Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 20, 2003 - Issue 4
139
Views
15
CrossRef citations to date
0
Altmetric
Original

Nonvisual Photoreceptors in Arthropods with Emphasis on Their Putative Role as Receptors of Natural Zeitgeber Stimuli

&
Pages 593-616 | Published online: 07 Jul 2009

References

  • Angermann H. Über Verhalten, Spermatophorenbildung und Sinnesphysiologie von Euscorpius italicus und verwandten Arten. Z. Tierpsychol. 1957; 14: 276–302
  • Arikawa K. Extraocular photoreceptors. Atlas of Arthropod Sensory Receptors, E. Eguchi, Y. Tominaga. Springer Verlag, Tokyo‐Berlin 1999; 79–86
  • Ball H. J. Photosensitivity of the terminal abdominal ganglion of Periplaneta americana. J. Ins. Physiol. 1965; 11: 1311–1315
  • Ball H. J. Photic entrainment of circadian activity rhythms by direct brain illumination in the cockroach Blaberus craniifer. J. Ins. Physiol. 1972; 18: 2449–2455
  • Battelle B.‐A., Dabdoub A., Malone M. A., Andrews A. W., Cacciatore C., Calman B. G., Smith W. C., Payne R. Immunocytochemical localization of opsin, visual arrestin, myosin III and calmodulin in Limulus lateral eye retinular cells and ventral photoreceptors. J. Comp. Neurol. 2001; 435: 211–225
  • Bennett M. F. Extraocular light receptors and circadian rhythms. Comparative Physiology and Evolution of Vision in Invertebrates: Invertebrate Photoreceptors, H. Autrum. Springer, Berlin–Heidelberg–New York 1979; 7/6A: 641–663
  • Bernal‐Moreno J. A., Miranda‐Anaya M., Fanjul‐Moles M. I. Phase‐shifting the ERG amplitude circadian rhythm of juvenile crayfish by caudal monochromatic illumination. Biol. Rhythm Res. 1996; 27: 299–301
  • Boulos Z., Macchi M., Terman M. Twilight transitions promote circadian entrainment to lengthening light‐dark cycles. Am. J. Physiol. 1996a; 271(3 Pt 2)R813–R818
  • Boulos Z., Terman J. S., Terman M. Circadian phase-response curves for simulated dawn and dusk twilights in hamsters. Physiol. Behav. 1996b; 60(5)1269–1275
  • Buma P., Roubos E. W., Buijs R. M. Ultrastructural demonstration of exocytosis of neural, neuroendocrine and endocrine secretions with an in vitro tannic acid (TARI‐) method. Histochemistry 1984; 80: 247–256
  • Calman B. G., Lauerman M. A., Andrews A. W., Schmidt M., Battelle B. A. Central Projections of Limulus Photoreceptor cells revealed by a photoreceptor‐specific monoclonal body. J. Comp. Neurol. 1991; 313(4)553–562
  • Carricaburu P. Dioptrique oculaire du scorpion Androctonus australis. Vision Res. 1968; 8: 1067–1072
  • Cymborowski B., Korf H. W. Immunocytochemical demonstration of S‐antigen (arrestin) in the brain of the blowfly Calliphora vicina. Cell & Tiss. Res. 1995; 279: 109–114
  • Daan S., Aschoff J. The entrainment of circadian rhythms. Handbook of Behavioral Neurobiology—Circadian Clocks, F. Turek, F. W. Takahashi, R. Y. Moore. Kluwer Academic/Plenum Publ., New York 2001; 12: 7–44
  • Danilenko K. V., Wirz‐Justice A., Krauchi K., Weber J. M., Terman M. The human circadian pacemaker can see by the dawn's early light. J. Biol. Rhythms 2000; 15: 437–446
  • Edwards D. H., Jr. Crayfish extraretinal photoreception. I. Behavioral and motoneuronal responses to abdominal illumination. J. Exp. Biol. 1984; 109: 291–306
  • Fahrenbach W. H. The visual system of the horseshoe crab. Intl. Rev. Cytol. 1975; 41: 285–349
  • Felisberti F., Ventura D. F. Cerebral extraocular photoreceptors in ants. Tissue & Cell 1996; 28: 25–30
  • Fleissner G. Untersuchungen zur Sehphysiologie der Skorpione. Verh. DZG 1968; 61: 375–380
  • Fleissner G. Über die Sehphysiologie von Skorpionen. J. W. Goethe‐Universität, Frankfurt am Main 1974, Ph.D. thesis
  • Fleissner G. The absolute sensitivity of the median and lateral eyes of the scorpion, Androctonus australis L. (Buthidac, Scorpiones). J. Comp. Physiol 1977a; 118: 109–120
  • Fleissner G. Differences in the physiological properties of the median and the lateral eyes and their possible meaning for the entrainment of the scorpion's circadian rhythm. J. Interdiscipl. Cycle Res. 1977b; 8: 15–26
  • Fleissner G. Scorpion lateral eyes: extremely sensitive receptors of Zeitgeber stimuli. J. Comp. Physiol. 1977c; 118: 101–108
  • Fleissner G. Isolation of an insect circadian clock. J. Comp. Physiol. A 1982; 149: 311–316
  • Fleissner G. Intracellular recordings of light responses from spiking and nonspiking cells in the median and lateral eyes of the scorpion. Naturwiss. 1985; 72: 46
  • Fleissner G., Siegler W. Arhabdomeric cells in the retina of the median eyes of the scorpion. Naturwissenschaften 1978; 65: 210–211
  • Fleissner G., Fleissner G. Neurobiology of a circadian clock in the visual system of scorpions. Neurobiology of Arachnids, F. G. Barth. Springer Verlag, Berlin–Heidelberg–New York 1985; 351–375
  • Fleissner G., Fleissner G. Natural photic Zeitgeber signals and underlying neuronal mechanismsm scorpions. Biological Clocks—Mechanisms and Applications, Y. Touitou. Elsevier, Paris 1998; 171–180
  • Fleissner G., Fleissner G. Neuronal organization of circadian systems. Scorpion Biology and Research, P. Brownell, G. Polis. Oxford University Press, New York 2001a; 107–137, Chap. 4
  • Fleissner G., Fleissner G. The scorpion's clock, feedback mechanisms in circadian systems. Scorpion Biology and Research, P. Brownell, G. Polis. Oxford University Press, New York 2001b; 138–158, Chap. 5
  • Fleissner G., Fleissner G. Perception of natural Zeitgeber signals. Biological Rhythms, V. Kumar. Narosa/Springer, New Delhi/New York 2002; 85–95
  • Fleissner G., Fleissner G., Hohmann W. Locomotor activity inverses the phase shifting effect of light on the circadian system of scorpions. Neuronal Mechanisms of Behaviour. Thieme Verlag, Göttingen 1989; 256
  • Fleissner G., Fleissner G., Frisch B. A new type of putative non-visual photoreceptors in the optic lobe of beetles. Cell Tiss. Res. 1993a; 273(3)435–445
  • Fleissner G., Gehrmann S., Volhardt H., Fleissner G. The newly discovered photoreceptors in the beetles optic lobe—a photoneuroendocrine system?. Neurobiology Conference. Thieme Verlag, Göttingen 1993b; 274
  • Fleissner G., Fleissner G., Nink V., Volz A. An extraretinal photoreceptor system in the optic lobes of beetles and their pupae—its ontogeny, functional compartments and possible physiological meaning. Proc. SRBR 1994; 4: 94
  • Fleissner G., Vollhardt H., Volz A., Nink V., Fleissner G. Photoreceptive and endocrine compartments in the extraretinal photoreceptive organs in the beetle's optic lobe. Learning and Memory. Thieme Verlag, Göttingen 1995; 326
  • Fleissner G., Waterkamp M., Thomas M., Fleissner G. Fine‐structural differences between the two types of extraretinal photoreceptors in the Tenebrionid beetle, Zophobas atratus (morio) (B) The lamina and lobula‐organs. Proc. 26th Göttingen Neurobiol. Conf. Thieme Verlag, Göttingen 1998; 275
  • Fleissner G., Loesel R., Waterkamp M., Kleiner O., Batschauer A., Homberg U. Candidates for extraocular photoreceptors in the cockroach suggest homology to the lamina and lobula organs in beetles. J. Comp. Neurol. 2001; 433(3)401–414
  • Friesen W. O., Fleissner G., Fleissner G. Role of feedback loops in the scorpion circadian system. Neurocomputing 2001; 38–40: 607–614
  • Frisch B., Fleissner G., Brandes C., Hall J. C. Staining in the brain of Pachymorpha sexguttata mediated by an antibody against a Drosophila clock‐gene product: labeling of cells with possible importance for the beetle's circadian rhythms. Cell Tiss. Res. 1996; 286(3)411–429
  • Gao N., von Schantz M., Foster R. G., Hardie J. The putative brain photoperiodic photoreceptors in the vetch aphid, Megoura viciae. J. Insect Physiol. 1999; 45: 1011–1019
  • Gbenro T., Fleissner G., Busch S., Fleissner G. Monitoring behavioral categories show internal synchronization better than records of unspecified locomotor activity. Proc. 8th Meeting SRBR 2002; 8: 184
  • Geethabali. Neurophysiological studies on the central nervous system of scorpion. Bangalore University, India 1974, Ph.D. thesis
  • Geethabali, Rao K. P. A metasomatic neural photoreceptor in the scorpion. J. Exp. Biol. 1972; 58: 189–196
  • Gielbultowicz J. M., Bell R. A., Imberski R. B. Circadian rhythm of sperm movement in the male reproductive tract of the gypsy moth Lymantria dispar. J. Insect Physiol. 1988; 34: 527–532
  • Gielbultowicz J. M., Riemann J. G., Raina A. K., Ridgway R. L. Circadian system controlling release of sperm in the insect testes. Science 1989; 245: 1098–1100
  • Gilbert C. Form and function of stemmata in larvae of holometabolous insects. Annu. Rev. Entomol. 1994; 39: 323–349
  • Goodman L. J. Organisation and physiology of the insect dorsal ocellar system. Invertebrate Visual Centers and Behavior II, H. J. Autrum. Springer Verlag, Berlin, Heidelberg, New York 1981; VII/6c: 201–286
  • Hagberg M. Ultrastructure and central projections of extraocular photoreceptors in caddiesflies (Insecta, Trichoptera). Cell Tiss. Res. 1986; 245: 634–648
  • Hama K. A photoreceptor‐like structure in the ventral cord of crayfish, Cambarus virilis. Anat. Rec. 1961; 140: 329–336
  • Hanna W. J.B., Pinkhasov E., Renninger G. H., Kaplan E., Barlow R. B., Jr. The tail of Limulus contains photoreceptors that modulate a circadian clock. Biol. Bull. 1985; 169: 552
  • Hege D. M., Stanewsky R., Hall J. C., Gielbultowcz J. M. Rhythmic expression of a PER‐reporter in the Malpighian tubules of decapitated Drosophila: evidence for a brain‐independent circadian clock. J. Biol. Rhythms 1997; 12: 300–308
  • Helfrich‐Foerster C., Engelmann W. Photoreceptors for the circadian clock of the fruitfly. Biological Rhythms, V. Kumar. Narosa Publishing House, Delhi(India) 2002; 94–106
  • Hofbauer A., Buchner E. Does Drosophila have seven eyes?. Naturwissenschaften 1989; 76: 335–336
  • Holst E. V., Mittelstaedt H. Das Reafferenzprinzip. Naturwissenschaften 1950; 37: 464–476
  • Ichikawa T. Brain photoreceptors in the adult and pupal butterfly: fate of larval ocelli. Zoological Science 1991; 8: 471–476
  • Ichikawa T. Photoreceptor organs other than compound eyes. I. Stemmata. Atlas of Arthropod Sensory Receptors, E. Eguchi, Y. Tominaga. Springer Verlag, Tokyo–Berlin 1999; 47–54
  • Kavaliers M., Hirst M., Teskey G. G. Aging and daily rhythms of analgesia in mice: effects of natural illumination and twilight. Neurobiol. Ageing 1984; 5: 111–114
  • Kennedy D. Responses from the crayfish caudal photoreceptor. Am. J. Ophthal. 1958; 46: 19–26
  • Kjellesvig‐Waering E. N. A restudy of the fossil Scorpionida of the world. Palaeontogr. Am. 1986; 55
  • Koehler W., Fleissner G. Internal desynchronisation of bilaterally organized circadian oscillators in the visual systems of insects. Nature 1978; 274: 708–710
  • Korf H. W. The pineal organ as a component of the biological clock: phylogenetic and ontogenetic considerations. Ann. NY Acad. Sci. 1994; 719: 13–42
  • Locket A. Eyes and vision. Scorpion Biology and Research, P. Brownell, G. Polis. Oxford University Press, New York 2001; 79–106
  • Loesel R., Homberg U. Anatomy and physiology of neurons with processes in the accessory medulla of the cockroach Leucophaea maderae. J. Comp. Neurol. 2001; 439: 193–207
  • Lüttgen M. A. Entrainment der circadianen Laufrhythmik durch Lichtzeitgeber: Untersuchung biologisch relevanter Lichtparameter am Beispiel der Lokomotionsrhythmik von Androctonus australis L. (Scorpiones, Buthidae). J. W. Goethe‐Universität, Frankfurt am Main 1993
  • Meissl H., Brandstätter R. Photoreceptive functions of the teleost pineal organ and their implications in biological rhythms. Rhythms in Fishes, M. A. Ali. Plenum Press, New York 1992; 235–254
  • Meissl H., Ekström P. Extraretinal photoreception by pineal systems: a tool for photoperiodic time measurements?. Trends Comp. Biochem. Physiol. 1993; 1: 1223–1240
  • Melzer R. R., Paulus H. F. Evolutionary pathways to the larval eyes of insects, higher dipteran stemmata and the evolutionary development of the Bolwig's organ. Z. Zool. System. Evolutionsforsch. 1989; 27: 200–245
  • Menaker M. The search for principles of physiological organization in the vertebrate circadian system. Vertebrate Circadian Systems, J. Aschoff, S. Daan, G. Groos. Springer Verlag, Berlin–Heidelberg 1982; 1–12
  • Mischke U., Wellmann H. The ultrastructure of ocular and extraocular photoreceptors in Colorado potatoe beetles (Chrysomelidac: Leptinotarsa decemlineata). Verh. DZG 1985; 78: 291
  • Mischke U., Ziegler R. Translokation von Photorezeptoren bei der postembryonalen Gehirnentwicklung von Manduca sexta. Verh. DZG 1987; 80: 150
  • Miyako Y., Arikawa K., Eguchi E. Ultrastructure of the extraocular photoreceptor in the genitalia of a butterfly, Papilio xuthus. J. Comp. Neurol. 1993; 327: 458–468
  • Mizoguchi A., Ishizaki H. Further evidence for the presence of a circadian clock in the prothoracic glands of the saturnid moth Samiacynthia ricini: decapitated larvae can respond to light‐changes. Development, Growth and Differentiation 1984; 26: 607–611
  • Mizunami M. Organization of ocellar pathways in the cockroach brain. J. Comp. Neurol. 1995; 352: 458–468
  • Nässel D. R., Holmquist M. H., Hardie R. C., Häkanson R., Sundler F. Histamine‐like immunoreactivity in photoreceptors of the compound eyes and ocelli of the flies, Calliphora erythrocephala and Musca domestica. Cell Tiss. Res. 1988; 253: 639–646
  • Nelson D., Takahashi J. Sensitivity and integration in a visual pathway for circadian entrainment in the hamster. J. Physiol. 1991; 439: 115–145
  • Neumann D. Circadian components of semilunar and lunar timing mechanisms. Biological Clocks and Environmental Time, S. Daan, E. Gwinner. The Guildford Press, New York–London 1989; 173–182
  • Page T. L. Circadian system of invertebrates. Hb. Behav. Neurobiol: Circadian Clocks, J. Takahashi, F. Turek, F. Moore, R. Y. Moore. Kluwer Academic/Plenum Publ., New York 2001; 12: 79–110
  • Plantz J. D., Kaneko M., Hall J. C., Kay S. A. Independent photoreceptive circadian clock throughout Drosphila. Science 1997; 278: 1632–1635
  • Renninger G. H., Chamberlain S. C. Modulation of photoreceptor function in Limulus polyphemus by a central circadian clock. Sensory Systems of Arthropods, K. Wiese, F. G. Gribakin, A. V. Popov, G. Reninnge. Birkhäuser Verlag, Basel–Boston–Berlin 1993; 307–316
  • Sandeman D. C., Sandeman R. E., de Couet H. G. Extraretinal photoreceptors in the brain of the crayfish Cherax destructor. J. Neurobiol. 1990; 21: 619–629
  • Schliwa M., Fleissner G. Arhabdomeric cells of the median eye retina of scorpions. J. Comp. Physiol. 1979; 130: 265–270
  • Schliwa M., Fleissner G. The lateral eyes of the scorpion, Androctonus australis. Cell Tiss. Res. 1980; 206(1)95–104
  • Schuchardt K., Fleissner G., Fleissner G. Histological and immunocytochemical evidence for a metasomal light sense in scorpions. Proc. Meeting 8th SRBR 2002; 254
  • Schultz W. D., Schlüter U., Seifert G. Extraocular photoreceptors in the brain of Epilachna varivestis (Coleoptera Coccinellidae). Cell Tiss. Res. 1984; 236: 317–320
  • Schwemer J. Turnover of photoreceptor membrane and visual pigment in invertebrates. Dahlem Konferenzen. Springer, Berlin 1985; 303–326
  • Seifert P., Smola U., Schinko I. Internal extraocular photoreceptors in a Dipteran insect. Tissue & Cell 1987; 19: 111–118
  • Sprint M. M., Eaton J. L. Flight behavior of normal and anocellate cabbage loopers (lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 1987; 80: 468–471
  • Thomas M. A., Fleissner G., Hauptfleisch S., Lemmer B. Subcellular identification of angiotensin II‐ and angiotensin II (AT1)‐receptor‐immunoreactivity in the central nervous system of rats. Brain Research 2003; 962: 92–104
  • Truman J. Extraretinal photoreception in insects. Photophysiology 1976; 23: 215–225
  • Vafopoulou X., Steel C. G. Circadian regulation of a daily rhythm of release of prothoracicotropic hormone from the brain retrocerebral complex of Rhodnius prolixus (hemiptera) during larval‐adult development. Gen. Comp. Endocr. 1996; 102: 123–129
  • Waterkamp M., Fleissner G., Thomas M., Fleissner G. Fine‐structural differences between the two types of extraretinal photoreceptors in the Tenebrionid beetle, Zophobas atratus (morio) (A) The stemmata. Proc. 26th Göttingen Neurobiol. Conf. Thieme Verlag, Göttingen, 274
  • Wunderer H., De Kramer J. J. Dorsal ocelli and light‐induced diurnal activity patterns in the arctiid moth Creatonotus transiens. J. Insect Physiol. 1989; 35: 87–95
  • Yasuyama K., Meinertzhagen I. A. Extraretinal photoreceptors at the compound eye's posterior margin in Drosophila melanogaster. J. Comp. Neurol. 1999; 412(2)193–202
  • Yoshida M. Extraocular photoreception. Comparative Physiology and Evolution of Vision in Invertebrates: Invertebrate Photoreceptors, H. J. Autrum. Springer Verlag, Berlin, Heidelberg, New York 1979; 7/6A
  • Zwicky K. T. A light response in the tail of Urodacus, a scorpion. Life Sci. 1968; 7: 257–262
  • Zwicky K. T. Behavioural aspects of the extraocular light sense of Urodacus, a scorpion. Experientia 1970; 26: 747–748

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.