Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 20, 2003 - Issue 5
537
Views
39
CrossRef citations to date
0
Altmetric
REVIEW

The Circadian Control of Eclosion

Pages 775-794 | Published online: 07 Jul 2009

References

  • Agiu N., Granger N., Bollenbacher W., Gilbert L. Cellular localization of the insect prothoracicotropic hormone: in vitro assay of a single neurosecretory cell. Proc. Natl Acad. Sci. USA 1979; 76: 5694–5698
  • Agiu N., Bollenbacher W., Granger N., Gilbert L. Corpus allatum is release site for the insect prothoracicotropic hormone. Nature 1980; 285: 669–670
  • Akten B., Jauch E., Genova G., Kim E. Y., Edery I., Raabe T., Jackson F. R. A role for CK2 in the Drosophila circadian oscillator. Nature Neurosci. 2003; 6: 251–257
  • Allada R., White N. E., Venus So W., Hall J. C., Rosbash M. A mutant Drosophila homolog of mammalian Clock disrupts circadian rhythms and transcription of period and timeless. Cell 1998; 93: 791–804
  • Ampleford E. J., Steel C. G.H. Circadian control of a daily rhythm in haemolymph ecdysteroid titre in the insect Rhodnius prolixus (Hemiptera). Gen.Comp Endocrinol. 1985; 59: 453–459
  • Baker J. D., McNabb S. L., Truman J. W. The hormonal coordination of behavior and physiology at adult ecdysis in Drosophila melanogaster. J. Exp. Biol. 1999; 202: 3037–3048
  • Beaver L. M., Gvakharia B. O., Vollintine T. S., Hege D. M., Stanewsky R., Giebultowicz J. M. Loss of circadian clock function decreases reproductive fitness in males of Drosophila melanogaster. PNAS 2002; 99: 2134–2139
  • Blanchardon E., Grima B., Klarsfeld A., Chelot E., Hardin P. E., Preat T., Rouyer F. Defining the role of Drosophila lateral neurons in the control of circadian rhythms in motor activity and eclosion by targeted genetic ablation and PERIOD protein overexpression. Eur. J. Neurosci. 2001; 13: 871–888
  • Brett W. J. Persistent diurnal rhythmicity in Drosophila emergence. Ann. Ent. Soc. Am. 1955; 48: 119–131
  • Bünning E. Zur Kenntniss der endogonen Tagesrhythmik bei Insekten und Pflanzen. Ber. dt. bot. Ges. 1935; 53: 594–623
  • Chandrashekaran M. K. Apparent absence of a separate B‐oscillator in phasing the circadian rhythm of eclosion in Drosophila pseudoobscura. Development and Neurobiology of Drosophila, O. Siddiqui, P. Babu, L. M. Hall, J. C. Hall. Plenum Publishing Company. 1980
  • Cymborowski B., Smietanko A., Delbecque J. P. Circadian modulation of ecdysteroid titre in Galleria mellonella larvae. Comp. Biochem. Physiol. A 1989; 94: 431–438
  • Cymborowski B., Muszynska‐Pytel M., Porcheron P., Cassier P. Haemolymph ecdysteroid titres controlled by a circadian clock mechanism in the larvae of the wax moth, Galleria mellonella. J. Insect Physiol. 1991; 37: 35–40
  • Darlington T. K., Wagner‐Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D.L., Weitz C. J., Takahashi J. S., Kay S. A. Closing the circadian loop: clock‐induced transcription of its own inhibitors per and tim. Science 1998; 280: 1599–1603
  • Dedos F. G., Fugo H. Induction of dauer larvae by application of fenoxycarb early in the fifth instar of the silkworm Bombyx mori. J.Insect Physiol. 1999; 45: 769–775
  • Dushay M. S., Rosbash M., Hall J. C. The disconnected visual system mutations in Drosophila melanogaster drastically disrupt circadian rhythms. J. Biol. Rhythm. 1989; 4: 1–27
  • Emery I. F., Noveral J. M., Jamison C. F., Siwicki K. K. Rhythms of Drosophila period gene expression in culture. Proc. Natl Acad. Sci. USA 1997; 94: 4092–4096
  • Ewer J., Truman J. W. Increases in cyclic 3′, 5′‐guanosine monophosphate (cGMP) occur at ecdysis in an evolutionarily conserved crustacean cardioactive peptide‐immunoreactive insect neuronal network. J. Comp. Neurol. 1996; 370: 330–341
  • Ewer J., Gammie S. C., Truman J. W. Control of insect ecdysis by a positive‐feedback endocrine system: roles of eclosion hormone and ecdysis triggering hormone. J. Exp. Biol. 1997; 200: 869–881
  • Ewer J., Truman J. W. Invariant association of ecdysis with increases in 3′, 5′‐guanosine monophosphate (cGMP)‐immunoreactivity in a small network of peptidergic neurons in the hornworm, Manduca sexta. J. Comp. Physiol. 1997; 181: 319–330
  • Ewer J., Reynolds S. Neuropeptide control of molting insects. Hormones, Brain and Behavior, D. Pfaff, A. Arnold, A. Etgen, S. Fahrbach, R. Rubin. Academic Press. 2002; 1–91
  • Ewer J., Frisch B., Hamblen‐Coyle M., Rosbash M., Hall J. Expression of the period clock gene within different cell types in the brain of Drosophila adults and mosaic analysis of these cells' influence on circadian behavioral rhythms. J. Neurosci. 1992; 12: 3321
  • Ewer J., De Vente J., Truman J. W. Neuropeptide induction of cyclic GMP increases in the insect CNS: resolution at the level of single identifiable neurons. J. Neurosci. 1994; 14: 7704–7712
  • Frisch B., Hardin P. E., Hamblen‐Coyle M. J., Rosbash M., Hall J. C. A promoterless period gene mediates behavioral rhythmicity and cyclical per expression in a restricted subset of the Drosophila nervous, system. Neuron. 1994; 12: 555–570
  • Frisch B., Fleissner G., Fleissner G., Brandes C., Hall J. C. Staining in the brain of Pachymorpha sexguttata mediated by an antibody against a Drosophila clock‐gene product: labeling of cells with possible importance for the beetle's circadian rhythms. Cell Tissue Res. 1996; 286: 411–429
  • Fujishita M., Ishizaki H. Circadian clock and prothoracicotropic hormone secretion in relation to the larval–larval ecdysis rhythm of the saturniid Samia cynthia ricini. J. Insect Physiol. 1981; 27: 121–128
  • Fujishita M., Ishizaki H. Temporal organization of endocrine events in relation to the circadian clock during larval–pupal development in Samia cynthia ricini. J. Insect Physiol. 1982; 28: 77–84
  • Fujishita M., Ohnishi E., Ishizaki H. The role of ecdysteroids in the determination of gut‐purge timing in saturniid, Samia cynthia ricini. J. Insect Physiol. 1982; 28: 961–967
  • Gammie S. C., Truman J. W. Neuropeptide hierarchies and the activation of sequential motor behaviors in the hawkmoth, Manduca sexta. J. Neurosci. 1997; 17: 4389–4397
  • Gammie S. C., Truman J. W. Eclosion hormone provides a link between ecdysis‐triggering hormone and crustacean cardioactive peptide in the neuroendocrine cascade that controls ecdysis behavior. J. Exp. Biol. 1999; 202: 343–352
  • Giebultowicz J. M., Hege D. M. Circadian clock in Malpighian tubules. Nature 1997; 386: 664
  • Gilbert L. I., Rybczynski R., Warren J. T. Control and biochemical nature of the ecdysteroidogenic pathway. Annu. Rev. Entomol. 2002; 47: 883–916
  • Glossop N. R., Hardin P. E. Central and peripheral circadian oscillator mechanisms in flies and mammals. J. Cell Sci. 2002; 115: 3369–3377
  • Goto S., Denlinger D. Short‐day and long‐day expression patterns of genes involved in the flesh fly clock mechanism: period, timeless, cycle and cryptochrome. J. Insect Physiol. 2002; 48: 803–816
  • Grima B., Lamouroux A., Chelot E., Papin C., Limbourg‐Bouchon B., Rouyer F. The F‐box protein slimb controls the levels of clock proteins Period and timeless. Nature 2002; 420: 178–182
  • Hardin P. E. Analysis of period mRNA cycling in Drosophila head and body tissues indicates that body oscillators behave differently from head oscillators. Mol. Cell Biol. 1994; 14: 7211–7218
  • Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene on circadian cycling of its messenger RNA levels. Nature 1990; 343: 536–540
  • Helfrich‐Förster C. The period clock gene is expressed in central nervous system neurons which also produce a neuropeptide that reveals the projections of circadian pacemaker cells within the brain of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 1995; 92: 612–616
  • Helfrich‐Förster C. Robust circadian rhythmicity of Drosophila melanogaster requires the presence of lateral neurons: a brain‐behavioral study of disconnected mutants. Comp. Physiol. A 1998; 182: 435–453
  • Helfrich‐Förster C., Tauber M., Park J. H., Muhlig‐Versen M., Schneuwly S., Hofbauer A. Ectopic expression of the neuropeptide pigment‐dispersing factor alters behavioral rhythms in Drosophila melanogaster. J. Neurosci. 2000; 20: 3339–3353
  • Hewes R. S., Truman J. W. Steroid regulation of excitability in identified insect neurosecretory cells. J. Neurosci. 1994; 14: 1812–1819
  • Hogenesch J. B., Gu Y.‐Z., Jain S., Bradfield C. A. The basic helix‐loop‐helix‐PAS orphan MOP3 forms transcriptionally active complexes with circadian and hypoxia factors. Proc. Natl Acad. Sci. USA 1998; 95: 5474–5479
  • Hunter‐Ensor M., Ousley A., Sehgal A. Regulation of the Drosophila protein timeless suggests a mechanism for resetting the circadian clock by light. Cell 1996; 84: 677–686
  • Kaneko M., Hall J. C. Neuroanatomy of cells expressing clock genes in Drosophila: transgenic manipulation of the period and timeless genes to mark the perikarya of circadian pacemaker neurons and their projections. J. Comp. Neurol. 2000; 422: 66–94
  • Kaneko M., Helfrich‐Förster C., Hall J. C. Spatial and temporal expression of the period and timeless genes in the developing nervous system of Drosophila: newly identified pacemaker candidates and novel features of clock gene product cycling. J. Neurosci. 1997; 17: 6745–6760
  • Kim A.‐J., Cha G.‐H., Kim K., Gilbert L. I., Lee C. C. Purification and characterization of the prothoracicotropic hormone of Drosophila melanogaster. Proc. Natl Acad. Sci. USA 1997; 94: 1130–1135
  • Kingan T. G., Adams M. E. Ecdysteroids regulate secretory competence in Inka cells. J. Exp. Biol. 2000; 203: 3011–3018
  • Kingan T. G., Gray W., Zitnan D., Adams M. E. Regulation of ecdysis‐triggering hormone release by eclosion hormone. J. Exp. Biol. 1997; 200: 3245–3256
  • Ko H. W., Jiang J., Edery I. Role for slimb in the degradation of Drosophila period protein phosphorylated by doubletime. Nature 2002; 420: 673–678
  • Koelle M. R., Talbot W. S., Segraves W. A., Bender M. T., Cherbas P., Hogness D. S. The Drosophila EcR gene encodes an ecdysone receptor, a new member of the steroid receptor superfamily. Cell 1991; 67: 59–77
  • Konopka R. J., Benzer S. Clock mutants of Drosophila melanogaster. Proc.Natl Acad. Sci. USA 1971; 68: 2112–2116
  • Krishnan B., Dryer S. E., Hardin P. E. Circadian rhythms in olfactory responses of Drosophila melanogaster. Nature 1999; 400: 375–378
  • Lee C., Bae K., Edery I. The Drosophila CLOCK protein undergoes daily rhythms in abundance, phosphorylation and interactions with the PER‐TIM complex. Neuron. 1998; 21: 857–867
  • Lee C., Bae K., Edery I. PER and TIM inhibit the DNA binding activity of a Drosophila CLOCK‐CYC/dBMAL1. Heterodimer without disrupting formation of the heterodimer: a basis for circadian transcription. Mol. Cell. Biol. 1999; 19: 5316–5325
  • Lin J.‐M., Kilman V., Keegan K., Paddock B., Emery‐Le M., Rosbash M., Allada R. A role for casein kinase 2a in the Drosophila circadian clock. Nature 2002; 420: 816–820
  • Liu X., Lorenz L., Yu Q. N., Hall J. C., Rosbash M. Spatial and temporal expression of the period gene in Drosophila melanogaster. Gene. Dev. 1988; 2: 228–238
  • Markova E., Ueda H., Sakamoto K., Oishi K., Shimada T., Takeda M. Cloning of Cyc (Bmal1) homolog in Bombyx mori: structural analysis and tissue specific distributions. Comp. Biochem. Physiol. B 2003; 134: 535–542
  • Martinek S., Inonog S., Manoukian A. S., Young M. W. A role for the segment polarity gene shaggy/GSK‐3 in the Drosophila circadian clock. Cell 2001; 105: 769–779
  • McNabb S. L., Baker J. D., Agapite J., Steller H., Riddiford L. M., Truman J. W. Disruption of a behavioral sequence by targeted death of peptidergic neurons in Drosophila. Neuron. 1997; 19: 813–823
  • McNeil G. P., Zhang X., Genova G., Jackson F. R. A molecular rhythm mediating circadian clock output in Drosophila. Neuron. 1998; 20: 297–303
  • McNeil G. P., Schroeder A. J., Roberts M. A., Jackson F. R. Genetic analysis of functional domains within the Drosophila LARK RNA‐binding protein. Genetics 2001; 159: 229–240
  • Mesce K. A., Fahrbach S. E. Integration of endocrine signals that regulate insect ecdysis. Front. Neuroendocrin. 2002; 23: 179–199
  • Mizoguchi A., Ishizaki H. Further evidence for the presence of a circadian clock in prothoracic glands of the surturniid moth Samia cynthia ricini: decapitated larvae can respond to light–dark changes. Dev. Growth Differ. 1984; 26: 607–611
  • Mizoguchi A., Ohashi Y., Hosoda K., Ishibashi J., Kataoka H. Developmental profile of the changes in the prothoracicotropic hormone titre in haemolymph of the silkworm Bombyx mori: correlation with ecdysteroid secretion. Insect Biochem. Mol. Biol. 2001; 31: 349–358
  • Morton D. B., Truman J. W. Steroid regulation of the peptide‐mediated increase in cGMP in the nervous system of the hawkmoth, Manduca sexta. J. Comp. Physiol. 1985; 157: 423–432
  • Myers M. P., Wager‐Smith K., Rothenflugh A., Young M. W. Light‐induced degradation of TIMELESS and entrainment of the Drosophila circadian clock. Science 1996; 271: 1736–1740
  • Myers E. M., Yiu J., Sehgal A. Circadian control of eclosion: interaction between a central and peripheral clock in Drosophila melanogaster. Curr. Biol. 2003; 13: 526–533
  • Newby L. M., Jackson F. R. A new biological rhythm mutant of Drosophila melanogaster that identifies a gene with an essential embryonic function. Genetics 1993; 135: 1077–1090
  • Newby L. M., Jackson F. R. Regulation of a specific circadian clock output pathway by lark, a putative RNA‐binding protein with repressor activity. J. Neurobiol. 1996; 31: 117–128
  • Park J. H., Helfrich‐Förster C., Lee G., Liu L., Rosbash M., Hall J. C. Differential regulation of circadian pacemaker output by separate clock genes in Drosophila. Proc. Natl. Acad. Sci. USA 2000; 97: 3608–3613
  • Park J., Schroeder A. J., Helfrich‐Forster C., Jackson F. R., Ewer J. Targeted ablation of CCAP neuropeptide‐containing neurons of Drosophila causes specific defects in execution and circadian timing of ecdysis behavior. Development 2003; 130: 2645–2656
  • Pelc D., Steel C. G.H. Rhythmic steroidogenesis by the prothoracic glands of the insect Rhodnius prolixus in the absence of rhythmic neuropeptide input: implications for the role of prothoracicotropic hormone. Gen. Comp. Endocrinol. 1997; 108: 358–365
  • Piccin A., Couchman M., Clayton J. D., Chalmers D., Costa R., Kyriacou C. P. The clock gene period of the housefly, Musca domestica, rescues behavioral rhythmicity in Drosophila melanogaster: evidence for intermolecular coevolution?. Genetics 2000; 154: 747–758
  • Pittendrigh C. S. On temperature independence in the clock controlling emergence time in Drosophila. Proc. Natl. Acad. Sci. USA 1954; 40: 1018–1029
  • Pittendrigh C. S. Perspectives in the study of biological clocks. Perspectives in Marine Biology, A. A. Buzzati‐Traverso. University of California Press. 1958; 239–268
  • Pittendrigh C. S. On the mechanism of entrainment of circadian rhythm by light cycles. Circadian Clocks, J. Aschoff. North‐Holland, Amsterdam 1965; 277–297
  • Pittendrigh C. S. Circadian systems I. The driving oscillation and its assay in Drosophila pseudoobscura. Proc. Natl. Acad. Sci. USA 1967; 58: 1762–1767
  • Pittendrigh C. S., Bruce V. G. An oscillator model for biological clocks. Rhythmic and Synthetic Processes in Growth, D. Rudnick. Princeton University Press, Princeton, NJ 1957; 75–109
  • Pittendrigh C. S., Bruce V. G. Daily rhythms as coupled oscillator systems and their relation to thermoperiodism and photoperiodism. Photoperiodism and Related Phenomena in Plants and Animals, R. B. Withrow. American Association for the Advancement of Science, Washington 1959; 475–505
  • Pittendrigh C. S., Skopik S. D. Circadian systems, V. The driving oscillation and the temporal sequence of development. Proc. Natl. Acad. Sci. 1970; 65: 500–507
  • Plautz J. D., Kaneko M., Hall J. C., Kay S. A. Independent photoreceptive circadian clocks throughout Drosophila. Science 1997; 278: 1632–1635
  • Price J. L., Blau J., Rothenflugh A., Abodeely M., Kloss B., Young M. W. double‐time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 1998; 94: 83–95
  • Qiu J., Hardin P. E. Developmental state and the circadian clock interact to influence the timing of eclosion in Drosophila melanogaster. J. Biol. Rhythm. 1996; 11: 75–86
  • Renn S. C.P., Park J. H., Rosbash M., Hall J. C., Taghert P. H. A pdf neuropeptide gene mutation and ablation of PDF neurons each cause severe abnormalities of behavioral circadian rhythms in Drosophila. Cell 1999; 99: 791–802
  • Reppert S. M., Tsai T., Roca A. L., Sauman I. Cloning of a structural and functional homolog of the circadian clock gene period from the giant silkmoth Antheraea pernyi. Neuron. 1994; 13: 1167–1176
  • Richter K. Daily changes in neuroendocrine control of moulting hormone secretion in the prothoracic gland of the cockroach Periplanta americana (L.). J. Insect Physiol. 2001; 47: 333–338
  • Rutila J. E., Suri V., Le M., So W. V., Rosbash M., Hall J. C. CYCLE is a second bHLH‐PAS clock protein essential for circadian rhythmicity and transcription of Drosophila period and timeless. Cell 1998; 93: 805–814
  • Saez L., Young M. W. In situ localization of the per clock protein during development of Drosophila melanogaster. Mol. Cell. Biol. 1988; 8: 5378–5385
  • Sakurai S. Temporal organization of endocrine events underlying larval–larval ecdysis in the silkworm, Bombyx mori. J. Insect Physiol. 1983; 29: 919–932
  • Sakurai S. Temporal organization of endocrine events underlying larval– pupal metamorphosis in the silkworm, Bombyx mori. J. Insect Physiol. 1984; 30: 657–664
  • Sakurai S., Kaya M., Satake S. Haemolymph ecdysteroid titre and ecdysteroid‐dependent developmental events in the larval–pupal stadium of the silkworm, Bombyx mori: role of low ecdysteroid titre in larval–pupal metamorphosis and a reappraisal of the head critical period. J. Insect Physiol. 1998; 44: 867–881
  • Sauman I., Reppert S. M. Circadian clock neurons in the silkmoth Antheraea pernyi: novel mechanisms of period protein regulation. Neuron. 1996; 17: 889–900
  • Saunders D. S., Steel C. G.H., Vafopoulo X., Lewis R. D. Insect Clocks. Elsevier Science B.V., Amsterdam 2002
  • Schwartz L. M., Truman J. W. Hormonal control of rates of metamorphic development in the tobacco hornworm Manduca sexta. Devel. Biol. 1983; 99: 103–114
  • Sehgal A., Price J. L., Man B., Young M. W. Loss of circadian behavioral rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 1994; 263: 1603–1606
  • Sehgal A., Rothenfluh‐Hilfiker A., Hunter‐Ensor M., Chen Y., Myers M. P., Young M. W. Rhythmic expression of timeless: a basis for promoting circadian cycles in period gene autoregulation. Science 1995; 270: 808–810
  • Shibanaka Y., Hayashi H., Okada N., Fujita N. The crucial role of cGMP in the eclosion hormone mediated signal transduction in the silkworm metamorphoses. Biochem. Biophys. Res. Commun. 1991; 180: 881–886
  • Siegmund T., Korge G. Innervation of the ring gland of Drosophila melanogaster. J. Comp. Neurol. 2001; 431: 481–491
  • Siwicki K. K., Eastman C., Petersen G., Rosbash M., Hall J. C. Antibodies to the period gene product of Drosophila reveal diverse tissue distribution and rhythmic changes in the visual system. Neuron. 1988; 1: 141–150
  • Stanewsky R. Clock mechanisms in Drosophila. Cell Tissue Res. 2002; 309: 11–26
  • Steel C. G.H., Ampleford E. J. Circadian control of haemolymph ecdysteroid titers and the ecdysis rhythm in Rhodnius prolixus. Photoperiodic Regulation of Insect and Mollusca Hormones, R. Porter, G. M. Collins. Pitman, LondonUK 1984; 150–162
  • Talbot W. S., Swywryd E. A., Hogness D. S. Drosophila tissues with different metamorphic responses to ecdysone express different ecdysone receptor isoforms. Cell 1993; 73: 1323–1337
  • Tanaka K., Watari Y. Adult eclosion timing of the onion fly, Delia antiqua, in response to daily cycles of temperature at different soil depths. Naturwissenschaften 2003; 90: 76–79
  • Thomas H. E., Stunnenberg H. G., Stewart A. F. Heterodimerization of the Drosophila ecdysone receptor with retinoid X receptor and ultraspiracle. Nature 1993; 362: 471–475
  • Thummel C. S. Edysone‐regulated puff genes 2000. Insect Biochem. Mol. Biol. 2002; 32: 113–120
  • Truman J. W. Physiology of insect rhythms. I. Circadian organization of the endocrine events underlying the moulting cycle of larval tobacco hornworms. J. Exp. Biol. 1972a; 57: 805–820
  • Truman J. W. Physiology of insect rhythms. II. The silkworm brain as the location of the biological clock controlling eclosion. J. Comp. Physiol. 1972b; 81: 99–114
  • Truman J. W., Riddiford L. W. Neuroendocrine control of ecdysis in silk‐moths. Science, Wash. 1970; 167: 1624–1626
  • Truman J. W., Riddiford L. M. Endocrine insights into the evolution of metamorphosis in insects. Annu. Rev. Entomol. 2002; 47: 467–500
  • Truman J. W., Rountree D. B., Reiss S. E., Schwartz L. M. Ecdysteroids regulate the release and action of eclosion hormone in the tobacco hornworm, Manduca sexta (L.). J. Insect Physiol. 1983; 29: 895–900
  • Vafopoulou X., Steel C. G.H. Developmental and diurnal changes in ecdysteroid biosynthesis by prothoracic glands of Rhodnius prolixus (Hemiptera) in vitro during the last larval instar. Gen. Comp. Endocrinol. 1989; 74: 484–493
  • Vafopoulou X., Steel C. G.H. The insect neuropeptide prothoracicotropic hormone is released with a daily rhythm: re‐evaluation of its role in development. Proc. Natl. Acad. Sci. USA 1996a; 93: 3368–3372
  • Vafopoulou X., Steel C. G.H. Circadian regulation of a daily rhythm of release of prothoracicotropic hormone from the brain‐retrocerebral complex of Rhodnius prolixus (Hemiptera) during larval–adult development. Gen. Comp. Endocrinol. 1996b; 102: 123–129
  • Vafopoulou X., Steel C. G.H. A photosensitive circadian oscillator in an insect endocrine gland: photic induction of rhythmic steroidogenesis in vitro. J. Comp. Physiol. 1998; 182: 343–349
  • Vosshall L. B., Young M. W. Circadian rhythms in Drosophila can be driven by period expression in a restricted group of central brain cells. Neuron. 1995; 15: 345–360
  • Warman G. R., Newcomb R. D., Lewis R. D., Evans C. W. Analysis of the circadian clock gene period in the sheep blow fly Lucilia cuprina. Genetical Research 2000; 75: 257–267
  • Wise S., Davis N. T., Tyndale E., Noveral J., Folwell M. G., Bedian V., Emery I. F., Siwicki K. K. Neuroanatomical studies of period gene expression in the hawkmoth, Manduca sexta. J.Comp. Neurol. 2002; 447: 366–380
  • Yang Z., Sehgal A. Role of molecular oscillations in the Drosophila circadian clock. Neuron. 2001; 29: 453–467
  • Yao T. P., Forman B. M., Segraves W. A., Oro A. E., McKeown M., Cherbas P., Evans R. M. Drosophila ultraspiracle modulates ecdysone receptor function via heterodimer formation. Cell 1992; 71: 63–72
  • Yao T. P., Forman B. M., Jiang Z. Y., Cherbas L., Chen J. D., McKeown M., Cherbas P., Evans R. M. Functional ecdysone receptor is the product of EcR and ultraspiracle genes. Nature 1993; 366: 476–479
  • Zavodska R., Sauman I., Sehnal F. Distribution of PER protein, pigment‐dispersing hormone, prothoracicotropic hormone, and eclosion hormone in the cephalic nervous system of insects. J. Biol. Rhythm. 2003; 18: 106–122
  • Zhang X., McNeil G. P., Hilderbrand‐Chae M. J., Franklin T. M., Schroeder A. J., Jackson F. R. Circadian regulation of the lark RNA‐binding protein within identifiable neurosecretory cells. J. Neurobiol. 2000; 45: 14–29
  • Zimmerman W. F., Ives D. Some photophysiological aspects of circadian rhythmicity in Drosophila. Biochronometry, M. Menaker. National Academy of Sciences, Washington, 381–391
  • Zimmerman W. F., Pittendrigh C. S., Pavlidis T. Temperature compensation of the circadian oscillation in Drosophila pseudoobscura and its entrainment by temperature cycles. J. Insect Physiol. 1968; 14: 669–684
  • Zitnan D., Adams M. E. Excitatory and inhibitory roles of central ganglia in initiation of the insect ecdysis behavioural sequence. J. Exp. Biol. 2000; 203: 1329–1340
  • Zitnan D., Sehnal F., Bryant P. J. Neurons producing specific neuropeptides in the central nervous system of normal on pupariation‐delayed Drosophila. Dev. Biol. 1993; 156: 117–135
  • Zitnan D., Kingan T. G., Hermesman J. L., Adams M. E. Identification of ecdysis‐triggering hormone from epitracheal endocrine system. Science 1996; 271: 88–91
  • Zitnan D., Ross L. S., Zitnanova I., Hermesman J. L., Gill S. S., Adams M. E. Steroid induction of a peptide hormone gene lead to orchestration of a defined behavioral sequence. Neuron. 1999; 23: 523–535

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.