Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 20, 2003 - Issue 4
116
Views
3
CrossRef citations to date
0
Altmetric
Original

Circadian Signaling in the Chick Pineal Organ

Pages 617-636 | Published online: 07 Jul 2009

References

  • Abe H., Tamura S., Kondo H. Localization of mRNA for protein phosphatase 2C in the brain of adult rats. Molec. Brain Res. 1992; 13: 283–288
  • Anderson N. G., Maller J. L., Tonks N. K., Sturgill T. W. Requirement for integration of signals from two distinct phosphorylation pathways for activation of MAP kinase. Nature 1990; 343: 651–653
  • Araki M., Fukada Y., Shichida Y., Yoshizawa T., Tokunaga F. Differentiation of both rod and cone types of photoreceptors in the in vivo and in vitro developing pineals glands of the quail. Devel. Brain Res. 1992; 65: 85–92
  • Bentley G. E., Demas G. E., Nelson R. J., Ball G. F. Melatonin, immunity and cost of reproductive state in male European starlings. Proc. Royal Soc. London Ser. B 1998; 265: 1191–1195
  • Bentley G. E., Van't Hof T. J., Ball G. F. Seasonal neuroplasticity in the songbird telencephalon: a role for melatonin. Proc. Natl. Acad. Sci. USA 1999; 96: 4674–4679
  • Bernard M., Iuvone P. M., Cassone V. M., Roseboom P. H., Coon S. L., Klein D. C. Avian melatonin synthesis: photic and circadian regulation of serotonin N‐acetyltransferase mRNA in the chicken pineal and retina. J. Neurochem. 1997a; 68: 213–224
  • Bernard M., Klein D. C., Zatz M. Chick pineal clock regulates serotonin N-acetyltransferase activity in culture. Proc. Natl. Acad. Sci. USA 1997b; 94: 304–309
  • Brandstätter R., Kumar V., Abraham U., Gwinner E. Photoperiodic information acquired and stored in vivo is retained in vitro by a circadian oscillator, the avian pineal gland. Proc. Natl. Acad. Sci. USA 2000; 97(22)12324–12328
  • Bönigk W., Müller F., Middendorff R., Weyand I., Kaupp U. B. Two alternatively spliced forms of the cGMP‐gated channel α‐subunit from cone photoreceptor are expressed in the chick pineal organ. J. Neurosci. 1996; 16: o7458–7468
  • Cermakian N., Pando M. P., Thompson C. L., Pinchak A. B., Selby C. P., Gutierrez L., Well D. E., Cahill G. M., Sancar A., Sassone‐Corsi P. Light induction of a vertebrate clock gene involves signaling through blue‐light receptors and MAP kinases. Curr. Biol. 2002; 12: 844–848
  • Chakraborty S. Plasma prolactin and luteinizing hormone during termination and onset of photorefractoriness in intact and pinealectomized European starlings (Sturnus vulgaris). Gen. Comp. Endocrinol. 1995; 99: 185–191
  • Chong N. W., Bernard M., Klein D. C. Characterization of the chicken serotonin N‐acetyltransferase gene. J. Biol. Chem. 2000; 275: 32991–32998
  • Cohen P. The structure and regulation of protein phosphatases. Ann. Rev. Biochem. 1989; 58: 453–508
  • D'Souza T., Dryer S. E. A cationic channel regulated by a vertebrate intrinsic circadian oscillator. Nature 1996; 382: 165–167
  • Da Cruz e Silva E. F., Fox C. A., Ouimet C. C., Gustafson E., Watson S. J., Greengard P. Differential expression of protein phosphatase 1 isoforms in mammalian brain. J. Neurosci. 1995; 15: 3375–3389
  • Ding J. M., Chen D., Weber E. T., Faiman L. E., Rea M. A., Gillette M. U. Resetting the biological clock: mediation of nocturnal circadian shifts by glutamate and NO. Science 1994; 266: 1713–1717
  • Doi M., Nakajima Y., Okano T., Fukada Y. Light‐induced phase delay of the chicken pineal circadian clock is associated with the induction of cE4bp4, a potential transcriptional repressor of cPer2 gene. Proc. Natl. Acad. Sci. USA 2001; 98: 8089–8094
  • Dryer S. E., Henderson D. A. cyclic GMP‐activated channel in acutely dissociated cells of the chick pineal gland. Nature 1991; 353: 756–758
  • Ferreyra G. A., Golombek D. A. Rhythmicity of the cGMP‐related signal transduction pathway in the mammalian circadian system. Amer. J. Physiol. 2001; 280: R1348–1355
  • Ferreyra G. A., Cammarota M. P., Golombek D. A. Photic control of nitric oxide synthase activity in the hamster suprachiasmatic nuclei. Brain Res. 1998; 797: 190–196
  • Foukles N. S., Whitmore D., Sassone‐Corsi P. Rhythmic transcription: the molecular basis of circadian melatonin synthesis. Biol. Cell 1997; 89: 487–494
  • Fukuda Y., Okano T. Circadian clock system in the pineal gland. Molec. Neurobiol. 2002; 25(1)19–30
  • Gastel J. A., Roseboom P. H., Rinaldi P. A., Weller J. L., Klein D. C. Melatonin production: proteasomal proteolysis in serotonin N‐acetyltransferase regulation. Science 1998; 279: 1358–1360
  • Golombek D. A., Ferreyra G. A., Marpegán L., Katz M. E., de Tezanos Pinto F., Yannielli P. C. The neurochemical basis of photic entrainment in mammals. Biol. Rhythm Res. 2000; 31: 56–70
  • Goto S., Nagahiro S., Ushio Y., Hirano A. Calcineurin, a calcium/calmodulin‐regulated protein phosphatase, in mammalian neuroendocrine cells and neoplasms. Neurosci. Lett. 1992; 143: 51–54
  • Guerrero J. M., Pablos M. I., Ortiz G. G., Agapito M. T., Reiter R. J. Nocturnal decreases in nitric oxide and cyclic GMP contents in the chick brain and their prevention by light. Neurochem. Intl. 1996; 29: 417–421
  • Gwinner E. Photoperiod as a modifying and limitingfactor in the expression of avian circannual rhythms. J. Biol. Rhythms 1989; 4: 237–250
  • Gwinner E., Brandstätter R. Complex bird clocks. Phil. Trans. Royal Soc. London B 2001; 356: 1801–1810
  • Harmar A. J., Marston H. M., Shen S., Spratt C., West K. M., Sheward W. J., Morrison C. F., Dorin J. R., Piggins H. D., Reubi J. ‐C., Kell J. S., Maywood E. S., Hastings M. H. The VPAC2 receptor is essential for circadian function in the mouse suprachiasmatic nuclei. Cell 2002; 109: 497–508
  • Hayashi Y., Sanada K., Fukada Y. Circadian and photic regulation of MAP kinase by Ras‐ and protein phosphatase‐dependent pathways in the chick pineal gland. FEBS Lett. 2001; 491: 71–75
  • Heigl S., Gwinner E. Periodic melatonin in the drinking water synchronizes circadian rhythms in sparrows. Naturwissenschaften 1994; 81: 83–85
  • Ho A. K., Chik C. L. Phosphatase inhibitors potentiate adrenergic‐stimulated cAMP and cGMP production in rat pinealocytes. Amer. J. Physiol. 1995; 268: E458–E466
  • Ho A. K., Young I., Chik C. L. Evidence for a role of calmodulin in regulation of pinealocyte cyclic nucleotides. Biochem. Pharmacol. 1991; 41: 897–903
  • Ho T., Hashimoto K., Chik C. L. 3′,5′‐Cyclic guanosine monophosphate activates mitogen‐activated protein kinase in rat pinealocytes. J. Neurochem. 1999; 73: 598–604
  • Ho A. K., Weist R., Ogiwara T., Murdoch G., Chik C. L. Potentiation of agonist‐stimulated cyclic AMP accumulation by tyrosine kinase inhibitors in rat pinealocytes. J. Neurochem. 1995; 65: 1597–1603
  • Kasahara T., Okano T., Haga T., Fukada Y. Opsin‐G11‐mediated signaling pathway for photic entrainment of the chicken pineal circadian clock. J. Neurosci. 2002; 22: 7321–7325
  • Kramer R. H., Karpen J. W. Spanning binding sites on allosteric proteins with polymer‐linked ligand dimers. Nature 1998; 395: 710–713
  • Kasahara T., Okano T., Yoshikawa T., Yamazaki K., Fukada Y. Rod‐type transducin α‐subunit mediates a phototransduction pathway in the chicken pineal. J. Neurochem. 2000; 75: 217–224
  • Larkin P., Semple‐Rowland S. L. A null mutation in guanylate cyclase‐1 alters the temporal dynamics and light entrainment properties of the iodopsin rhythm in cone photoreceptor cells. Molec. Brain Res. 2001; 92: 49–57
  • Liauw S., Steinberg R. A. Dephosphorylation of catalytic subunit of cAMP‐dependent protein kinase at Thr‐197 by a cellular protein phosphatase and by purified protein phosphatase‐2A. J. Biol. Chem. 1996; 271: 258–263
  • Lin A. M.‐Y., Schaad N. C., Schulz P. E., Coon S. L., Klein D. C. Pineal nitric oxide synthase: characteristics, adrenergic regulation and function. Brain Res. 1994; 651: 160–168
  • Liu C., Ding J. M., Faiman L. E., Gillette M. U. Coupling of muscarinic cholinergic receptors and cGMP in nocturnal regulation of the suprachiasmatic circadian clock. J. Neurosci. 1997; 17: 659–666
  • Maronde E., Middendorff R., Mayer B., Olcese J. The effect of NO‐donors in bovine and rat pineal cells: stimulation of cGMP and cGMP‐independent inhibition of melatonin synthesis. J. Neuroendocrinol. 1995; 7: 207–214
  • Maronde E., Schomerus C., Stehle J. H., Korf H. ‐W. Control of CREB phosphorylation and its role for induction of melatonin synthesis in rat pinealocytes. Biol. Cell 1997a; 89: 505–511
  • Maronde E., Middendorff R., Telgmann R., Müller D., Hemmings B., Tasken K., Olcese J. Melatonin synthesis in the bovine pineal gland is regulated by type II cyclic AMP‐dependent protein kinase. J. Neurochem. 1997b; 68: 770–777
  • Maronde E., Pfeffer M., Olcese J., Molina C. A., Schlotter F., Dehghani F., Korf H. W., Stehle J. H., et al. Transcription factors in neuroendocrine regulation: rhythmic changes in pCREB and ICER levels frame melatonin synthesis. J. Neurosci. 1999; 19: 3326–3336
  • Max M., Surya A., Takahashi J. S., Margolskee R. F., Knox B. E. Light‐dependent activation of rod transducin by pineal opsin. J. Biol. Chem. 1998; 273: 26820–26826
  • Middendorff R., Maronde E., Paust H. ‐J., Müller D., Davidoff M., Olcese J. Expression of C‐type natriuretic peptide in the bovine pineal gland. J. Neurochem. 1996; 67: 517–524
  • Millward T. A., Zolnierowicz S., Hemmings B. A. Regulation of protein kinase cascades by protein phosphatase 2A. Trends Biochem. Sci. 1999; 24: 186–191
  • Mitome M., Shirakawa T., Oshima S., Nakamura W., Oguchi H. Circadian rhythm of nitric oxide production in the dorsal region of the suprachiasmatic nucleus in rats. Neurosci. Lett. 2001; 303: 161–164
  • Müller D., Olcese J., Mukhopadhyay A., Middendorff R. Guanylyl cyclase‐B represents the predominant natriuretic peptide receptor expressed at exceptionally high levels in the pineal gland. Molec. Brain Res. 2000; 75: 321–329
  • Nakahara K., Murakami N., Nashi T., Kuroda H., Murakami T. Individual pineal cells in chick possess photoreceptive, circadian clock, and melatonin-synthesizing capacities in vitro. Brain Res. 1997a; 774: 242–245
  • Nakahara K., Murakami N., Nasu T., Kuroda H., Murakami T. Involvement of protein kinase A in the subjective nocturnal rise of melatonin release by chick pineal cells in constant darkness. J. Pineal Res. 1997b; 23: 221–229
  • Nikaido S. S., Takahashi J. S. Day/night differences in the stimulation of adenylate cyclase activity by calcium/calmodulin in chick pineal cell cultures: evidence for circadian regulation of cyclic AMP. J. Biol. Rhythms 1998; 13: 479–493
  • Ohyama Y., Miyamoto K., Morishita Y., Matsuda Y., Kojima M., Minamino N., Kangawa K., Matsuo H. HS‐142‐1, a novel antagonist for natriuretic peptides, has no effect on the third member of membrane‐bound guanylate cyclases (GC‐C) in T84 cells. Life Sci. 1993; 52: PL153–157
  • Okano T., Fukuda Y. Phototransduction cascade and circadian oscillator in chicken pineal gland. J. Pineal Res. 1997; 22: 145–151
  • Okano T., Fukada Y. Photoreception and circadian clock system of the chicken pineal gland. Microsc. Res. Techn. 2001; 58: 72–80
  • Okano T., Yoshizawa T., Fukada Y. Pinopsin is a chicken pineal photoreceptive molecule. Nature 1994; 372: 94–97
  • Okano T., Yamazaki K., Kasahara T., Fukada Y. Molecular cloning of heterotrimeric G‐protein α‐subunits in chicken pineal gland. J. Molec. Evol. 1997; 44: 91–97
  • Okano T., Yamamoto K., Okano K., Hirota T., Kasahara T., Sasaki M., Takanaka Y., Fukada Y. Chicken pineal clock genes: implication of BMAL2 as a bidirectional regulator in circadian clock oscillation. Genes Cells 2001; 6: 825–836
  • Olcese J., Müller D., Munker M., Schmidt C. Natriuretic peptides elevate cyclic 3′,5′‐ guanosine monophosphate levels in cultured rat pinealocytes: evidence for guanylate cyclase‐linked membrane receptors. Molec. Cell. Endocrinol. 1994; 103: 95–100
  • Olcese J., Majora C., Stephan A., Müller D. Nocturnal accumulation of cyclic 3′,5′‐guanosine monophosphate (cGMP) in the chick pineal organ is dependent on activation of guanylyl cyclase‐B. J. Neuroendocrinol. 2002; 14: 14–18
  • Pierce M. E., Yokoyama R. Invest. Ophthalmol. Vis. Sci. 2000; 41: S27
  • Price N. E., Mumby M. C. Brain protein serine/threonine phosphatases. Curr. Opin. Neurobiol. 1999; 9: 336–342
  • Prosser R. A., McArthur A. J., Gillette M. U. cGMP induces ohase shifts of a mammalian circadian pacemaker at night, in antiphase to cAMP effects. Proc. Natl. Acad. Sci. USA 1989; 86: 6812–6815
  • Reinhart P. H., Chung S., Martin B. L., Brautigan D. L., Levitan I. B. Modulation of calcium‐activated potassium channels from rat brain by protein kinase A and phosphatase 2A. J. Neurosci. 1991; 11: 1627–1635
  • Reppert S. M., Weaver D. R. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941
  • Sanada K., Hayashi Y., Harada Y., Okano T., Fukada Y. Role of circadian activation of mitogen‐activated protein kinase in chick pineal clock oscillation. J. Neurosci. 2000; 20: 986–991
  • Sato T. Sensory and endocrine characteristics of the avian pineal organ. Microsci. Res. Techn. 2001; 53: 2–11
  • Sanada K., Okano T., Fukada Y. Mitogen‐activated protein kinase phosphoryl‐ ates and negatively regulates basic helix‐loop‐helix‐PAS transcription factor BMAL1. J. Biol. Chem. 2002; 277(1)267–271
  • Schaad N. C., Vanecek J., Rodriguez I. R., Klein D. C., Holtzclaw L., Russell J. T. Vasoactive intestinal peptide elevates pinealocyte intracellular calcium concentrations by enhancing influx: evidence for involvement of a cyclic GMP‐dependent mechanism. Molec. Pharmacol. 1995; 47: 923–933
  • Schomerus C., Korf H. W., Laedtke E., Weller J. L., Klein D. C. Selective adrenergic/cyclic AMP‐dependent switch‐off of proteasomal proteolysis alone switches on neural signal transduction: an example from the pineal gland. J. Neurochem. 2000; 75(5)2123–2132
  • Semple‐Rowland S. L., Tepedino M., Coleman J. E. Pinopsin mRNA levels are significantly elevated in the pineal glands of chickens carrying a null mutation in guanylate cyclase‐1. Molec. Brain Res. 2001; 97: 51–58
  • Spessert R., Layes E., Vollrath L. Adrenergic stimulation of cyclic GMP formation requires nitric oxide‐dependent activation of cytosolic guanylate cyclase in rat pinealocytes. J. Neurochem. 1993; 61: 138–144
  • Spessert R., Layes E., Schollmayer A., Reuss S., Vollrath L. In the rat pineal gland, but not in the suprachiasmatic nucleus, the amount of constitutive neuronal nitric oxide synthase is regulated by environmental lighting conditions. Biochem. Biophys. Res. Comm. 1995; 212: 70–76
  • Spessart R., Rapp M., Jastrow H., Karabul N., Blum F., Vollrath L. A differential role of CREB phosphorylation in cAMP‐inducible gene expression in the rat pineal. Brain Res. 2000; 864: 270–280
  • Sugden D., Vanecek J., Klein D. C., Thomas T. P., Anderson W. B. Activation of protein kinase C potentiates isoprenaline‐induced cyclic AMP accumulation in rat pinealocytes. Nature 1985; 314: 359–361
  • Takanaka Y., Okano T., Iigo M., Fukada Y. Light‐dependent expression of pinopsin gene in chicken pineal gland. J. Neurochem. 1998; 70: 908–913
  • Takanaka Y., Okano T., Yamamoto K., Fukada Y. A negative regulatory element required for light‐dependent pinopsin gene expression. J. Neurosci. 2002; 22: 4357–4363
  • Takekida S., Yan L., Maywood E. S., Hastings M. H., Okamura H. Differential adrenergic regulation of the circadian expression of the clock genes Period1 and Period2 in the rat pineal gland. Eur. J. Neurosci. 2000; 12: 4557–4561
  • Travnickova‐Bendova Z., Cermakian N., Reppert S. M., Sassone‐Corsi P. Bimodal regulation of mPeriod promoters by CREB‐dependent signaling and CLOCK/BMAL1 activity. Proc. Natl. Acad. Sci. USA 2002; 99: 7728–7733
  • Ueda H. R., Chen W., Adachi A., Wakamatsu H., Hayashi S., Takasugi T., Nagano M., Nakahama K., Suzuki Y., Sugano S., Iino M., Shigeyoshi Y., Hashimoto S. A. Transcription factor response element for gene expression during circadian night. Nature 2002; 418: 534–539
  • Underwood H., Steele C. T., Zivkovic B. Circadian organization and the role of the pineal in birds. Microsc. Res. Techn. 2001; 53: 48–62
  • Vinós J., Jalink K., Hardy R. W., Britt S. G., Zuker C. S. A G‐protein‐coupled receptor phosphatase required for rhodopsin function. Science 1997; 277: 687–690
  • Wada Y., Okano T., Fukada Y. Phototransduction molecules in the pigeon deep brain. J. Comp. Neurol. 2000; 428: 138–144
  • Wainwright S. D. Diurnal cycles in serotonin acetyltransferase activity and cyclic GMP content of cultured chick pineal glands. Nature 1980; 285: 478–480
  • Yamamoto K., Okano T., Fukada Y. Chicken pineal Cry genes: light‐dependent up‐regulation of cCry1 and cCry2 transcripts. Neurosci. Lett. 2001; 313: 13–16
  • Yoshimura T., Suzuki Y., Makino E., Suzuki T., Kuroiwa A., Matsuda Y., Namikawa T., Ebihara S. Molecular analysis of avian circadian clock genes. Molec. Brain Res. 2000; 78: 207–215
  • Zatz M. Does the circadian pacemaker act through cyclic AMP to drive the melatonin rhythm in chickpineal cells? J. Biol. Rhythms 1992; 7: 301–311
  • Zatz M. Melatonin rhythms: trekking toward the heart of darkness in the chick pineal. Sem. Cell. Devel. Biol. 1996; 7: 811–820
  • Zatz M., Mullen D. A. Photoendocrine transduction in cultured chick pinel cells.II. Effects of forskolin, 8‐bromocyclic AMP, and 8‐bromocyclic GMP on the melatonin rhythm. Brain Res. 1988; 453: 63–71
  • Zatz M., Gastel J. A., Heath J. R., Klein D. C. Chick pineal melatonin synthesis: Light and cyclic AMP control abundance of serotonin N‐acetyltransferase protein. J. Neurochem. 2000; 74: 2315–2321
  • Zhao X., Yokoyama K., Whitten M. E., Huang J., Gelb M. H., Palczewski K. A novel form of rhodopsin kinase from chicken retina and pineal gland. FEBS Lett. 1999; 454: 115–121
  • Zimmerman N. H., Menaker M. The pineal gland: a pacemaker within the circadian system of the house sparrow. Proc. Natl. Acad. Sci. USA 1979; 76: 999–1003

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.