19
Views
13
CrossRef citations to date
0
Altmetric
Original

The Development of Aggressive Cancer: A Possible Role for Sphingolipids

, Ph.D.
Pages 779-786 | Published online: 17 Jul 2002

REFERENCES

  • Cahill D.P., Kinzler K.W., Vogelstein B., Lengauer C. Genetic Instability and Darwinian Selection in Tumours. Trends Cell Biol. 1999; 9: M57–M60
  • Pettit S.J., Seymour K., O'Flaherty E., Kirby J.A. Immune Selection in Neoplasia: Towards a Microevolutionary Model of Cancer Development. Br. J. Cancer 2000; 82: 1900–1906
  • Compagni A., Christofori G. Recent Advances in Research on Multistage Tumorigenesis. Br. J. Cancer 2000; 83: 1–5
  • Lengauer C., Kinzler K.W., Vogelstein B. Genetic Instabilities in Human Cancers. Nature 1998; 396: 643–649
  • Shayman J.A. Sphingolipids. Kidney Int. 2000; 58: 11–26
  • Liu G., Kleine L., Hebert R.L. Advances in the Signal Transduction of Ceramide and Related Sphingolipids. Crit. Rev. Clin. Lab. Sci. 1999; 36: 511–573
  • Huwiler A., Kolter T., Pfeilschifter J., Sandhoff K. Physiology and Pathophysiology of Sphingolipid Metabolism and Signaling. Biochim. Biophys. Acta 2000; 1485: 63–99
  • Merrill A.H., Jr., Schmelz E.M., Dillehay D.L., Spiegel S., Shayman J.A., Schroeder J.J., Riley R.T., Voss K.A., Wang E. Sphingolipids—the Enigmatic Lipid Class: Biochemistry, Physiology, and Pathophysiology. Toxicol. Appl. Pharmacol. 1997; 142: 208–225
  • Riboni L., Viani P., Bassi R., Prinetti A., Tettamanti G. The Role of Sphingolipids in the Process of Signal Transduction. Prog. Lipid Res. 1997; 36: 153–195
  • Kristal B.S., Brown A.M. Apoptogenic Ganglioside GD3 Directly Induces the Mitochondrial Permeability Transition. J. Biol. Chem. 1999; 274: 23169–23175
  • Quillet-Mary A., Jaffrézou J.P., Mansat V., Bordier C., Naval J., Laurent G. Implication of Mitochondrial Hydrogen Peroxide Generation in Ceramide-Induced Apoptosis. J. Biol. Chem. 1997; 272: 21388–21395
  • Inoki Y., Miura T., Kajimoto T., Kawase M., Kawase Y., Yoshida Y., Tsuji S., Kinouchi T., Endo H., Kagawa Y., Hamamoto T. Ganglioside GD3 and Its Mimetics Induce Cytochrome c Release from Mitochondria. Biochem. Biophys. Res. Commun. 2000; 276: 1210–1216
  • Di Paola M., Lorusso M. Ceramide Interaction with the Respiratory Chain of Heart Mitochondria. Biochemistry 2000; 39: 6660–6668
  • Ghafourifar P., Klein S.D., Schucht O., Schenk U., Pruschy M., Rocha S., Richter C. Ceramide Induces Cytochrome C Release from Isolated Mitochondria. Importance of Mitochondrial Redox State. J. Biol. Chem. 1999; 274(10)6080–6084
  • Huwiler A., Pfeilschifter J., van den Bosch H. Nitric Oxide Donors Induce Stress Signaling via Ceramide Formation in Rat Renal Mesangial Cells. J. Biol. Chem. 1999; 274: 7190–7195
  • Radin N.S. Apoptotic Death by Ceramide: Will the Real Killer Please Stand Up?. Med. Hypotheses 2001; 96–100
  • Hashmi M., Graf S., Braun M., Anders M.W. Enantioselective Depletion of Mitochondrial Glutathione Concentrations by (S)- and (R)-3-Hydroxy-4-Pentenoate. Chem. Res. Toxicol. 1996; 9: 361–364
  • El Bawab S., Roddy P., Qian T., Bielawska A., Lemasters J.J., Hannun Y.A. Molecular Cloning and Characterization of a Human Mitochondrial Ceramidase. J. Biol. Chem. 2000; 275: 21508–21513
  • Morell P., Radin N.S. Specificity in Ceramide Biosynthesis from Long Chain Bases and Various Fatty Acyl Coenzyme A's by Brain Microsomes. J. Biol. Chem. 1970; 245: 342–350
  • Seelan R.S., Qian C., Yokomizo A., Bostwick D.G., Smith D.I., Liu W. Human Acid Ceramidase Is Overexpressed But Not Mutated in Prostate Cancer. Genes Chromosomes Cancer 2000; 29: 137–146
  • Oberley T.D., Zhong W., Szweda L.I., Oberley L.W. Localization of Antioxidant Enzymes and Oxidative Damage Products in Normal and Malignant Prostate Epithelium. Prostate 2000; 44: 144–155
  • Fish R.G. Role of Gangliosides in Tumor Progression: A Molecular Target for Cancer Therapy?. Med. Hypotheses 1996; 46: 140–144
  • Pyne S., Pyne N.J. Sphingosine 1-Phosphate Signaling in Mammalian Cells. Biochem. J. 2000; 349: 385–402
  • Kolesnick R.N., Goni F.M., Alonso A. Compartmentalization of Ceramide Signaling: Physical Foundations and Biological Effects. J. Cell. Physiol. 2000; 184: 285–300
  • Liu B., Andrieu-Abadie N., Levade T., Zhang P., Obeid L.M., Hannun Y.A. Glutathione Regulation of Neutral Sphingomyelinase in Tumor Necrosis Factor-α-induced Cell Death. J. Biol. Chem. 1998; 273: 11313–11320
  • Jaffrézou J.P., Maestre N., De Mas-Mansat V., Bezombes C., Levade T., Laurent G. Positive Feedback Control of Neutral Sphingomyelinase Activity by Ceramide. FASEB J. 1998; 12: 999–1006
  • Ardail D., Popa I., Alcantara K., Pons A., Zanetta J.P., Louisot P., Thomas L., Portoukalian J. Occurrence of Ceramides and Neutral Glycolipids with Unusual Long-Chain Base Composition in Purified Rat Liver Mitochondria. FEBS Lett. 2001; 488: 160–164
  • Xia P., Gamble J.R., Wang L.J., Pitson S.M., Moretti P.A.B., Wattenberg B.W., D'Andrea R.J., Vadas M.A. An Oncogenic Role of Sphingosine Kinase. Curr. Biol. 2000; 10: 1527–1530
  • Radin N.S. Chemotherapy by Slowing Glucosphingolipid Synthesis. Biochem. Pharmacol. 1999; 57: 589–595
  • Zeng G.C., Gao L.Y., Birkle S., Yu R.K. Suppression of Ganglioside GD3 Expression in a Rat F-11 Tumor Cell Line Reduces Tumor Growth, Angiogenesis, and Vascular Endothelial Growth Factor Production. Cancer Res. 2000; 60: 6670–6676
  • Hakomori S. Aberrant Glycosylation in Cancer Cell Membranes as Focused on Glycolipids: Overview and Perspectives. Cancer Res. 1985; 45: 2405–2414
  • Coroneos E., Martinez M., McKenna S., Kester M. Differential Regulation of Sphingomyelinase and Ceramidase Activities by Growth Factors and Cytokines—Implications for Cellular Proliferation and Differentiation. J. Biol. Chem. 1995; 270: 23305–23309
  • Panetti T.S., Nowlen J., Mosher D.F. Sphingosine-1-phosphate and Lysophosphatidic Acid Stimulate Endothelial Cell Migration. Arterioscler. Thromb. Vasc. Biol. 2000; 20: 1013–1019
  • Alessandri G., De Cristan G., Ziche M., Cappa A.P., Gullino P.M. Growth and Motility of Microvascular Endothelium Are Modulated by the Relative Concentration of Gangliosides in the Medium. J. Cell. Physiol. 1992; 151: 23–28
  • Manfredi M.G., Lim S., Claffey K.P., Seyfried T.N. Gangliosides Influence Angiogenesis in an Experimental Mouse Brain Tumor. Cancer Res. 1999; 59: 5392–5397
  • Bhunia A.K., Han H., Snowden A., Chatterjee S. Redox-Regulated Signaling by Lactosylceramide in the Proliferation of Human Aortic Smooth Muscle Cells. J. Biol. Chem. 1997; 272: 15642–15649
  • Witt C.J., Gabel S.P., Meisinger J., Werra G., Liu S.W., Young M.R.I. Interrelationship Between Protein Phosphatase-2A and Cytoskeletal Architecture During the Endothelial Cell Response to Soluble Products Produced by Human Head and Neck Cancer. Otolaryngol. Head Neck Surg. 2000; 122: 721–727
  • Chalfant C.E., Kishikawa K., Mumby M.C., Kamibayashi C., Bielawska A., Hannun Y.A. Long Chain Ceramides Activate Protein Phosphatase-1 and Protein Phosphatase-2A. Activation Is Stereospecific and Regulated by Phosphatidic Acid. J. Biol. Chem. 1999; 274: 20313–20317
  • Chatterjee S. Sphingolipids in Atherosclerosis and Vascular Biology. Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1523–1533
  • Memon R.A., Holleran W.M., Moser A.H., Seki T., Uchida Y., Fuller J., Shigenaga J.K., Grunfeld C., Feingold K.R. Endotoxin and Cytokines Increase Hepatic Sphingolipid Biosynthesis and Produce Lipoproteins Enriched in Ceramides and Sphingomyelin. Arterioscler. Thromb. Vasc. Biol. 1998; 18: 1257–1265
  • van Helvoort A., Smith A.J., Sprong H., Fritsche I., Schinkel A.H., Borst P., van Meer G. MDR1 P-Glycoprotein Is a Lipid Translocase of Broad Specificity, While MDR3 P-Glycoprotein Specifically Translocates Phosphatidylcholine. Cell 1996; 87: 507–517
  • Raggers R.J., van Helvoort A., Evers R., van Meer G. The Human Multidrug Resistance Protein MRP1 Translocates Sphingolipid Analogs Across the Plasma Membrane. J. Cell. Sci. 1999; 112: 415–422
  • Lala P., Ito S., Lingwood C.A. Retroviral Transfection of Madin–Darby Canine Kidney Cells with Human MDR1 Results in a Major Increase in Globotriaosylceramide and 105- to 106-fold Increased Cell Sensitivity to Verocytotoxin. Role of P-Glycoprotein in Glycosphingolipid Synthesis. J. Biol. Chem. 2000; 275: 6246–6251
  • Radin N.S. Killing Cancer Cells by Poly-drug Elevation of Ceramide Levels: A Hypothesis Whose Time Has Come?. Eur. J. Biochem. 2001; 268: 193–204
  • Liu Y.Y., Han T.Y., Giuliano A.E., Cabot M.C. Expression of Glucosylceramide Synthase, Converting Ceramide to Glucosylceramide, Confers Adriamycin Resistance in Human Breast Cancer Cells. J. Biol. Chem. 1999; 274: 1140–1146
  • Lucci A., Cho W.I., Han T.Y., Giuliano A.E., Morton D.L., Cabot M.C. Glucosylceramide: A Marker for Multiple-Drug Resistant Cancers. Anticancer Res. 1998; 18(1B)475–480
  • Chou K.H., Jungalwala F.B. Neutral Glycosphingolipids and Ceramide Composition of Ethylnitrosourea-Induced Rat Neural Tumors: Accumulation of Ceramide in Tumors. J. Neurochem. 1981; 36: 394–401
  • Tepper A.D., Diks S.H., van Blitterswijk W.J., Borst J. Glucosylceramide Synthase Does Not Attenuate the Ceramide Pool Accumulating During Apoptosis Induced by CD95 or Anti-cancer Regimens. J. Biol. Chem. 2000; 275: 34810–34817
  • Liu Y.-Y., Han T.-Y., Giuliano A.E., Hansen N., Cabot M.C. Uncoupling Ceramide Glycosylation by Transfection of Glucosylceramide Synthase Antisense Reverses Adriamycin Resistance. J. Biol. Chem. 2000; 275: 7138–7143
  • Komori H., Ichikawa S., Hirabayashi Y., Ito M. Regulation of UDP-Glucose:Ceramide Glucosyltransferase-1 by Ceramide. FEBS Lett. 2000; 475: 247–250
  • Inokuchi J., Jimbo M., Momosaki K., Shimeno H., Nagamatsu A., Radin N.S. Inhibition of Experimental Metastasis of Murine Lewis Lung Carcinoma by an Inhibitor of Glucosylceramide Synthase and Its Possible Mechanism of Action. Cancer Res. 1990; 50: 6731–6737
  • Deng W., Li R.X., Ladisch S. Influence of Cellular Ganglioside Depletion on Tumor Formation. J. Natl Cancer Inst. 2000; 92: 912–917
  • Ladisch S., Kitada S., Hays E.F. Gangliosides Shed by Tumor Cells Enhance Tumor Formation in Mice. J. Clin. Investig. 1987; 79: 1879–1882
  • McKallip R., Li R.X., Ladisch S. Tumor Gangliosides Inhibit the Tumor-Specific Immune Response. J. Immunol. 1999; 163: 3718–3726
  • Shurin G.V., Shurin M.R., Bykovskaia S., Shogan J., Lotze M.T., Barksdale E.M. Neuroblastoma-Derived Gangliosides Inhibit Dendritic Cell Generation and Function. Cancer Res. 2001; 61: 363–369
  • Shukla G.S., Shukla A., Radin N.S. Gangliosides Inhibit Glucosylceramide Synthase: Possible Role in Ganglioside Therapy. J. Neurochem. 1991; 56: 2125–2132
  • Lee L., Abe A., Shayman J.A. Improved Inhibitors of Glucosylceramide Synthase. J. Biol. Chem. 1999; 274: 14662–14669
  • Rosenwald A.G., Pagano R.E. Effects of the Glycosphingolipid Synthesis Inhibitor, PDMP, on Lysosomes in Cultured Cells. J. Lipid Res. 1994; 35: 1232–1240
  • Selzner M., Bielawska A., Morse M.A., Rudiger H.A., Sindram D., Hannun Y.A., Clavien P.A. Induction of Apoptotic Cell Death and Prevention of Tumor Growth by Ceramide Analogues in Metastatic Human Colon Cancer. Cancer Res. 2001; 61: 1233–1240

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.