Publication Cover
Chronobiology International
The Journal of Biological and Medical Rhythm Research
Volume 22, 2005 - Issue 1
442
Views
26
CrossRef citations to date
0
Altmetric
Mini‐Review

Caenorhabditis elegans Opens Up New Insights into Circadian Clock Mechanisms

, &
Pages 1-19 | Published online: 07 Jul 2009

References

  • Abbott B. D. Review of the interaction between TCDD and glucocorticoids in embryonic palate. Toxicology 1995; 105: 365–373
  • Abbott B. D., Probst M. R., Perdew G. H. Immunohistochemical double‐staining for Ah receptor and ARNT in human embryonic palatal shelves. Teratol. 1994; 50: 361–366
  • Adimoolam S., Ford J. M. p53 and regulation of DNA damage recognition during nucleotide excision repair. DNA Repair 2003; 2: 947–954
  • Ambros V. R. Control of developmental timing in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 2000; 10: 428–433
  • Attisano L., Wrana J. L. Signal transduction by the TGF‐β superfamily. Science 2002; 296: 1646–1647
  • Avery L., Raizen D., Lockery S. Electrophysiological methods. Meth. Cell Biol. 1995; 48: 251–269
  • Barak S., Tobin E. M., Andronis C., Sugano S., Green R. M. All in good time: The Arabidopsis circadian clock. Trends Plant Sci. 2000; 5: 517–522
  • Bargiello T. A., Jackson F. R., Young M. W. Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 1984; 312: 752–754
  • Bargmann C. I. Genetic and cellular analysis of behavior in C. elegans. Annu. Rev. Neurosci. 1993; 16: 47–71
  • Barnes J. W., Tischkau S. A., Barnes J. A., Mitchell J. W., Burgoon P. W., Hickok J. R., Gillette M. U. Requirement of mammalian Timeless for circadian rhythmicity. Science 2003; 302: 439–442
  • Berk M. The C. eleganas genome mapping and sequence consortium. The C. elegans Genome Sequencing Project. Genome Res. 1995; 5: 99–104
  • Berman K., McKay J., Avery L., Cobb M. Isolation and characterization of pmk‐(1–3): three p38 homologs in Caenorhabditis elegans. Mol. Cell. Biol. Res. Commun. 2001; 4: 337–344
  • Bhanot P., Brink M., Samos C. H., Hsieh J. C., Wang Y., Macke J. P., Andrew D., Nathans J., Nusse R. A new member of the frizzled family from Drosophila functions as a Wingless receptor. Nature 1996; 382: 225–230
  • Bloom L. Development of techniques for primary culture of C. elegans embryonic neurons. 1993, Ph.D. thesis, Massachusetts Institute of Technology
  • Bohr V. A. Repair of oxidative DNA damage in nuclear and mitochondrial DNA, and some changes with aging in mammalian cells. Free Radical Biol. Med. 2002; 32: 804–812
  • Bohr V. A., Stevnsner T., Souza‐Pinto N. C. Mitochondrial DNA repair of oxidative damage in mammalian cells. Gene 2002; 286: 127–134
  • Bonini N. M., Nelson D. L. Differential regulation of Paramecium ciliary motility by cAMP and cGMP. J. Cell Biol. 1988; 106: 1615–1623
  • Bonini N. M., Nelson D. L. Phosphoproteins associated with cyclic nucleotide stimulation of ciliary motility in Paramecium. J. Cell Sci. 1990; 95: 219–230
  • Brand A. GFP in Drosophila. Trends Genet. 1995; 11: 324–325
  • Burbach K. M., Poland A., Bradfield C. A. Cloning of the Ah‐receptor cDNA reveals a distinctive ligand‐activated transcription factor. Proc. Natl. Acad. Sci. USA 1992; 89: 8185–8189
  • The C. eleganas sequence Consortium. Genome sequence if the nematode C. eleganas: A platform for investigating biology. Science 1998; 282: 2012–2018
  • Cadigan K. M., Nusse R. Wnt signaling: a common theme in animal development. Genes Dev. 1997; 11: 3286–3305
  • Carmeliet P., Dor Y., Herbert J. M., Fukumura D., Brusselmans K., Dewerchin M., Neeman M., Bono F., Abramovitch R., Maxwell P., Koch C. J., Ratcliffe P., Moons L., Jain R. K., Collen D., Keshert E., Keshet E. Role of HIF‐1alpha in hypoxia‐mediated apoptosis, cell proliferation and tumour angiogenesis. Nature 1998; 394: 485–490
  • Carroll P. M., Dougherty B., Ross‐Macdonald P., Browman K., FitzGerald K. Model systems in drug discovery: chemical genetics meets genomics. Phar. Ther. 2003; 99: 183–220
  • Carver L. A., Bradfield C. A. Ligand‐dependent interaction of the aryl hydrocarbon receptor with a novel immunophilin homolog in vivo. J. Biol. Chem. 1997; 272: 11452–11456
  • Ceriani M. F., Darlington T. K., Staknis D., Mas P., Petti A. A., Weitz C. J., Kay S. A. Light‐dependent sequestration of TIMELESS by CRYPTOCHROME. Science 1999; 285: 553–556
  • Chalfie M., Sulston J. Developmental genetics of the mechanosensory neurons of Caenorhabditis elegans. Dev. Biol. 1981; 82: 358–370
  • Chan R. C., Chan A., Jeon M., Wu T. F., Pasqualone D., Rougvie A. E., Meyer B. J. Chromosome cohesion is regulated by a clock gene paralogue TIM‐1. Nature 2003; 424: 1002–1009
  • Clark J. M., Beardsley G. P. Functional effects of cis‐thymine glycol lesions on DNA synthesis in vitro. Biochem. 1987; 26: 5398–5403
  • Croteau D. L., Bohr V. A. Repair of oxidative damage to nuclear and mitochondrial DNA in mammalian cells. J. Biol. Chem. 1997; 272: 25409–25412
  • Darlington T. K., Wager‐Smith K., Ceriani M. F., Staknis D., Gekakis N., Steeves T. D., Weitz C. J., Takahashi J. S., Kay S. A. Closing the circadian loop: CLOCK‐induced transcription of its own inhibitors per and tim. Science 1998; 280: 1599–1603
  • Derynck R., Zhang Y., Feng X. H. Smads: transcriptional activators of TGF‐β responses. Cell 1998; 95: 737–740
  • Dianov G., Sedgwick B., Daly G., Olsson M., Lovett S., Lindahl T. Release of 5′‐terminal deoxyribose‐phosphate residues from incised abasic sites in DNA by the Escherichia coli RecJ protein. Nucl. Acids Res. 1994; 22: 993–998
  • Dobson A. W., Xu Y., Kelley M. R., LeDoux S. P., Wilson G. L. Enhanced mitochondrial DNA repair and cellular survival after oxidative stress by targeting the human 8‐oxoguanine glycosylase repair enzyme to mitochondria. J. Biol. Chem. 2000; 275: 37518–37523
  • Does H. B., Ringo J. M. The search for hidden periodicities in biological time series revisited. J. Ther. Biol. 1989; 139: 487–515
  • Edgley M. L., Baillie D. L., Riddle D. L., Rose A. M. Genetic balancers. Meth. Cell Biol. 1995; 48: 147–184
  • Ehret C. F., Wille J. J. The photobiology of circadian rhythm in protozoa and other eukaryotic microoganisms. P. Halldal. Wiley Interscience, New York 1970; 369–416
  • Ema M., Sogawa K., Watanabe N., Chujoh Y., Matsushita N., Gotoh O., Funae Y., Fujii‐Kuriyama Y. cDNA cloning and structure of mouse putative Ah receptor. Biochem. Biophys. Res. Commun. 1992; 184: 246–253
  • Emery P., Stanewsky R., Helfrich‐Forster C., Emery‐Le M., Hall J. C., Rosbash M. Drosophila CRY is a deep brain circadian photoreceptor. Neuron 2000; 26: 493–504
  • Fire A., Xu S., Montgomery M. K., Kostas S. A., Driver S. E., Mello C. C. Potent and specific genetic interference by double‐stranded RNA in Caenorhabditis elegans. Nature 1998; 391: 806–811
  • Fraser A. G., Kamath R. S., Zipperlen P., Martinez‐Campos M., Sohrmann M., Ahringer J. Functional genomic analysis of C. elegans chromosome I by systematic RNA interference. Nature 2000; 408: 325–330
  • Gannon T. N., Rankin C. H. Methods of studying behavioral plasticity in Caenorhabditis elegans. Meth. Cell Biol. 1995; 48: 205–223
  • Glossop N. R., Lyons L. C., Hardin P. E. Interlocked feedback loops within the Drosophila circadian oscillator. Science 1999; 286: 766–768
  • Gonzalez F. J., Fernandez‐Salguero P., Lee S. S.T., Pineau T., Ward J. M. Xenobiotic receptor knockout mice. Toxi. Let. 1995; 82–83: 117–121
  • Gotter A. L., Manganaro T., Weaver D. R., Kolakowski L. F., Jr., Possidente B., Sriram S., MacLaughlin D. T., Reppert S. M. A time‐less function for mouse timeless. Nature Neurosci. 2000; 3: 755–756
  • Gu Y. Z., Hogenesch J. B., Bradfield C. A. The PAS superfamily: sensors of environmental and developmental signals. Annu. Rev. Pharmacol. Toxicol. 2000; 40: 519–561
  • Guillemin K., Krasnow M. A. The hypoxic response: huffing and HIFing. Cell 1997; 89: 9–12
  • Halliwell B. Why and how should we measure oxidative DNA damage in nutritional studies? How far have we come?. Am. J. Clin. Nutr. 2000; 72: 1082–1087
  • Hamasaki T., Murtaugh T. J., Satir B. H., Satir P. In vitro phosphorylation of Paramecium axonemes and permeabilized cells. Cell Moti. Cytoske. 1989; 12: 1–11
  • Hamasaki T., Barkalow K., Richmond J., Satir P. cAMP‐stimulated phosphorylation of an axonemal polypeptide that copurifies with the 22S dynein arm regulates microtubule translocation velocity and swimming speed in Paramecium. Proc. Natl. Acad. Sci. USA 1991; 88: 7918–7922
  • Hardin P. E., Hall J. C., Rosbash M. Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 1990; 343: 536–540
  • Hasegawa K., Tanakadate A. Ciracadian rhythm of locomotor behavior in a population of Paramecium multimicronucleatum: Its characteristics as derived from circadian changes in the swimming speeds and the frequencies of avoiding response among individual cells. Photochem. Photobiol. 1984; 40: 105–112
  • Hasegawa K., Tanakadate A., Ishikawa H. A method for tracking the locomotion of an isolated microorganism in real time. Physiol. Behav. 1988; 42: 397–400
  • Hasegawa K., Tukahara Y., Shimamoto M., Matsumoto K., Nakaoka Y., Sato T. The Paramecium circadian clock: Synchrony of changes in motility, member potential, cyclic AMP and cyclic GMP. J. Comp. Physiol. 1997; 181: 41–46
  • Hasegawa K., Tsukahara Y., Ishizaki S., Shimamoto M., Nakamura T., Sohma M., Sato T. Contribution of the camp‐Dependent signal pathway to circadian synchrony of motility and resting membrane potential in Paramecium. Photochem. Photobiol. 1998; 67: 256–262
  • Hasegawa K., Kikuchi H., Ishizaki S., Tamura A., Tsukahara Y., Nakaoka Y., Iwai E., Sato T. Simple fluctuation of Ca2+ elicits the complex circadian dynamics of cyclic AMP and cyclic GMP in Paramecium. J. Cell Sci. 1999; 112: 201–207
  • Hatahet Z., Purmal A. A., Wallace S. S. Oxidative DNA lesions as blocks to in vitro transcription by phage T7 RNA polymerase. Ann. New York Acad. Sci. 1994; 726: 346–348
  • Heldin C. H., Miyazono K., ten Dijke P. TGF‐β signalling from cell membrane to nucleus through SMAD proteins. Nature 1997; 390: 465–471
  • Herman M. A., Vassilieva L. L., Horvitz H. R., Shaw J. E., Herman R. K. The C. elegans gene lin‐44, which controls the polarity of certain asymmetric cell divisions, encodes a Wnt protein and acts cell nonautonomously. Cell 1995; 83: 101–110
  • Hoffman E. C., Reyes H., Chu F. F., Sander F., Conley L. H., Brooks B. A., Hankinson O. Cloning of a factor required for activity of the Ah (dioxin) receptor. Science 1991; 252: 954–958
  • Htun H., Johnston B. H. Mapping adducts of DNA structural probes using transcription and primer extension approaches. Meth. Enzy. 1992; 212: 272–294
  • Ide H., Kow Y. W., Wallace S. S. Thymine glycols and urea residues in M13 DNA constitute replicative blocks in vitro. Nucl. Acids Res. 1985; 13: 8035–8052
  • Ishii N., Fujii M., Hartman P. S., Tsuda M., Yasuda K., Senoo‐Matsuda N., Yanase S., Ayusawa D., Suzuki K. A mutation in succinate dehydrogenase cytochrome b causes oxidative stress and ageing in nematodes. Nature 1998; 394: 694–697
  • Ishikawa T., Zhang S. S., Qin X., Takahashi Y., Oda H., Nakatsuru Y., Ide F. DNA repair and cancer: Lessons from mutant mouse models. Cancer Sci. 2004; 95: 112–117
  • Ishiura M., Kutsuna S., Aoki S., Iwasaki H., Andersson C. R., Tanabe A., Golden S. S., Johnson C. H., Kondo T. Expression of a gene cluster kaiABC as a circadian feedback process in Cyanobacteria. Science 1998; 281: 1519–1523
  • Ishizaki S., Hasegawa K., Otsuka S., Watabiki S., Tanakadate A., Tukahara Y., Iwai E. Circadian rhythm of ATP synthesis in Paramecium. The 23rd annual meeting of the Japan Neuroscience Society. YokohamaJapan 2000, September 4–6
  • Ishizaki S., Watanabe T., Saegusa T., Tanakadate A., Tukahara Y., Iwai E., Souma M., Itoi K., Hasegawa K. Circadian time structure for optimization ATP synthesis and consumption in Paramecium. The 4th International conference on biological physics. KyotoJapan 2001, July 30–Aug. 2
  • Iwasaki H., Dunlap J. C. Microbial circadian oscillatory systems in Neurospora and Synechococcus: Models for cellular clocks. Curr. Opin. Microbiol. 2000; 3: 189–196
  • Iyer N. V., Kotch L. E., Agani F., Leung S. W., Laughner E., Wenger R. H., Gassmann M., Gearhart J. D., Lawler A. M., Yu A. Y., Semenza G. L. Cellular and developmental control of O2 homeostasis by hypoxia‐inducible factor 1α. Genes Dev. 1998; 12: 149–162
  • Jackson F. R., Bargiello T. A., Yun S. H., Young M. W. Product of per locus of Drosophila shares homology with proteoglycans. Nature 1986; 320: 185–188
  • Jeon M., Gardner H. F., Miller E. A., Deshler J., Rougvie A. E. Similarity of the C. elegans developmental timing protein LIN‐42 to circadian rhythm proteins. Science 1999; 286: 1141–1146
  • Jiang H., Guo R., Powell‐Coffman J. A. The Caenorhabditis elegans hif‐1 gene encodes a bHLH‐PAS protein that is required for adaptation to hypoxia. Proc. Natl. Acad. Sci. USA 2001; 98: 7916–7921
  • Kamath R. S., Fraser A. G., Dong Y., Poulin G., Durbin R., Gotta M., Kanapin A., Le Bot N., Moreno S., Sohrmann M., Welchman D. P., Zipperlen P., Ahringer J. Systematic functional analysis of the Caenorhabditis elegans genome using RNAi. Nature 2003; 421: 231–237
  • Kenyon C. A gene involved in the development of the posterior body region of C. elegans. Cell 1986; 46: 477–487
  • King D. P., Zaho Y., Sangoram A. M., Wilsbacher L. D., Tanaka M., Antoch M. P., Steeves T. D.L., Vitaterna M. H., Kornhauser J. M., Lowrey P. L., Turek F. W., Takahashi J. S. Positional cloning of the mouse circadian Clock gene. Cell 1997; 89: 641–653
  • King D. P., Takahashi J. S. Molecular genetics of circadian rhythms in mammals. Annu. Rev. Neurosci. 2000; 23: 713–742
  • Kippert F., Saunders D. S., Blaxter M. L. Caenorhabditis elegans has a circadian clock. Curr. Biol. 2002; 12: R47–49
  • Korswagen H. C. Canonical and non‐canonical Wnt signaling pathways in Caenorhabditis elegans: Variations on a common signaling theme. Bioessays. 2002; 24: 801–810
  • Lakin‐Thomas P. L. Circadian rhythms: New functions for old clock genes. Trends Genet. 2000; 16: 135–142
  • Liang J., Lints R., Foehr M. L., Tokarz R., Yu L., Emmons S. W., Liu J., Savage‐Dunn C. The Caenorhabditis elegans schnurri homolog sma‐9 mediates stage‐ and cell type‐specific responses to DBL‐1 BMP‐related signaling. Development 2003; 130: 6453–6464
  • Mandavilli B. S., Santos J. H., Van Houten B. Mitochondrial DNA repair and aging. Mutation Res. 2002; 509: 127–151
  • Massague J. TGF‐β signal transduction. Annu. Rev. Biochem. 1998; 67: 753–791
  • Maxwell P. H., Dachs G. U., Gleadle J. M., Nicholls L. G., Harris A. L., Stratford I. J., Hankinson O., Pugh C. W., Ratcliffe P. J. Hypoxia‐inducible factor‐1 modulates gene expression in solid tumors and influences both angiogenesis and tumor growth. Proc. Natl. Acad. Sci. USA 1997; 94: 8104–8109
  • McClung C. R., Fox B. A., Dunlap J. C. The Neurospora clock gene frequency shares a sequence element with the Drosophila clock gene period. Nature 1989; 339: 558–562
  • Messager S., Ross A. W., Barrett P., Morgan P. J. Decoding photoperiodic time through Per1 and ICER gene amplitude. Proc. Natl. Acad. Sci. USA 1999; 96: 9938–9943
  • Mitra S., Izumi T., Boldogh I., Bhakat K. K., Hill J. W., Hazra T. K. Choreography of oxidative damage repair in mammalian genomes. Free Radi. Biol. Medi. 2002; 33: 15–28
  • Moon R. T., Brown J. D., Torres M. WNTs modulate cell fate and behavior during vertebrate development. Trends Genet. 1997; 13: 157–162
  • Mori T., Johnson C. H. Independence of circadian timing from cell division in cyanobacteria. J. Bacteriol. 2001; 183: 2439–2444
  • Mori T., Binder B., Johnson C. H. Circadian gating of cell division in cyanobacteria growing with average doubling times of less than 24 hours. Proc. Natl. Acad. Sci. USA 1996; 93: 10183–10188
  • Morse D., Sassone‐Corsi P. Time after time: Inputs to and outputs from the mammalian circadian oscillators. Trends Neurosci. 2002; 25: 632–637
  • Motohashi H., Shavit J. A., Igarashi K., Yamamoto M., Engel J. D. The world according to Maf. Nucl. Acids Res. 1997; 25: 2953–2959
  • Nambu J. R., Lewis J. O., Wharton K. A., Jr., Crews S. T. The Drosophila single‐minded gene encodes a helix‐loop‐helix protein that acts as a master regulator of CNS midline development. Cell 1991; 67: 1157–1167
  • Nebert D. W. Drug metabolism and signal transduction: Possible role of Ah receptor and arachidonic acid cascade in protection from ethanol toxicity. EXS 1994; 71: 231–240
  • Panda S., Hogenesch J. B., Kay S. A. Circadian rhythms from flies to human. Nature 2002; 417: 329–335
  • Patterson G. I., Padgett R. W. TGF β‐related pathways. Roles in Caenorhabditis elegans development. Trends Genet. 2000; 16: 27–33
  • Peters J. M., McKay R. M., McKay J. P., Graff J. M. Casein kinase I transduces Wnt signals. Nature 1999; 401: 345–350
  • Pittendrigh C. S. The circadian oscillation in Drosophila pseudoobscura pupae: A model for the photoperiodic clock. Zeit. Pflan. 1966; 54: 275–307
  • Pittendrigh C. S. Circadian systems: Entrainment. Handbook of Behavioral Neurobiology, J. Aschoff. Plenum Press, New York 1981; 95–124
  • Plasterk R. H. Reverse genetics of Caenorhabditis elegans. Bioessays 1992; 14: 629–633
  • Powell‐Coffman J. A., Bradfield C. A., Wood W. B. Caenorhabditis elegans orthologs of the aryl hydrocarbon receptor and its heterodimerization partner with the aryl hydrocarbon receptor nuclear translocator. Proc. Natl. Acad. Sci. USA 1998; 95: 2844–2849
  • Price J. L., Blau J., Rothenfluh A., Abodeely M., Kloss B., Young M. W. Double‐time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 1998; 94: 83–95
  • Raizen D. M., Hendricks J. C., Sundaram M., Pack A. I. Long‐term observations of L1 rest/activity cycles. 14th International C. elegans meeting. Abstracts, Los Angels 2003; 233
  • Reppert S. M., Weaver D. R. Coordination of circadian timing in mammals. Nature 2002; 418: 935–941
  • Rosell R., Taron M., Barnadas A., Scagliotti G., Sarries C., Roig B. Nucleotide excision repair pathways involved in Cisplatin resistance in non‐small‐cell lung cancer. Cancer Cont. 2003; 10: 297–305
  • Ryan H. E., Lo J., Johnson R. S. HIF‐1 alpha is required for solid tumor formation and embryonic vascularization. EMBO J. 1998; 17: 3005–3015
  • Saigusa T., Ishizaki S., Watabiki S., Ishii N., Tanakadate A., Tamai Y., Hasegawa K. Circadian behavioural rhythm in Caenorhabditis elegans. Curr. Biol. 2002; 12: R46–47
  • Sano C., Sato K., Shimizu T., Kajitani H., Kawauchi H., Tomioka H. The modulating effects of proinflammatory cytokines interferon‐γ (IFN‐γ) and tumour necrosis factor‐α (TNF‐α), and immunoregulating cytokines IL‐10 and transforming growth factor‐β (TGF‐β), on anti‐microbial activity of murine peritoneal macrophages against Mycobacterium avium‐intracellulare complex. Clin. Exp. Immunol. 1999; 115: 435–442
  • Savage‐Dunn C., Maduzia L. L., Zimmerman C. M., Roberts A. F., Cohen S., Tokarz R., Padgett R. W. Genetic screen for small body size mutants in C. elegans reveals many TGFβ pathway components. Genesis 2003; 35: 239–247
  • Schaffer R., Ramsay N., Samach A., Corden S., Putterill J., Carré I. A., Coupland G. The late elongated hypocotyl mutation of Arabidopsis disrupts circadian rhythms and the photoperiodic control of flowering. Cell 1998; 93: 1219–1229
  • Sehgal A., Price J. L., Man B., Young M. W. Loss of circadian behavioural rhythms and per RNA oscillations in the Drosophila mutant timeless. Science 1994; 263: 1603–1606
  • Semenza G. L. Regulation of mammalian O2 homeostasis by hypoxia‐inducible factor 1. Annu. Rev. Cell Dev. Biol. 1999; 15: 551–578
  • Shi Y., Massague J. Mechanisms of TGF‐β signaling from cell membrane to the nucleus. Cell 2003; 113: 685–700
  • Shibutani S., Takeshita M., Grollman A. P. Insertion of specific bases during DNA synthesis past the oxidation‐damaged base 8‐oxodG. Nature 1991; 349: 431–434
  • Stanewsky R. Genetic analysis of the circadian system in Drosophila melanogaster and mammals. J. Neurobiol. 2003; 54: 111–147
  • Stevnsner T., Thorslund T., de Souza‐Pinto N. C., Bohr V. A. Mitochondrial repair of 8‐oxoguanine and changes with aging. Exp. Gero. 2002; 37: 1189–1196
  • Sulston J. E., Horvitz H. R. Post‐embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 1977; 56: 110–156
  • Sun Z. S., Albrecht U., Zhuchenko O., Bailey J., Eichele G., Lee C. C. RIGUI, a putative mammalian ortholog of the Drosophila period gene. Cell 1997; 90: 1003–1011
  • Tanaka K., Ishizaki S., Saigusa T., Hakata T., Yamamoto M., Tsukahara Y., Tamai Y., Hasegawa K. The circadian rhythm in the repair activity of damaged DNA in nuclear and mitochondria in Paramecium. The 1st World Congress of Chronobiology. Sapporo, Japan 2003; 32
  • Tei H., Okamura H., Shigeyoshi Y., Fukuhara C., Ozawa R., Hirose M., Sakai Y. Circadian oscillation of a mammalian homologue of the Drosophila period gene. Nature 1997; 389: 512–516
  • Thompson C. L., Sancar A. Photolyase/cryptochrome blue‐light photoreceptors use photon energy to repair DNA and reset the circadian clock. Oncogene 2002; 21: 9043–9056
  • Torres‐Vazquez J., Warrior R., Arora K. schnurri is required for dpp‐dependent pattering of the Drosophila wing. Dev. Biol. 2000; 227: 388–402
  • Toyokuni S. Reactive oxygen species‐induced molecular damage and its application in pathology. Pathol. Int. 1999; 49: 91–102
  • Ura K., Hayes J. J. Nucleotide excision repair and chromatin remodeling. Eur. J. Biochem. 2002; 269: 2288–2293
  • van der Horst G. T., Muijtjens M., Kobayashi K., Takano R., Kanno S., Takao M., de Wit J., Verkerk A., Eker A. P., van Leenen D., Buijs R., Bootsma D., Hoeijmakers J. H., Yasui A. Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature 1999; 398: 627–630
  • Vinson C., Myakishev M., Acharya A., Mir A. A., Moll J. R., Bonovich M. Classification of human B‐ZIP proteins based on dimerization properties. Mole. Cell. Biol. 2002; 22: 6321–6335
  • Vitaterna M. H., Selby C. P., Todo T., Niwa H., Thompson C., Fruechte E. M., Hitomi K., Thresher R. J., Ishikawa T., Miyazaki J., Takahashi J. S., Sancar A. Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proc. Natl. Acad. Sci. USA 1999; 96: 12114–12119
  • Wallace S. S. Biological consequence of free radical‐damaged DNA bases. Free Radical Biol. Med. 2002; 33: 1–14
  • Wang G. L., Jiang B. H., Semenza G. L. Effect of protein kinase and phosphatase inhibitors on expression of hypoxia‐inducible factor 1. Biochem. Biophys. Res. Commun. 1995; 216: 669–675
  • Whitman M. Smads and early developmental signaling by the TGFβ superfamily. Genes Dev. 1998; 12: 2445–2462
  • Xu Q., D'Amore P. A., Sokol S. Y. Functional and biochemical interactions of Wnts with FrzA, a secreted Wnt antagonist. Development 1998; 125: 4767–4776
  • Young M. W., Kay S. A. Time zones: A comparative genetics of circadian clocks. Nat. Rev. Genet. 2001; 2: 702–715
  • Zehring W. A., Wheeler D. A., Reddy P., Konopka R. J., Kyriacou C. P., Rosbash M., Hall J. C. P‐element transformation with period locus DNA restores rhythmicity to mutant, arrhythmic Drosophila melanogaster. Cell 1984; 39: 369–376
  • Zhang Y., Derynck R. Transcriptional regulation of the transforming growth factor‐β‐inducible mouse germ line Ig α constant region gene by functional cooperation of Smad, CREB, and AML family members. J. Biol. Chem. 2000; 275: 16979–16985

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.