95
Views
18
CrossRef citations to date
0
Altmetric
Original

Effect of Phosphatidic Acid on Human Breast Cancer Cells Exposed to Doxorubicin

, Ph.D., , B.S., , B.S., , Jr., M.D. & , Ph.D.
Pages 783-790 | Published online: 30 Nov 2001

REFERENCES

  • Clarke R., Thompson E. W., Leonessa F., Lippman J., McGarwey M., Frandsen T. L., Brunner N. Hormone Resistance, Invasiveness, and Metastatic Potential in Breast Cancer. Breast Cancer Res. Treat. 1993; 24: 227–239
  • Horwitz K. B. Mechanisms of Hormone Resistance in Breast Cancer. Breast Cancer Res. Treat. 1993; 26: 119–130
  • Tewey K. M., Rowe T. C., Yang L., Halligan B. D., Liu L. F. Adriamycin-Induced DNA Damage Mediated by Mammalian DNA Topoisomerase II. Science 1984; 226: 466–468
  • Katoh N., Wise B. C., Wrenn R. W., Kuo J. F. Inhibition by Adriamycin of Calmodulin-Sensitive and Phospholipid-Sensitive Calcium-Dependent Phosphorylation of Endogenous Proteins from Heart. Biochem. J. 1981; 198: 199–205
  • Olson R. D., Mushlin P. D. Doxorubicin Cardiotoxicity: Analysis of Prevailing Hypotheses. FASEB J. 1990; 4: 3076–3086
  • Geier A., Beery R., Haimsohn M., Hemi R., Malik Z., Karasik A. Epidermal Growth Factor, Phorbol Esters, and Aurintricarboxylic Acid Are Survival Factors for MDA-231 Cells Exposed to Adriamycin. In Vitro Cell. Dev. Biol. Animal 1994; 30A: 867–874
  • Fan S., Wang J-A., Yuan R-Q., Rockwell S., Andres J., Zlataposkiy A., Goldberg I. D., Rosen E. M. BRCA1 as a Potential Human Prostate Tumor Suppressor: Modulation of Proliferation, Damage Responses and Expression of Cell Regulatory Proteins. Oncogene 1998; 17: 131–141
  • Moolenaar W. H., Kruijer W., Tilly B. C., Verlaan I., Bierman A. J., deLaat S. W. Growth Factor-Like Action of Phosphatidic Acid. Nature 1996; 323: 171–173
  • English D. Phosphatidic Acid: A Lipid Messenger Involved in Intracellular and Extracellular Signaling. Cell. Signal 1996; 8: 341–347
  • English D., Cui Y., Siddiqui R. A. Messenger Functions of Phosphatidic Acid. Chem. Phys. Lipids 1996; 80: 117–132
  • Ferguson J. E., Hanley M. R. Phosphatidic Acid and Lysophosphatidic Acid Stimulate Receptor-Regulated Membrane Currents in the Xenopus laevis Oocyte. Arch. Biochem. Biophys. 1992; 297: 388–392
  • Murayama T., Ui M. Phosphatidic Acid May Stimulate Membrane Receptors Mediating Adenylate Cyclase Inhibition and Phospholipid Breakdown in 3T3 Fibroblasts. J. Biol. Chem. 1987; 262: 5522–5529
  • Ha K. S., Exton J. H. Activation of Actin Polymerization by Phosphatidic Acid Derived from Phosphatidylcholine in IIC9 Fibroblasts. J. Cell. Biol. 1993; 123: 1789–1796
  • Pearce B., Jakobson K., Morrow C., Murphy S. Phosphatidic Acid Promotes Phosphoinositide Metabolism and DNA Synthesis in Cultured Cortical Astrocytes. Neurochem. Int. 1994; 24: 165–171
  • Ryder N. S., Talwar H. S., Reynolds N. J., Voorhees J. J., Fisher G. J. Phosphatidic Acid and Phospholipase D Both Stimulate Phosphoinositide Turnover in Cultured Human Keratinocytes. Cell. Signal 1993; 5: 787–794
  • Siddiqui R. A., English D. Phosphatidic Acid Binding to Human Neutrophils: Effects on Tyrosine Kinase-Regulated Intracellular Ca2+ Mobilization. Cell. Signal 1996; 8: 349–354
  • Zhou D., Luini W., Bernasconi S., Diomede L., Salimona M., Mantovani A., Sozzani S. Phosphatidic Acid and Lysophosphatidic Acid Induce Haptotactic Migration of Human Monocytes. J. Biol. Chem. 1995; 270: 25549–25556
  • Sliva D., Mason R., Xiao H., English D. Enhancement of the Migration of Metastatic Human Breast Cancer Cells by Phosphatidic Acid. Biochem. Biophys. Res. Commun. 2000; 268: 471–479
  • An S., Bleu T., Hallmark O. G., Goetzl E. J. Characterization of a Novel Subtype of Human G Protein-Coupled Receptor for Lysophosphatidic Acid. J. Biol. Chem. 1998; 273: 7906–7910
  • Lee M-J., Van Brocklyn J. R., Thangada S., Liu C. H., Hand A. R., Menzeleev R., Spiegel S., Hla T. Sphingosine-1-Phosphate as a Ligand for the G Protein-Coupled Receptor EDG-1. Science 1998; 279: 1552–1555
  • Sliva D., Zhu Y-X., Tsai S., Kamine J., Yang Y.-C. Tip60 Interacts with Human Interleukin-9 Receptor α-Chain. Biochem. Biophys. Res. Commun. 1999; 263: 149–155
  • Baker W. J., Wiebe V. J., Koester S. K., Emshoff V. D., Meanpaa J. U., Wurz G. T., DeGregorio M. W. Monitoring the Chemosensitizing Effects of Toremifene with Flow Cytometry in Estrogen Receptor Negative Multidrug Resistant Human Breast Cancer Cells. Breast Cancer Res. Treat. 1992; 24: 43–49
  • Desdouets C., Sobczak-Thepot J., Murphy M., Brechot C. Cyclin A: Function and Expression During Cell Proliferation. Prog. Cell. Cycle Res. 1995; 1: 115–123
  • Levine J. S., Koh J. S., Triaca V., Lieberthal W. Lysophosphatidic Acid: A Novel Growth and Survival Factor for Renal Proximal Tubular Cells. Am. J. Physiol. 1997; 42: F575–F585
  • Cuvillier O., Pirianov G., Kleuser B., Vanek P. G., Coso O. A., Gutkind J. S., Spiegel S. Suppression of Ceramide-Mediated Programmed Cell Death by Sphingosine-1-Phosphate. Nature 1996; 381: 800–803
  • Goetzl E. J., An S. Diversity of Cellular Receptors and Functions for the Lysophospholipid Growth Factors Lysophosphatidic Acid and Sphingosine 1-Phosphate. FASEB J. 1998; 12: 1589–1598
  • Lee M-J., Thangada S., Liu C. H., Thompson B. D., Hla T. Lysophosphatidic Acid Stimulates the G-Protein-Coupled Receptor EDG-1 as a Low Affinity Agonist. J. Biol. Chem. 1998; 273: 22105–22112
  • Okamoto H., Takuwa N., Yatomi Y., Gonda K., Shigematsu H., Takuwa Y. EDG3 Is a Functional Receptor Specific for Sphingosine 1-Phosphate and Sphingosylphosphorylcholine with Signaling Characteristics Distinct from EDG1 and AGR16. Biochem. Biophys. Res. Commun. 1999; 260: 203–208
  • Gonda K., Okamoto H., Takuwa N., Yatomi Y., Okazaki H., Sakurai T., Kimura S., Sillard R., Harii K., Takuwa Y. The Novel Sphingosine 1-Phosphate Receptor AGR16 Is Coupled via Pertussis Toxin-Sensitive and -Insensitive G-Proteins to Multiple Signaling Pathways. Biochem. J. 1999; 337: 67–75
  • Bandoh K., Aoki J., Hosono H., Kobayashi S., Kobaiyashi T., Murakami-Murofushi K., Tsujimoto M., Arai H., Inoue K. Molecular Cloning and Characterization of a Novel Human G-Protein-Coupled Receptor, EDG7, for Lysophosphatidic Acid. J. Biol. Chem. 1999; 274: 27776–27785
  • Van Brocklyn J. R., Lee M-J., Menzellev R., Olivera A., Edsall L., Cuvillier O., Thomas D. M., Coopman P. J., Thangada S., Liu C. H., Hla T., Spiegel S. Dual Actions of Sphingosine-1-Phosphate: Extracellular Through the Gi-Coupled Receptor Edg-1 and Intracellular to Regulate Proliferation and Survival. J. Cell. Biol. 1998; 142: 229–240

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.