. J. Radiat. Biol. 1988; 53(5)717–727
  • Duncan A.M.V., Ronen A., Blakey D.H. Diurnal Variation in the Response of Gamma-Ray-Induced Apoptosis in the Mouse Intestinal Epithelium. Cancer Lett. 1983; 21: 163–166
  • Ijiri K. Cell Death (Apoptosis) in Mouse Intestine After Continuous Irradiation with γ Rays and with β Rays from Tritiated Water. Radiat. Res. 1989; 118: 180–191
  • Becciolini A., Balzi M., Fabbrica D., Potten C.S. Cell Kinetics in Rat Small Intestine After Exposure to 3 Gy of γ-Rays at Different Times of the Day. Int. J. Radiat. Biol. 1996; 70(3)281–288
  • Thames H.D., Ruifrok A.C.C., Mason K.A. The Effect of Proliferative Status and Clonogen Content on the Response of Mouse Jejunal Crypts to Split-Dose Irradiation. Radiat. Res. 1997; 147: 172–178
  • Haus E., Dumitriu L., Nicolau G.Y., Bologa S., Sackett-Lundeen L. Circadian Rhythms of Basic Fibroblast Growth Factor (bFGF), Epidermal Growth Factor (EGF), Insulin-like Growth Factor-1 (IGF-1), Insulin-like Growth Factor Binding Protein-3 (IGFBP-3), Cortisol, and Melatonin in Women with Breast Cancer. Chronobiol. Int. 2001; 18(4)709–727
  • Folkman J., Camphausen K. What Does Radiotherapy Do to Endothelial Cells?. Science 2001; 293: 227–228
  • Teicher B.A., Dupuis N., Kusomoto T., Robinson M.F., Liu F., Menon K., Coleman C.N. Antiangiogenic Agents Can Increase Tumor Oxygenation and Response to Radiation Therapy. Radiat. Oncol. Invest. 1995; 2: 269–276
  • Mauceri H.J., Hanna N.N., Beckett M.A., Gorski D.H., Staba M.J., Stellato K.A., Bigelow K., Heimann R., Gately S., Dhanabal M., Soff G.A., Sukhatme V.P., Kufe D.W., Weichselbaum R.R. Combined Effects of Angiostatin and Ionizing Radiation in Antitumour Therapy. Nature 1998; 394: 287–291
  • Scheving L.E., Pauly J.E. Daily Mitotic Fluctuations in the Epidermis of the Rat and Their Relation to Variations in Spontaneous Activity and Rectal Temperature. Acta Anat. 1960; 43: 337–345
  • Clausen O.P.F., Thorud E., Bjerknes R., Elgjo K. Circadian Rhythms in Mouse Epidermal Basal Cell Proliferation. Cell Tissue Kinet. 1979; 12: 319–337
  • Scheving L.E. Mitotic Activity in the Human Epidermis. Anat. Rec. 1959; 135: 7–19
  • Fisher L.B. Determination of the Normal Rate and Duration of Mitosis in Human Epidermis. Br. J. Dermatol. 1968; 80(1)24–28
  • Denekamp J., Fowler J.F. Further Investigations of the Response of Irradiated Mouse Skin. Int. J. Radiat. Biol. 1966; 10(5)435–441
  • Hirn-Stadler B., Rojas A. Influence of Circadian Rhythms on Radiosensitivity: Single and Fractionated Dose Studies in Mouse Skin. Int. J. Radiat. Biol. 1991; 59(1)185–193
  • Bertalanffy F.A.D. Mitotic Rate Spontaneous Mammary Gland Adenocarcinoma in C3H/HeJ Mice. Nature (London) 1963; 198: 496–497
  • Halberg F., Haus E., Cardoso S.S., Scheving L.E., Kuhl J.F.W., Shiotsuka R., Rosene G., Pauly J.E., Runge W., Spalding J.F., Lee J.K., Good R.A. Toward a Chronotherapy of Neoplasia: Tolerance of Treatment Depends upon Host Rhythms. Experientia 1973; 29: 909–1044
  • Echave Llanos J. Ritmo de 24 horas en la Actividad Mitotica de un Carcinoma Mamario Injertado de C3H/mza Hembra. Rev. Soc. Argent. Biol. 1961; 37: 226–239
  • Haus E., Halberg F. Cronofarmacologia del Cancro e Della Leucemia. Farmacologia Clinica E Terapia, A. Bertelli. Edizioni, C.G. Medico-Scientifiche, Torino, Italy 1978; 29–85
  • Burns E.R., Scheving L.E., Tsai T.H. Circadian Rhythms in DNA Synthesis and Mitosis in Normal Mice and in Mice Bearing the Lewis Lung Carcinoma. Eur. J. Cancer 1979; 15(2)233–242
  • Blank M.A., Gushchin V.A., Halberg F., Portela A., Cornélissen G. X-Irradiation Chronosensitivity and Circadian Rhythmic Proliferation in Healthy and Sarcoma-Carrying Rats' Bone Marrow. In Vivo 1995; 9: 395–400
  • Badran A.F., Echave Llanos J.M. Persistence of Mitotic Circadian Rhythm of a Transplantable Mammary Carcinoma After 35 Generations: Its Bearing on the Success of Treatment with Endoxan. J. Natl Cancer Inst. 1965; 35: 285–290
  • Klevecz R.R., Braly P.S. Circadian and Ultradian Cytokinetics of Human Cancers. Circadian Cancer Therapy, W.J.M. Hrushesky. CRC Press, Boca Raton, FL 1994; 165–183
  • Tähti E. Studies of the Effect of X-Irradiation on 24-Hour Variations in the Mitotic Activity in Human Malignant Tumours. Acta Pathol. Microbiol. Scand. 1956; Suppl. 117: 1–61
  • Voutilainen A. Ueber die 24-Stunden-Rhythmik der Mitosenfrequenz in Malignen Tumoren. Acta Pathol. Microbiol. Scand. 1953; Suppl. 99: 1–104
  • Garcia-Sainz M., Halberg F. Mitotic Rhythms in Human Cancer, Reevaluated by Electronic Computer Programs—Evidence for Chronopathology. J. Natl Cancer Inst. 1966; 37: 279–292
  • Howard A. Influence of Radiation on DNA Metabolism. Ciba Foundation Symposium on Ionizing Radiations and Cell Metabolism. J. and A. Churchill, London 1956
  • Low-Beer B.V.A. 32P Studies in Breast Tumours. Cardologia 1952; 21: 497–505
  • Bullen M.A., Freundlich H.F., Hale B.T., Marshall D.H., Tudway R.C. The Activity of Malignant Tumours and Response to Therapeutic Agents, Studied by Continuous Records of Radioactive Phosphorus Uptake. Postgrad. Med. J. 1963; 39: 265–277
  • Stoll B.A., Burch W.M. Surface Detection of Circadian Rhythm in 32P Content of Cancer of the Breast. Cancer 1968; 21: 193–196
  • Klevecz R.R., Braly P.S. Circadian and Ultradian Rhythms of Proliferation in Human Ovarian Cancer. Chronobiol. Int. 1987; 4: 513–522
  • Deka A.C., Chatterjee B., Gupta B.D., Balakrishnan C., Dutta T.K. Temperature Rhythm—an Index of Tumour Regression and Mucositis During the Radiation Treatment of Oral Cancers. Ind. J. Cancer 1976; 13: 44–50
  • Deka B., Deka A.C., Patil R.B., Halberg F. In Phase Synchronization of Circadian Temperature Rhythm of Cancerous and Healthy Sides of Mouth Documented by 2-Hourly Measurements for 4 Consecutive Days. Int. J. Chronobiol. 1981; 7: 226, Abstract
  • Halberg, F.; Gupta, B. D.; Haus, E.; Halberg, E.; Deka, A. C.; Nelson, W.; Sothern, R. B.; Cornélissen, G.; Lee, J. K.; Lakatua, D. J.; Scheving, L. E.; Burns, E. R. Steps Toward a Cancer Chronopolytherapy. Proceedings of XIV International Congress on Therapeutics, Montpellier, France, L'Expansion Scientifique Francaise, 1977; 151–196.
  • Haus E., Halberg F. Circannual Rhythm in Level and Timing of Serum Corticosterone in Standardized Inbred Mature C-Mice. Environ. Res. 1970; 3: 81–106
  • Haus E., Nicolau G.Y., Lakatua D.J., Sackett-Lundeen L. Reference Values for Chronopharmacology. Annu. Rev. Chronopharmacol. 1988; 4: 333–424
  • Mormont C., Waterhouse J. Contribution of the Rest–Activity Circadian Rhythm to Quality of Life. Chronobiol. Int. 2002; 19((1))313–323

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.