Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 19, 2002 - Issue 5
1,411
Views
211
CrossRef citations to date
0
Altmetric
Original

TEMPERATURE EFFECT ON ENTRAINMENT, PHASE SHIFTING, AND AMPLITUDE OF CIRCADIAN CLOCKS AND ITS MOLECULAR BASES

&
Pages 807-864 | Published online: 07 Jul 2009

REFERENCES

  • Bruce V.G. Environmental Entrainment of Circadian Rhythms. Cold Spring Harbor Symp. Quant. Biol. 1960; 25: 29–48
  • Sweeney B.M., Hastings J.W. Effects of Temperature upon Diurnal Rhythms. Cold Spring Harbor Symp. Quant. Biol. 1960; 25: 87–104
  • Wilkins M.B. The Influence of Temperature and Temperature Changes on Biological Clocks. Circadian Clocks, J. Aschoff. North Holland Publ. Co., Amsterdam 1965; 146–163
  • Bünning E. The Physiological Clock. Springer Verlag, Berlin 1967
  • Hoffmann K. Temperaturcyclen als Zeitgeber der Circadianen Periodik. Verh. Dtsch. Zool. Ges. Innsbruck 1968
  • Hoffmann K. Die Relative Wirksamkeit von Zeitgebern. Oecologia 1969; 3: 184–206
  • Hoffmann K. Zur Synchronisation Biologischer Rhythmen. Verh. Dtsch. Zool. Ges. 1970; 266–273
  • Cornelius G., Rensing L. Can Phase Response Curves of Various Treatments of Circadian Rhythms Be Explained by Effects on Protein Synthesis and Degradation?. Biosystems 1982; 15: 35–42
  • Balzer I., Hardeland R. Influence of Temperature on Biological Rhythms. Int. J. Biometeorol. 1998; 32: 231–241
  • Edmunds L., Jr. Cellular and Molecular Bases of Biological Clocks. Springer Verlag, Berlin 1988
  • Hastings J.W., Rusak B., Boulos Z. Circadian Rhythms: The Physiology of Biological Timing. Neural and Integrative Animal Physiology, L. Prosser. Wiley, New York 1991; 435–546
  • Dunlap J.C. Molecular Bases for Circadian Clocks. Cell 1999; 96: 271–290
  • Liu Y., Merrow M., Loros J.J., Dunlap J.C. How Temperature Changes Reset a Circadian Oscillator. Science 1998; 281: 825–829
  • Edery J. Role of Posttranscriptional Regulation in Circadian Clocks: Lessons from Drosophila. Chronobiol. Int. 1999; 16: 377–414
  • Rensing L., Kallies A., Gebauer G., Mohsenzadeh S. The Effects of Temperature Change on the Circadian Clock of Neurospora. Circadian Clocks and Their Adjustment. J. Wiley, Chichester 1995; Vol. 183: 26–50
  • Winfree A. The Geometry of Biological Time. Springer Verlag, Berlin 1980
  • Johnson C. Forty Years of PRCs—What Have We Learned?. Chronobiol. Int. 1999; 16: 711–743
  • Shaw J., Brody S. Circadian Rhythms in Neurospora: A New Measurement, the Reset Zone. J. Biol. Rhythms 2000; 15: 1–16
  • Gooch V.D. Effects of Light and Temperature Steps on Circadian Rhythms of Neurospora and Gonyaulax. Temporal Order, L. Rensing, N. Jaeger. Springer Verlag, Berlin 1985; 232–237
  • Gooch V.D., Wehseler R.A., Gross C.G. Temperature Effects on the Resetting of the Phase of the Neurospora Circadian Rhythm. J. Biol. Rhythms 1994; 9: 83–94
  • Sidote D., Majercak J., Parikh V., Edery I. Differential Effects of Light and Heat on the Drosophila Circadian Clock Proteins PER and TIM. Mol. Cell Biol. 1998; 18: 2004–2013
  • Pittendrigh C.S. Circadian Rhythms and the Circadian Organization of Living Systems. Cold Spring Harbor Symp. Quant. Biol. 1960; 25: 159–184
  • Temperature Compensation of Circadian and Ultradian Rhythms. Spec. Issue Chronobiol. Int. 1997; 14: 445–536
  • Schwemmle B. Thermoperiodic Effects and Circadian Rhythms in Flowering of Plants. Cold Spring Harbor Symp. Quant. Biol. 1960; 25: 239–243
  • Beck S.D. Insect Thermoperiodism. Annu. Rev. Entomol. 1983; 28: 91–108
  • Harmer S.L., Panda S., Kay S.A. Molecular Bases of Circadian Rhythms. Annu. Rev. Cell Dev. Biol. 2001; 17: 215–253
  • Rensing L., Meyer-Grahle U., Ruoff P. Biological Timing and the Clock Metaphor: Oscillatory and Hourglass Mechanisms. Chronobiol. Int. 2001; 18: 329–369
  • Lin R.F., Chou H.M., Huang T.C. Priority of Light/Dark Entrainment over Temperature in Setting the Circadian Rhythms of the Prokaryote Synechococcus RF-1. Planta 1999; 209: 202–206
  • Stern K., Bünning E. Über die Tagesperiodischen Bewegungen der Primarblätter von Phaseolus multiflorus. I. Der Einfluß der Temperatur auf die Bewegungen. Ber. Dtsch. Biol. Ges. 1929; 47: 565–584
  • Bühnemann F. Das Endodiurnale System der Oedogoniumzelle. III. Über den Temperatureinfluß. Z. Naturforsch. 1955; 206: 305–310
  • Oltmanns O. Über den Einfluß der Temperatur auf die Endogene Tagesrhythmik und die Blühinduktion bei der Kurztagspflanze Kalanchoë blossfeldiana. Planta 1960; 54: 233–264
  • Terry O.W., Edmuns L.N., Jr. Phasing of Cell Division by Temperature Cycles in Euglena Cultured Autotrophically Under Continuous Illumination. Planta 1970; 93: 106–127
  • Terry O.W., Edmunds L.N., Jr. Rhythmic Settlings Induced by Temperature Cycles in Continuously-Stirred Autotrophic Cultures of Euglena gracilis (Z strain). Planta 1970; 93: 128–142
  • Wilkins M.B. The Circadian Rhythm of Carbon-dioxide Metabolism in Bryophyllum: The Mechanism of Phase Shift Induction by Thermal Stimuli. Planta 1983; 157: 471–480
  • Heintzen C., Melzer S., Fischer R., Kappeler S., Apel K., Staiger D. A Light- and Temperature-Entrained Circadian Clock Controls Expression of Transcripts Encoding Nuclear Proteins with Homology to RNA-Binding Proteins in Meristematic Tissue. Plant J. 1994; 5: 799–813
  • Somers D.E., Webb A.R., Pearson M., Kay S.A. The Short-Period Mutant, toc1-1, Alters Circadian Clock Regulation of Multiple Outputs Throughout Development in Arabidopsis thaliana. Development 1998; 125: 485–494
  • McClung C.R. Circadian Rhythms in Plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 2001; 52: 139–162
  • Piechulla B., Riesselmann S. Effect of Temperature Alterations on the Diurnal Expression Pattern of the Chlorophyll a/b Binding Proteins in Tomato Seedlings. Plant Physiol. 1990; 94: 1903–1906
  • Harmer S.L., Hogenesch J.B., Straume M., Chang H.S., Han B., Zhu T., Wang X., Kreps J.A., Kay S.A. Orchestrated Transcription of Key Pathways in Arabidopsis by the Circadian Clock. Science 2000; 290: 2110–2113
  • Brinkmann K. Temperatureinflüsse auf die Circadiane Rhythmik von Euglena gracilis bei Mixotrophie und Autotrophie. Planta 1966; 70: 344–389
  • Balzer I., Possehl C., Rode I., Hardeland R. Novel Temperature Effects on the Circadian Rhythmicity of Gonyaulax. Proc. 11th ISB-Congress, P. Driscoll, E.O. Box. SPB Academic Publishing, The Hague 1989; 273–279
  • Broda H., Johnson C.H., Taylor W.R., Hastings J.W. Temperature Dependence of Phase Response Curves for Drug-Induced Phase Shifts. J. Biol. Rhythms 1989; 4: 327–333
  • Mayer W.E., Knoll U. Temperature Compensation of Cycloheximide-Sensitive Phases of the Circadian Clock in the Phaseolus pulvinus. Z. Pflanzenphysiol. 1981; 103: 413–425
  • Johnson, C.H. PRC Atlas. 2000.
  • Scholübbers H.G., Taylor W., Rensing L. Are Membrane Properties Essential for the Circadian Rhythm of Gonyaulax?. Am. J. Physiol. 1984; 247: R250–R256
  • Njus D., McMurray L., Hastings J.W. Conditionality of Circadian Rhythmicity: Synergistic Action of Light and Temperature. J. Comp. Physiol. 1977; 117: 335–344
  • Harris P.J., Wilkins M.B. The Circadian Rhythm in Bryophyllum Leaves: Phase Control by Radiant Energy. Planta 1978; 143: 323–328
  • Schwemmle B. Zur Temperaturabhängigkeit der Blütenbildung und der Endogenen Tagesrhythmik bei Kalanchoë blossfeldiana. Naturwiss 1957; 44: 356
  • Engelmann W., Eger I., Johnsson A., Karlsson H.G. Effect of Temperature Pulses on the Petal Rhythm of Kalanchoë: An Experimental and Theoretical Study. Int. J. Chronobiol. 1974; 2: 347–358
  • Moser I. Phasenverschiebungen der Endogenen Tagesrhythmik bei Phaseolus Durch Temperatur- und Lichtintensitätsänderungen. Planta 1962; 58: 199–219
  • Rikin A. Temperature-Induced Phase Shifting of Circadian Rhythms in Cotton Seedlings as Related to Variations in Chilling Resistance. Planta 1991; 185: 407–414
  • von der Heyde F., Wilkens A., Rensing L. The Effects of Temperature on the Circadian Rhythms of Flashing and Glow in Gonyaulax polyedra: Are the Two Rhythms Controlled by Two Oscillators?. J. Biol. Rhythms 1992; 7: 115–123
  • Anderson C.M., Wilkins M.B. Period and Phase Control by Temperature in the Circadian Rhythm of Carbon Dioxide Fixation in Illuminated Leaves of Bryophyllum fedtschenkoi. Planta 1989; 177: 456–469
  • Grams T.E.E., Borland A.M., Roberts A., Griffiths H., Beck F., Lüttge U. On the Mechanisms of Reinitiation of Endogenous Crassulacean Acid Metabolism Rhythm by Temperature Changes. Plant Physiol. 1997; 113: 1309–1317
  • Grams T.E.E., Beck F., Lüttge U. Generation of Rhythmic and Arrhythmic Behaviour of Crassulacean Acid Metabolism in Kalanchoë daigremontiana Under Continuous Light by Varying the Irradiance or Temperature: Measurements In Vivo and Model Simulations. Planta 1996; 198: 110–117
  • Rascher U., Blasius B., Beck F., Lüttge U. Temperature Profiles for the Expression of Endogenous Rhythmicity and Arrhythmicity of CO2 Exchange in the CAM Plant Kalanchoë daigremontiana Can Be Shifted by Slow Temperature Changes. Planta 1998; 207: 76–82
  • Riesselmann S., Piechulla B. Effect of Dark Phases and Temperature on the Chlorophyll a/b Binding Protein mRNA Level Oscillations in Tomato Seedlings. Plant Mol. Biol. 1990; 14: 605–616
  • Iwasaki H., Dunlap J.C. Microbial Circadian Oscillatory Systems in Neurospora and Synechococcus: Models for Cellular Clocks. Curr. Opin. Microbiol. 2000; 3: 189–196
  • Iwasaki H., Kondo T. The Current State and Problems of Circadian Clock Studies in Cyanobacteria. Plant Cell Physiol. 2000; 41: 1013–1020
  • Iwasaki H., Williams S.B., Kitayama Y., Ishiura M., Golden S.S., Kondo T. A KaiC-Interacting Sensory Histidine Kinase, SasA, Necessary to Sustain Robust Circadian Oscillation in Cyanobacteria. Cell 2000; 101: 223–233
  • Mittag M. Circadian Rhythms in Microalgae. Int. Rev. Cytol. 2001; 206: 213–247
  • Taylor W., Dunlap J.C., Hastings J.W. Inhibitors of Protein Synthesis on 80S Ribosomes Phase Shift the Gonyaulax Clock. J. Exp. Biol. 1982; 97: 121–136
  • Rensing L., Taylor W., Dunlap J.C., Hasting J.W. The Effects of Protein Synthesis Inhibitors on the Gonyaulax Clock. J. Comp. Physiol. 1980; 138: 9–18
  • Comolli J., Taylor W., Rehman J., Hastings J.W. An Inhibitor of Protein Phosphorylation Stops the Circadian Oscillator and Blocks Light-Induced Phase Shifting in Gonyaulax polyedra. J. Biol. Rhythms 1994; 9: 13–26
  • Roenneberg T., Morse D. Two Circadian Oscillators in One Cell. Nature 1993; 362: 362–364
  • Barak S., Tobin E.M., Andronis C., Sugano S., Green R.M. All in Good Time: The Arabidopsis Circadian Clock. Trends Plant Sci. 2000; 5: 517–522
  • Wang Z.Y., Tobin E.M. Constitutive Expression of the Circadian Clock Associated 1 (CCA1) Gene Disrupts Circadian Rhythms and Suppresses Its Own Expression. Cell 1998; 93: 1207–1217
  • Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I.A., Couplaud G. Late Elongated Hypocotyl, an Arabidopsis Gene Encoding a MYB Transcription Factor, Regulates Circadian Rhythmicity and Photoperiodic Responses. Cell 1998; 93: 1219–1229
  • Sugano S., Adronis C., Ong M.S., Green R.M., Tobin E.M. The Protein Kinase CK2 Is Involved in Regulation of Circadian Rhythms in Arabidopsis. Proc. Natl Acad. Sci. USA 1999; 96: 1262–1266
  • Strayer C., Oyama T., Schultz T.F., Ramanujam R., Somers D.E., Más P., Panda J.A., Kay S.A. Cloning of the Arabidopsis Clock Gene TOC1, an Autoregulatory Response Regulator Homolog. Science 2000; 289: 768–771
  • Matsushika A., Makino S., Kojima M., Mizuna T. Circadian Waves of Expression of the APRR1/TOC1 Family of Pseudoresponse Regulators in Arabidopsis thaliana: Insight into the Plant Circadian Clock. Plant Cell Physiol. 2000; 41: 1002–1012
  • Makino S., Matsushika A., Kojima M., Oda Y., Mizuno T. Light Response of the Circadian Waves the APRR1/TOC1 Quintet: When Does the Quintett Start Singing Rhythmically in Arabidopsis. Plant Cell Physiol. 2001; 42: 334–339
  • Drescher K., Cornelius G., Rensing L. Phase Response Curves Obtained by Perturbing Different Variables of a 24h Model Oscillator Based on Translational Control. J. Theor. Biol. 1982; 94: 345–353
  • Friemert V., Heininger D., Kluge M., Ziegler H. Temperature Effects on Malic-Acid Efflux from the Vacuoles and on the Carboxylation Pathways in Crassulacean-Acid-Metabolism Plants. Planta 1988; 174: 453–461
  • Minorsky P.V. Temperature Sensing by Plants: A Review and Hypothesis. Plant Cell Environ. 1989; 12: 119–135
  • Murata N., Los D.A. Membrane Fluidity and Temperature Perception. Plant Physiol. 1997; 115: 875–879
  • Browse J., Xin Z. Temperature Sensing and Cold Acclimation. Curr. Opin. Plant Biol. 2001; 4: 241–246
  • Maeda M., Wurgler-Murphy S.M., Saito H. A Two-Component System That Regulates an Osmosensing MAP Kinase Cascade in Yeast. Nature 1994; 309: 242–245
  • Monroy A.F., Dhindsa R.S. Low-Temperature Signal Transduction: Induction of Cold Acclimation-Specific Genes of Alfalfa by Calcium at 25°C. Plant Cell 1995; 7: 321–331
  • Nover L. Heat Shock Response. CRC, Boca Raton, FL 1991
  • Ahn S.G., Liu P.C., Klyachko K., Morimoto R.I., Thiele D.J. The Loop Domain of Heat Shock Transcription Factor1 Dictates DNA-Binding Specificity and Responses to Heat Stress. Genes Dev. 2001; 15: 2134–2145
  • Jerebzoff S., Jerebzoff-Quintin S., Labert E. Aspergillus niger: Characteristics of Endogenous and Low Frequency Rhythms. Int. J. Chronobiol. 1975; 2: 131–144
  • Jerebzoff S., Jerebzoff-Quintin S. Cyclic Activity of l-Asparaginase Through Reversible Phosphorylation in Leptosphaeria michotii. FEBS Lett. 1984; 171: 67–71
  • Übelmesser E.R. Über den Endonomen Rhythmus der Sporangienträgerbildung von Pilobolus. Arch. Microbiol. 1954; 20: 1–33
  • Feldman J.F., Dunlap J.C. Neurospora crassa: A Unique System for Studying Circadian Rhythms. Photochem. Photobiol. 1983; 7: 319–368
  • Lakin-Thomas P.L., Coté G.G., Brody S. Circadian Rhythms in Neurospora crassa: Biochemistry and Genetics. Crit. Rev. Microbiol. 1990; 17: 365–416
  • Loros J.J., Dunlap J.C. Genetic and Molecular Analysis of Circadian Rhythms in Neurospora. Annu. Rev. Physiol. 2001; 63: 757–794
  • Francis C.D., Sargent M.L. Effects of Temperature Perturbation on Circadian Conidiation in Neurospora. Plant Physiol. 1979; 64: 1000–1004
  • Rensing L. Is “Masking” an Appropriate Term?. Chronobiol. Int. 1989; 6: 297–300
  • Loxtercamp, C.D.; Gooch, V.D. Comparison of Analytical Methods for Temperature Pulse Phase Shifting on the Conidiation Circadian Rhythm of Neurospora crassa, National Conference on Undergraduate Research. Salisbury, Maryland, 1998.
  • Rensing L., Schill W. Perturbations of Cellular Circadian Rhythms by Light and Temperature. Temporal Disorder in Human Oscillatory Systems, L. Rensing, U. An der Heiden, M. Mackey. Springer Verlag, Berlin 1987; 233–245
  • Nakashima H. Comparison of Phase Shifting by Temperature of Wild Type Neurospora crassa and the Clock Mutant, frq-7. J. Interdiscip. Cycle Res. 1987; 18: 1–8
  • Goto R., Kaue R., Morishita M., Nakashima H. Effect of Temperature on the Circadian Conidiation Rhythm of Temperature-Sensitive Mutants of Neurospora crassa. Plant Cell Physiol. 1994; 35: 613–618
  • Rensing L., Bos A., Kroeger J., Cornelius G. Possible Link Between Circadian Rhythm and Heat Shock Response in Neurospora crassa. Chronobiol. Int. 1987; 4: 543–549
  • Fracella F., Scholle C., Kallies A., Häfker T., Schroeder T., Rensing L. Differential HSC70 Expression During Asexual Development of Neurospora crassa. Microbiology 1997; 143: 3615–3624
  • Ruoff P., Vinsjevik M., Mohsenzadeh S., Rensing L. The Goodwin Model: Simulating the Effect of Cycloheximide and Heat Shock on the Sporulation Rhythm of Neurospora crassa. J. Theor. Biol. 1999; 196: 483–494
  • Nakashima H., Perlman J., Feldman J.F. Cycloheximide-Induced Phase Shifting of the Circadian Clock of Neurospora. Am. J. Physiol. 1981; 241: R31–R35
  • Schulz R., Pilatus U., Rensing L. On the Role of Energy Metabolism in Neurospora Circadian Clock Function. Chronobiol. Int. 1985; 2: 223–233
  • Liu Y., Garceau N.Y., Loros J.J., Dunlap J.C. Thermally Regulated Translational Control of FRQ Mediates Aspects of Temperature Responses in the Neurospora Circadian Clock. Cell 1997; 89: 477–486
  • Garceau N.Y., Liu Y., Loros J.J., Dunlap J.C. Alternative Initiation of Translation and Time-Specific Phosphorylation Yield Multiple Forms of the Essential Clock Protein FREQUENCY. Cell 1997; 89: 469–476
  • Cheng P., Yang Y., Heintzen C., Liu Y. Coiled-Coil Domain-Mediated FRQ–FRQ Interaction Is Essential for Its Circadian Clock Function in Neurospora. EMBO J. 2001; 20: 101–108
  • Cheng P., Yang Y., Liu Y. Interlocked Feedback Loops Contribute to the Robustness of the Neurospora Clock. Proc. Natl Acad. Sci. USA 2001; 98: 7408–7413
  • Liu Y., Loros J.J., Dunlap J.C. Phosphorylation of the Neurospora Clock Protein FREQUENCY Determines Its Degradation Rate and Strongly Influences the Period Length of the Circadian Clock. Proc. Natl Acad. Sci. USA 2000; 97: 234–239
  • Yang Y., Cheng P., Zhi G., Liu Y. Identification of a Calcium/Calmodulin-Dependent Kinase That Phosphorylates the Neurospora Circadian Clock Protein FREQUENCY. J. Biol. Chem. 2001; 276: 41064–41072
  • Talora C., Franchi L., Linden H., Ballario P., Macino G. Role of White Collar-1–White Collar-2 Complex in Blue Light Signal Transduction. EMBO J. 1999; 18: 4961–4968
  • Heintzen C., Loros J.J., Dunlap J.C. The PAS Protein VIVID Defines a Clock-Associated Feedback Loop That Represses Light Input, Modulates Gating and Regulates Clock Resetting. Cell 2001; 104: 453–464
  • Nakashima H., Feldman J.F. Temperature Sensitivity of Light-Induced Phase Shifting of the Circadian Clock of Neurospora. Photochem. Photobiol. 1980; 32: 247–251
  • Lakin-Thomas P.L., Brody S., Coté G.G. Amplitude Model for the Effects of Mutations and Temperature on Period and Phase Resetting of the Neurospora Circadian Oscillator. J. Biol. Rhythms 1991; 6: 281–297
  • Crosthwaite S.C., Loros J.J., Dunlap J.C. Light-Induced Resetting of a Circadian Clock Is Mediated by a Rapid Increase in Frequency Transcript. Cell 1995; 81: 1003–1012
  • Crosthwaite S.C., Dunlap J.C., Loros J.J. Neurospora wc-1 and wc-1: Transcription, Photoresponses, and the Origin of Circadian Rhythmicity. Science 1997; 276: 763–769
  • Loros J.J., Feldman J.F. Loss of Temperature Compensation of Circadian Period Length in the frq-9 Mutant of Neurospora crassa. J. Biol. Rhythms 1986; 1: 187–198
  • Loros F.F., Richman A., Feldman J.F. A Recessive Circadian Clock Mutation at the frq Locus of Neurospora crassa. Genetics 1986; 114: 1095–1110
  • Lakin-Thomas P.L., Brody S. Circadian Rhythms in Neurospora crassa: Lipid Deficiencies Restore Robust Rhythmicity to Null Frequency and White-Collar Mutants. PNAS 2000; 97: 256–261
  • Merrow M., Brunner M., Roenneberg T. Assignment of Circadian Function for the Neurospora Clock Gene Frequency. Nature 1999; 399: 584–586
  • Kallies A., Gebauer G., Rensing L. Heat Shock Effects on Second Messenger Systems of Neurospora crassa. Arch. Microbiol. 1998; 170: 191–200
  • Shaw N.M., Harding R.W. Intracellular and Extracellular Cyclic Nucleotides in Wild-Type and White Collar Mutant Strains of Neurospora crassa. Temperature Dependent Efflux of Cyclic AMP from Mycelia. Plant Physiol. 1987; 83: 377–383
  • Techel D., Gebauer G., Kohler W., Braumann T., Jastorff B., Rensing L. On the Role of Ca2+-Calmodulin-dependent and cAMP-Dependent Protein Phosphorylation in the Circadian Rhythm of Neurospora crassa. J. Comp. Physiol. B 1990; 159: 695–706
  • Palmer J.P. The Biological Rhythms and Clocks of Intertidal Animals. Oxford University Press, Oxford 1995
  • Holmström W.F., Morgan E. Laboratory Entrainment of the Rhythmic Swimming Activity of Corophium volutator (PALLAS) to Cycles of Temperature and Periodic Inundation. J. Mar. Biol. Assoc. UK 1983; 63: 861–870
  • Natarajan P. External Synchronizers of Tidal Activity Rhythms in the Prawns Penaeus indicus and P. monodon. Mar. Biol. 1989; 101: 347–354
  • Brown F.A., Jr., Webb H.M. Temperature Relations of an Endogenous Daily Rhythmicity in the Fiddler Crab, Uca. Physiol. Zool. 1948; 21: 371–381
  • Stephens G.C. Influence of Temperature Fluctuations on the Diurnal Melanophor Rhythm in the Fiddler Crab, Uca. Physiol. Zool. 1957; 30: 55–69
  • Fanjul-Moles M., Prieto-Sagredo J. Effect of the Temperature upon Ultradian and Circadian ERG Amplitude Rhythms During Ontogeny of the Crayfish Procambarus clarkii. Bol. Estud. Med. y Biol. 1996; 44: 11–18
  • Williams B.G., Naylor E. Synchronization of the Locomotor Tidal Rhythm of Carcinus. J. Exp. Biol. 1969; 51: 715–725
  • Naylor E., Atkinson R.J.A., Williams B.G. External Factors Influencing the Tidal Rhythm of Shore Crabs. J. Interdiscip. Cycle Res. 1971; 2: 173–180
  • Enright J.T. The Tidal Rhythm of Activity of a Sand Beach Amphipod. Z. Vgl. Physiol. 1963; 46: 276–313
  • Naylor E. Temperature Relationships of the Locomotor Rhythms of Carcinus. J. Exp. Biol. 1963; 40: 669–679
  • Holmström W.F., Morgan E. The Effects of Low Temperature Pulses in Rephasing the Endogenous Activity Rhythm of Corophium volutator (PALLAS). J. Mar. Biol. Assoc. UK 1983; 63: 851–860
  • Fincham A.A. Rhythmic Behaviour of the Intertidal Amphipod Bathyporeia pelagica. J. Mar. Biol. Ass. UK 1970; 50: 1057–1068
  • Jones D.A., Naylor E. The Swimming Rhythm of the Beach Isopod Eurydice pulchra. J. Exp. Mar. Biol. Ecol. 1970; 4: 188–199
  • Insect Clocks, D.S. Saunders. Pergamon Press, Oxford 1982
  • Zimmerman W.F., Pittendrigh C.S., Pavlidis Th. Temperature Compensation of the Circadian Oscillation in Drosophila pseudoobscura and Its Entrainment by Temperature Cycles. J. Insect Physiol. 1968; 14: 669–684
  • Lankinen P., Riihimaa A. Effects of Temperature on Weak Circadian Eclosion Rhythmicity in Chymomyza costata (Diptera: Drosophilidae). J. Insect Physiol. 1997; 43: 251–260
  • Khare P.V., Barnabas M., Kanojiya M., Kulkarni A.D., Joshi D.S. Temperature Dependent Eclosion Rhythmicity in the High Altitude Himalayan Strains of Drosophila ananassae. Chronobiol. Int., in press
  • Pittendrigh C.S., Kyner W.T., Takamura T. The Amplitude of Circadian Oscillations: Temperature Dependence, Latitudinal Clines, and the Photoperiodic Time Measurement. J. Biol. Rhythms 1991; 6: 299–313
  • Sawyer L.A., Hennessy J.M., Peixoto A.A., Rosato E., Parkinson H., Costa R., Kyriacou C.P. Natural Variation in a Drosophila Clock Gene and Temperature Compensation. Science 1997; 278: 2117–2120
  • Kureck A. Circadian Eclosion Rhythm in Chironomus thummi: Ecological Adjustment to Different Temperature Cycles. Chironomidae, D.A. Murray. Pergamon Press, Oxford 1980; 73–79
  • Wohlfahrt Th.A. Wärme als Potentieller Zeitgeber für das Schlüpfen des Segelfalters Iphiclides podalirius (L.). Naturwissenschaften 1967; 54: 121–122
  • Tweedy D.G., Stephen W.P. Temperature Pulses Synchronize Emergence Rhythm in Bees. Experientia 1970; 26: 377–379
  • Helfrich Ch. Untersuchungen über das Circadiane System von Fliegen. Universität Tübingen
  • Wheeler D.A., Hamblen-Coyle M.J., Dushay M.S., Hall J.C. Behavior in Light Dark Cycles of Drosophila Mutants That Are Arrhythmic, Blind or Both. J. Biol. Rhythms 1993; 8: 67–94
  • Tomioka K., Sakamoto M., Harni Y., Matsumoto N., Matsumoto A. Light and Temperature Cooperate to Regulate the Circadian Locomotor Rhythm of Wild Type and Period Mutants of Drosophila melanogaster. J. Insect Physiol. 1998; 44: 587–596
  • Roberts S.K. Phase Shifting and Entrainment by Temperature in Cockroaches. J. Cell. Comp. Physiol. 1962; 58: 175–186
  • Page T.L. Temperature Effects on Lobectomized Cockroaches. J. Insect Physiol. 1985; 31: 235–242
  • Rence B., Loher W. Arrhythmically Singing Crickets: Thermoperiodic Reentrainment After Bilobectomy. Science 1975; 190: 383–387
  • Pittendrigh C.S., Minis D. The Photoperiodic Time Measurement in Pectinophora gossypiella and Its Relation to the Circadian System in That Species. Biochronometry, M. Menaker. National Academy of Sciences, Washington 1971; 212–250
  • Neumann D., Heimbach F. Time Cues for Semilunar Reproduction Rhythms in the European Populations of Clunio marinus. II. The Influence of Tidal Temperature Cycles. Biol. Bull. 1984; 166: 509–524
  • Winfree A.T. Acute Temperature Sensitivity of the Circadian Rhythm in Drosophila. J. Insect Physiol. 1972; 18: 181–185
  • Chandrashekaran M.K. Phase Shifts in the Drosophila pseudoobscura Circadian Rhythm Evoked by Temperature Pulses of Varying Durations. J. Interdiscip. Cycle Res. 1974; 5: 371–380
  • Maier R.W. Phase Shifting of the Circadian Rhythm of Eclosion in Drosophila pseudoobscura with Temperature Pulses. J. Interdiscip. Cycle Res. 1973; 4: 125–135
  • McDonald M.J., Rosbash M. Microarray Analysis and Organisation of Circadian Gene Expression in Drosophila. Cell 2001; 107: 567–578
  • Wiedenmann G., Loher W. Circadian Control of Singing in Crickets: Two Different Pacemakers for Early-Evening and Before-Dawn Activity. J. Insect Physiol. 1984; 30: 145–151
  • Lohmann M. Der Einfluß von Beleuchtungsstärke und Temperatur auf die Tagesperiodische Laufaktivität des Mehlkäfers Tenebrio molitor L. Z. Vgl. Physiol. 1964; 49: 341–389
  • Hamm U., Chandrashekaran M.K., Engelmann W. Temperature Sensitive Events Between Photoreceptor and Circadian Clock?. Z. Naturforsch. 1975; 30c: 240–244
  • Ceriani M.F., Darlington T.K., Staknis D., Mas P., Petti A.A., Weitz C.J., Kay S.A. Light-Dependent Sequestration of TIMELESS by CRYPTOCHROME. Science 1999; 285: 553–556
  • Stanewsky R., Kaneko M., Emery P., Beretta B., Wager-Smith K., Kay S.A., Rosbash M., Hall J.C. The cryb Mutation Identifies Cytochrome as a Circadian Photoreceptor in Drosophila. Cell 1998; 95: 681–692
  • Hunter-Ensor M., Ousley A., Sengal A. Regulation of the Drosophila Protein Timeless Suggests a Mechanism for Resetting the Circadian Clock by Light. Cell 1996; 84: 677–685
  • Lee C., Parikh V., Itsukaichi T., Bae K., Edery I. Resetting the Drosophila Clock by Photic Regulation of PER and a PER/TIM Complex. Science 1996; 271: 1740–1744
  • Myers M.P., Wager-Smith K., Rothefluh-Hilfiker A., Young M.W. Light-Induced Degradation of TIMELESS and Entrainment of the Drosophila Circadian Clock. Science 1996; 271: 1736–1740
  • Zeng H., Qian Z., Myers M.P., Rosbash M. A Light-Entrainment Mechanism for the Drosophila Circadian Clock. Nature 1996; 380: 129–135
  • Sidote D., Edery I. Heat-Induced Degradation of PER and TIM in Drosophila Bearing a Conditional Allele of the Heat Shock Transcription Factor Gene. Chronobiol. Int. 1999; 16: 519–525
  • Rensing L., Monnerjahn C. Heat Shock Proteins and Circadian Rhythms. Chronobiol. Int. 1996; 13: 239–250
  • Price J.L. Are Competing Intermolecular and Intramolecular Interactions of PERIOD Protein Important for the Regulation of Circadian Rhythms in Drosophila?. Bioessays 1995; 17: 583–586
  • Majercak J., Sidote D., Hardin P.E., Edery I. How a Circadian Clock Adapts to Seasonal Decreases in Temperature and Day-Length. Neuron 1999; 24: 219–230
  • Helfrich-Förster Ch., Stengl M., Homberg U. Organization of the Circadian System in Insects. Chronobiol. Int. 1998; 15: 567–594
  • Ewer J., Frisch B., Hamblen-Coyle J., Rosbash M., Hall J.C. Expression of the Period Clock Gene Within Different Cell Types in the Brain of Drosophila Adults and Mosaic Analysis of These Cells Influence on Circadian Behavioral Rhythms. J. Neurosci. 1992; 12: 3321–3349
  • Mack J., Engelmann W. Different Oscillators Control the Circadian Rhythm of Eclosion and Activity in Drosophila. J. Comp. Physiol. 1983; 127: 229–237
  • Vafopoulou X., Steel C.G.H. A Photosensitive Circadian Oscillator in an Insect Endocrine Gland: Photic Induction of Rhythmic Steroidogenesis In Vitro. J. Comp. Physiol. A 1998; 182: 343–349
  • Pelc D., Steel C.G.H. Rhythmic Steroidogenesis by the Prothoracic Glands of the Insect Rhodnius prolixus in the Absence of Rhythmic Neuropeptide Input: Implications for the Role of Prothoracicotropic Hormone. Gen. Comp. Endocrinol. 1997; 108: 356–365
  • Ampleford E.J., Steel C.G.H. Circadian Control of a Daily Rhythm in Hemolymph Ecdysteroid Titer in the Insect Rhodnius prolixus (Hemiptera). Gen. Comp. Endocrinol. 1985; 59: 453–459
  • Ampleford E.J., Steel C.G.H. Circadian Control of Ecdysis in Rhodnius prolixus (Hemiptera). J. Comp. Physiol. A 1982; 147: 281–288
  • Aschoff J. Exogenous and Endogenous Components in Circadian Rhythms. Cold Spring Harbor Symp. Quant. Biol. 1960; 25: 11–28
  • DeCoursey P.J. Phase Control of Activity in a Rodent. Cold Spring Habor Symp. Quant. Biol. 1960; 25: 49–55
  • Hoffmann K. Synchronisation der Circadianen Aktivitätsperiodik von Eidechsen Durch Temperaturcyclen Verschiedener Amplitude. Z. Vgl. Physiol. 1968; 58: 225–228
  • Evans K.J. Responses of the Locomotor Activity Rhythms of Lizards to Simultaneous Light and Temperature Cycles. Comp. Biochem. Physiol. 1966; 19: 91–103
  • Foa A., Bertolucci C. Temperature Cycles Induce a Bimodal Activtiy Pattern in Ruin Lizards: Masking or Clock-Controlled Event? A Seasonal Problem. J. Biol. Rhythms 2001; 16: 574–584
  • Samejima M., Shavali S., Tamotsu S., Uchida K., Morita Y., Fukuda A. Light- and Temperature-Dependence of the Melatonin Secretion Rhythm in the Pineal Organ of the Lamprey, Lampetra japonica. Jpn. J. Physiol. 2000; 50: 437–442
  • Bolliet V., Ali M.A., Anctil M., Zachmann A. Melatonin Secretion In Vitro from the Pineal Complex of the Lamprey Petromyzon marinus. Gen. Comp. Endocrinol. 1993; 89: 101–106
  • Zachmann A., Falcón J., Knijff S.C., Bolliet V., Ali M.A. Effects of Photoperiod and Temperature on Rhythmic Melatonin Secretion from the Pineal Organ of the White Sucker (Catostomus commersoni) In Vitro. Gen. Comp. Endocrinol. 1992; 86: 26–33
  • Bolliet V., Bégay V., Ravault J.P., Ali M.A., Collin J.P., Falcón J. Multiple Circadian Oscillators in the Photosensitive Pike Pineal Gland: A Study Using Organ and Cell Culture. J. Pineal Res. 1994; 16: 77–84
  • Max M., Menaker M. Regulation of Melatonin Production by Light, Darkness, and Temperature in the Trout Pineal. Comp. Physiol. A 1992; 170: 479–489
  • Menaker M., Wisner S. Temperature Compensated Circadian Clock in the Pineal of Anolis. Proc. Natl Acad. Sci. USA 1983; 80: 6119–6121
  • Moyer R.W., Firth B.T., Kennaway D.J. Effect of Constant Temperatures, Darkness and Light on the Secretion of Melatonin by Pineal Explants and Retinas in the Gecko, Christinus marmoratus. Brain Res. 1995; 675: 345–348
  • Zachmann A., Knijff S.C.M., Bolliet V., Ali M.A. Effects of Temperature Cycles and Photoperiod on Rhythmic Melatonin Secretion from the Pineal Organ of a Teleost (Catostomus commersoni) In Vitro. Neuroendocrinol. Lett. 1991; 13: 325–330
  • Falcón J., Bolliet V., Ravault J.P., Chesneau D., Ali M.A., Collin J.P. Rhythmic Secretion of Melatonin by the Superfused Pike Pineal Organ: Thermo- and Photoperiod Interaction. Neuroendocrinology 1994; 60: 535–543
  • Underwood H. Pineal Melatonin Rhythms in the Lizard Anolis carolinensis: Effects of Light and Temperature Cycles. J. Comp. Physiol. A 1985; 157: 57–65
  • Underwood H., Calaban M. Pineal Melatonin Rhythms in the Lizard Anolis carolinensis: I. Response to Light and Temperature Cycles. J. Biol. Rhythms 1987; 2: 179–193
  • Firth B.T., Belan I., Kennaway D.J., Moyer R.W. Thermocyclic Entrainment of Lizard Blood Plasma Melatonin Rhythms in Constant and Cyclic Photic Environments. Am. J. Physiol. 1999; 277: R1620–R1626
  • Moyer R.W., Firth P.T., Kennaway D.J. Effect of Variable Temperatures, Darkness and Light on the Secretion of Melatonin by Pineal Explants in the Gecko, Christinus marmoratus. Brain Res. 1997; 747: 230–235
  • Valenciano I., Alonso-Gómez A.L., Alonso-Bedate M., Delgado M.J. Effect of Constant and Fluctuating Temperature on Daily Melatonin Production by Eyecups from Rana perezi. Comp. Physiol. B 1997; 167: 221–228
  • Firth B.T., Kennaway D.J. Thermoperiod and Photoperiod Interact to Affect the Phase of the Plasma Melatonin Rhythm in the Lizard, Tiliqua rugosa. Neurosci. Lett. 1989; 106: 125–130
  • Firth B.T., Kennaway D.J., Belan I. Thermoperiodic Influences on Plasma Melatonin Rhythms in the Lizard Tiliqua rugosa: Effect of Thermophase Duration. Neurosci. Lett. 1991; 121: 139–142
  • Delgado M.J., Vivien-Roels B. Effect of Environmental Temperature and Photoperiod on the Melatonin Levels in the Pineal, Lateral Eye, and Plasma of the Frog, Rana perezi: Importance of Ocular Melatonin. Gen. Comp. Endocrinol. 1989; 75: 46–53
  • Radwing R.S., Hutchison V.H. Influence of Temperature and Photoperiod on Plasma Melatonin in the Mudpuppy, Necturus maculosus. Gen. Comp. Endocrinol. 1992; 88: 364–374
  • Tilden A.R., Hutchison V.H. Influence of Photoperiod and Temperature on Serum Melatonin in the Diamondback Water Snake, Nerodia rhombifera. Gen. Comp. Endocrinol. 1993; 92: 347–354
  • Firth B.T., Kennaway D.J. Melatonin Content of the Pineal, Parietal Eye and Blood Plasma of the Lizard, Trachydosaurus rugosus. Effect of Constant and Fluctuating Temperature. Brain Res. 1987; 404: 313–318
  • Vivien-Roels B., Pevet P., Claustrat B. Pineal and Circulating Melatonin Rhythms in the Box Turtle, Terrapene carolina triunguis: Effect of Photoperiod, Light Pulse, and Environmental Temperature. Gen. Comp. Endocrinol. 1988; 69: 163–173
  • Tosini G., Bertolucci C., Foa A. The Circadian System of Reptiles: A Multioscillatory and Multiphotoreceptive System. Physiol. Behav. 2001; 72: 461–471
  • Innocenti A., Bertolucci C., Minutini L., Foà A. Seasonal Variations of Pineal Involvement in the Circadian Organization of the Ruin Lizard Podarcis sicula. J. Exp. Biol. 1996; 199: 1189–1194
  • Bertolucci C., Foa A. Seasonality and Role of SCN in Entrainment of Lizard Circadian Rhythms to Daily Melatonin Injections. Am. J. Physiol. 1998; 274: 1004–1014
  • Bertolucci C., Sovrano V.A., Magnone M.C., Foa A. Role of Suprachiasmatic Nuclei in Circadian and Light-Entrained Behavioral Rhythms of Lizards. Am. J. Physiol. Regul. Integr. Comp. Physiol. 2000; 279: 2122–2131
  • Hyde L.L., Underwood H. Daily Melatonin Infusions Entrain the Locomotor Activity of Pinealectomized Lizards. Physiol. Behav. 1995; 58: 943–951
  • Hyde L.L., Underwood H. Effects of Melatonin Administration on the Circadian Activity Rhythm of the Lizard Anolis carolinensis. Physiol. Behav. 2000; 71: 183–192
  • Tosini G., Menaker M. The Role of Pineal Complex and Melatonin in the Daily Rhythm of Behavioral Thermoregulation in the Green Iguana. J. Comp. Physiol. A 1996; 179: 135–142
  • Firth B.T., Belan I. Daily and Seasonal Rhythms in Selected Body Temperatures in the Australian Lizard Tiliqua rugosa (Scincidae): Field and Laboratory Observations. Physiol. Zool. 1998; 71: 303–311
  • Valenciano A.I., Alonso-Gómez A.L., De Pedro N., Alonso-Bedate M., Delgado M.J. Serotonin N-Acetyltransferase Activity as a Target for Temperature in the Regulation of Melatonin Production by Frog Retina. Pflügers Arch. 1994; 429: 153–159
  • Francis A.J.P., Coleman G.J. Ambient Temperature Cycles Entrain the Free-Running Circadian Rhythms of the Stripe-Faced Dunnart, Sminthopsis macroura. J. Comp. Physiol. A 1990; 167: 357–362
  • Pohl H. Wirkung der Temperatur auf die mit Licht Synchronisierte Aktivitätsperiodik bei Warmblütern. Z. Vgl. Physiol. 1968; 58: 381–394
  • Francis A.J.P., Coleman G.J. Phase Response Curves to Ambient Temperature Pulses in Rats. Physiol. Behav. 1997; 62: 1000–1004
  • Pàlkovà M., Sigmund L., Erkert H.G. Effect of Ambient Temperature on the Circadian Activity Rhythm in Common Marmosets, Callithrix j. jacchus (Primates). Chronobiol. Int. 1999; 16: 149–161
  • Lindberg R.G., Hayden P. Thermoperiodic Entrainment of Arousal from Torpor in the Little Pocket Mouse, Perognathus longimembris. Chronobiologia 1974; 1: 356–361
  • Pohl H. Temperature Cycles as Zeitgeber for the Circadian Clock of Two Burrowing Rodents, the Normothermic Antelope Ground Squirrel and the Heterothermic Syrian Hamster. Biol. Rhythm Res. 1998; 29: 311–325
  • Erkert H.G., Rothmund E. Differences in Temperature Sensitivity of the Circadian Systems of Homoeothermic and Heterothermic Neotropical Bats. Comp. Biochem. Physiol. 1980; 68A: 383–390
  • Enright J.T. Temperature and the Free-Running Rhythm of the House Finch. Comp. Biochem. Physiol. 1966; 18: 463–475
  • Steward M.C., Reeder W.G. Temperature and Light Synchronisation Experiments with Circadian Activity Rhythms in Two Color Forms of the Rock Pocket Mouse. Physiol. Zool. 1968; 41: 149–156
  • Francis A.J.P., Coleman G.J. The Effects of Ambient Temperature Cycles upon Circadian Running and Drinking Activity in Male and Female Laboratory Rats. Physiol. Behav. 1988; 43: 471–477
  • Sulzman F.M., Fuller C.A., Moore-Ede M.C. Environmental Synchronizers of Squirrel Monkey Circadian Rhythms. J. Appl. Physiol. 1977; 43: 795–800
  • Aschoff J., Tokura H. Circadian Activity Rhythms in Squirrel Monkeys: Entrainment by Temperature Cycles. J. Biol. Rhythm 1986; 1: 91–99
  • Fritsche P., Miethe G., Gattermann R. Circadian Activity Rhythm and Entrainment in the Subterranean Common Mole-Rat (Cryptomys hottentotus). Biol. Rhythm Res. 1997; 28: 116
  • Tokura H., Aschoff J. Effects of Temperature on the Circadian Rhythm of Pig-Tailed Macaques Macaca nemestrina. Am. J. Physiol. 1983; 245: R800–R804
  • Swade R.H., Pittendrigh C.S. Circadian Locomotor Rhythms in the Arctic. Am. Nat. 1967; 101: 431–466
  • Rajaratnam S.M.W., Redman J.R. Entrainment of Activity Rhythms to Temperature Cycles in Diurnal Palm Squirrels. Physiol. Behav. 1998; 63: 271–277
  • Deguchi T. A Circadian Oscillator in Cultured Cells of Chicken Pineal Gland. Nature 1997; 282: 94–96
  • Barrett R.K., Takahashi J.S. Temperature Compensation and Temperature Entrainment of the Chick Pineal Cell Circadian Clock. J. Neurosci. 1995; 15: 5681–5692
  • Zatz M., Mullen D.A. Two Mechanisms of Photoendocrine Transduction in Cultured Chick Pineal Cells: Pertussis Toxin Blocks the Acute But Not the Phase-Shifting Effects of Light on the Melatonin Rhythm. Brain Res. 1988; 453: 63–71
  • Zatz M., Lange G.D., Rollag M.D. What Does Changing the Temperature Do to the Melatonin Rhythm in Cultured Chick Pineal Cells?. Am. J. Physiol. 1994; 35: R50–R58
  • Gillette M.U. SCN Electrophysiology In Vitro: Rhythmic Activity and Endogenous Clock Properties. Suprachiasmatic Nucleus: The Mind's Clock, D.C. Klein, R.Y. Moore, S.M. Reppert. Oxford University Press, New York 1991; 125–143
  • Ruby N.F., Burns D.E., Heller H.C. Circadian Rhythms in the Suprachiasmatic Nucleus Are Temperature-Compensated and Phase-Shifted by Heat Pulses In Vitro. J. Neurosci. 1999; 19: 8630–8636
  • Gander P.H., Lewis R.D. Phase-Resetting Action of Light on the Circadian Activity Rhythm of Rattus exulans. Am. J. Physiol. 1983; 245: R10–R17
  • Robertson L.M., Takahashi J.S. Circadian Clock in Cell Culture II. In Vitro Photic Entrainment of Melatonin Oscillation from Dissociated Chick Pineal Cells. J. Neurosci. 1988; 8: 22–30
  • French A.R. Periodicity of Recurrent Hypothermia During Hibernations in the Pocket Mouse, Perognathus longimembris. J. Comp. Physiol. B 1977; 115: 87–100
  • Aschoff J., Wever R. Aktivitätsmenge und α: ς-Verhältnis als Meßgröße der Tagesperiodik. Z. Vgl. Physiol. 1962; 46: 88–101
  • Pohl H. Einfluß der Temperatur auf die Freilaufende Circadiane Aktivitätsperiodik bei Warmblütern. Z. Vgl. Physiol. 1968; 58: 364–380
  • Erkert H.G. Influence of Ambient Temperature on Circadian Rhythms in Colombian Owl Monkeys, Aotus lemurinus griseimembra. Primatology Today, Akiyoshi Ehara. Elsevier Science Publishers B.V., Amsterdam 1991; 435–438
  • Underwood H., Steele C.T., Zivkovic B. Circadian Organization and the Role of the Pineal in Birds. Microsc. Res. Tech. 2001; 53: 48–62
  • Herzog E.D., Block G.D. Keeping an Eye on Retinal Clocks. Chronobiol. Int. 1999; 16: 229–247
  • Okano T., Fukada Y. Photoreception and Circadian Clock System of the Chicken Pineal Gland. Microsc. Res. Tech. 2001; 53: 72–80
  • Tosini G. Melatonin Circadian Rhythm in the Retina of Mammals. Chronobiol. Int. 2000; 17: 599–612
  • Jilge B., Hudson R. Diversity and Development of Circadian Rhythms in the European Rabbit. Chronobiol. Int. 2001; 18: 1–26
  • Shirakawa T., Honma S., Honma K. Multiple Oscillators in the Suprachiasmatic Nucleus. Chronobiol. Int. 2001; 18: 371–387
  • Michel S., Colwell C.S. Cellular Communication and Coupling Within the Suprachiasmatic Nucleus. Chronobiol. Int. 2001; 18: 579–600
  • Jagota A., de la Iglesia H.O., Schwartz W.J. Morning and Evening Circadian Oscillations in the Suprachiasmatic Nucleus In Vitro. Nat. Neurosci. 2000; 3: 372–376
  • De la Iglesia H.O., Meyer J., Carpino A.J., Schwartz W.J. Antiphase Oscillation of the Left and Right Suprachiasmatic Nuclei. Science 2000; 290: 799–801
  • Hoffmann K. Splitting of the Circadian Rhythm as a Function of Light Intensity. Biochronometry, M. Menaker. National Academy of Sciences, Washington 1967
  • Damiola F., Le Minh N., Preitner N., Kornmann B., Fleury-Olela F., Schibler U. Restricted Feeding Uncouples Circadian Oscillators in Peripheral Tissues from the Central Pacemaker in the Suprachiasmatic Nucleus. Genes Dev. 2000; 14: 2950–2961
  • Stokkan K.A., Yamazaki S., Tei H., Sakaki Y., Menaker M. Entrainment of the Circadian Clock in the Liver by Feeding. Science 2001; 291: 490–493
  • Balsalobre A., Damiola F., Schibler U. A Serum Shock Induces Circadian Gene Expression in Mammalian Tissue Culture Cells. Cell 1998; 93: 929–937
  • Hastings M.H., Duffield G.E., Smith E.J.D., Maywood E.S., Ebling F.J.P. Entrainment of the Circadian System of Mammals by Nonphotic Cues. Chronobiol. Int. 1998; 15: 225–245
  • Allada R., Emery P., Takahashi J.S., Rosbash M. Stopping Time: The Genetics of Fly and Mouse Circadian Clocks. Annu. Rev. Neurosci. 2001; 24: 1091–1119
  • Lowrey P.L., Takahashi J.S. Genetics of the Mammalian Circadian System. Photic Entrainment, Circadian Pacemaker Mechanisms, and Posttranslational Regulation. Annu. Rev. Genet. 2000; 34: 533–562
  • King D.P., Takahashi J.S. Molecular Genetics of Circadian Rhythms in Mammals. Annu. Rev. Neurosci. 2000; 23: 713–742
  • Cermakian N., Sassone-Corsi P. Multilevel Regulation of the Circadian Clock. Mol. Cell Biol. 2000; 1: 59–67
  • Yu W., Nomura M., Ikeda M. Interacting Feedback Loops Within the Mammalian Clock: BMAL1 Is Negatively Autoregulated and Upregulated by CRY1, CRY2 and PER2. Biochem. Biophys. Res. Commun. 2002; 290: 933–941
  • Shigeyoshi Y., Taguchi K., Yamamoto S., Takekida S., Yan L., Tei J., Moriya T., Shibata S., Loros J.J., Dunlap J.C., Okamura H. Light-Induced Resetting of a Mammalian Circadian Clock Is Associated with Rapid Induction of the mPer1 Transcript. Cell 1997; 91: 1043–1053
  • Tamaru T., Isojima Y., Yamada T., Okada M., Nagai K., Takamatsu K. Light and Glutamate-Induced Degradation of the Circadian Oscillating Protein BMAL1 During the Mammalian Clock Resetting. J. Neurosci. 2000; 20: 7525–7530
  • Mintz E.M., Marvel C.L., Gillespie C.F., Price K.M., Albers H.E. Activation of NMDA Receptors in the Suprachiasmatic Nucleus Produces Light-Like Phase Shifts of the Circadian Clock In Vivo. J. Neurosci. 1999; 19: 5124–5130
  • Ding J.M., Dong C., Weber E.T., Faiman L.E., Rea M.A., Gillette M.U. Resetting the Biological Clock: Mediation of Nocturnal Circadian Shifts by Glutamate and NO. Science 1994; 266: 1713–1717
  • Eide E.J., Virshup D.M. Casein Kinase I: Another Cog in the Circadian Clockworks. Chronobiol. Int. 2001; 18: 389–398
  • Lee C., Etchegaray J.P., Cagampang F.R., Loudon A.S.I., Reppert S.M. Posttranslational Mechanisms Regulate the Mammalian Circadian Clock. Cell 2001; 107: 855–867
  • Eide E.J., Vielhaber E.L., Hinz W.A., Virshup D.M. The Circadian Regulatory Proteins BMAL1 and Cryptochromes Are Substrates of Casein Kinase Iε (CKIε). J. Biol. Chem. 2002; 277: 17248–17254
  • Pennartz C.M.A., deJeu M.T.G., Schaap J., Geurtsen A.M.S. Diurnal Modulation of Pacemaker Potentials and Calcium Currents in the Mammalian Circadian Clock. Nature 2002; 416: 286–290
  • Colwell C.S. Circadian Modulation of Calcium Levels in Cells in the Suprachiasmatic Nucleus. Eur. J. Neurosci. 2000; 12: 571–576
  • Kiang J., Wu Y., Lin M. Heat Treatment Induces an Increase in Intracellular Cyclic cAMP Content in Human Epidermoid A431 Cells. Biochem. J. 1991; 276: 683–689
  • Kiang J., McClain D. Effect of Heat Shock, [Ca2+]i and cAMP on Inositol Trisphosphate in Human Epidermoid A431 Cells. Am. J. Physiol. 1993; 264: C1561–C1569
  • Skrandies S., Bremer B., Pilatus U., Mayer A., Neuhaus-Steinmetz U., Rensing L. Heat Shock- and Ethanol-Induced Ionic Changes in C6 Rat Glioma Cells Determined by NMR and Fluorescence Spectroscopy. Brain Res. 1997; 746: 220–230
  • Andrews G.K., Harding M.A., Calvet J.P., Adamson E.G. The Heat Shock Response in HeLa Cells Is Accompanied by Elevated Expression of the c-fos Proto-Oncogene. Mol. Cell Biol. 1987; 7: 3452–3458
  • Elvert R., Kronfeld N., Dayan T., Haim A., Zisapel N., Heldmaier G. Body Temperature Rhythms in Free Living Desert Spiny Mice (Acomys)—Its Relation to Activity Pattern. Biol. Rhythm Res. 1997; 28: 114
  • Refinetti R. Amplitude of the Daily Rhythm of Body Temperature in Eleven Mammalian Species. J. Therm. Biol. 1999; 24: 477–481
  • Green C.B., Besharse J.C., Zatz M. Tryptophan Hydroxylase mRNA Levels Are Regulated by the Circadian Clock, Temperature, and cAMP in Chick Pineal Cells. Brain Res. 1996; 738: 1–7
  • Janik D., Mrosowsky N. Nonphotically Induced Phase Shifts of Circadian Rhythms in the Golden Hamster: Activity Response Curves at Different Ambient Temperatures. Physiol. Behav. 1993; 53: 431–436
  • Cassone V.M., Chesworth M.J., Armstrong S.M. Entrainment of Rat Circadian Rhythms by Daily Injection of Melatonin Depends upon the Hypothalamic Suprachiasmatic Nuclei. Physiol. Behav. 1986; 36: 1105–1110
  • Slotten H., Pitrosky B., Pevet P. Entrainment of Rat Circadian Rhythms by Daily Administration of Melatonin. Influence of the Mode of Administration. Adv. Exp. Med. Biol. 1999; 460: 279–281
  • Herxheimer A., Petrie K.J. Melatonin for Preventing and Treating Jet Lag. Cochrane Database Syst. Rev. 2001; 1: CD001520
  • Masana M.I., Dubocovich M.L. Melatonin Receptor Signaling: Finding the Path Through the Dark. Sci. STKE 2001, www.Stke.org/cgi/content/full/OC_Sigtrans; 2001/107/pe39
  • Roy D., Belsham D.D. Melatonin Receptor Activation Regulates GnRH Gene Expression and Secretion in GT1-7 GnRH Neurons. Signal Transduction Mechanisms. J. Biol. Chem. 2002; 277: 251–258
  • Zemkova H., Vanecek J. Dual Effect of Melatonin on Gonadotropin-releasing-hormone-induced Ca2+ Signaling in Neonatal Rat Gonadotropes. Neuroendocrinology 2001; 74: 262–269
  • Sumova A., Vanecek J. Melatonin Inhibits GnRH-Induced Increase of cFOS Immunoreactivity in Neonatal Rat Pituitary. J. Neuroendocrinol. 1997; 9: 135–139
  • Lewy A.J., Bauer V.K., Ahmed S., Thomas K.H., Cutler N.L., Singer C.M., Moffit M.T., Sack R.L. The Human Phase Response Curve (PRC) to Melatonin Is About 12 Hour out of Phase with the PRC to Light. Chronobiol. Int. 1998; 15: 71–83
  • Redlin U. Neural Basis and Biological Function of Masking by Light in Mammals: Suppression of Melatonin and Locomotor Activity. Chronobiol. Int. 2001; 18: 737–758
  • Sharma V.K., Daan S. Circadian Phase and Period Responses to Light Stimuli in Two Nocturnal Rodents. Chronobiol. Int. 2002; 19: 659–670
  • Ruoff P., Vinsjevik M., Monnerjahn C., Rensing L. The Goodwin Oscillator: On the Importance of Degradation Reactions in the Circadian Clock. J. Biol. Rhythms 1999; 14: 469–479
  • Yatvin M.B., Cramp W.A. Role of Cellular Membranes in Hyperthermia: Some Observations and Theories Reviewed. Int. J. Hyperthermia 1993; 9: 165–185

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.