74
Views
33
CrossRef citations to date
0
Altmetric
Research Article

ROLE OF KUPFFER CELLS IN PEROXISOME PROLIFERATOR-INDUCED HEPATOCYTE PROLIFERATION*

, , , , &
Pages 87-116 | Published online: 02 Aug 1999

REFERENCES

  • Hawkins J. M., Jones W. E., Bonner F. W., Gibson G. G. The effect of peroxisome proliferators on microsomal. peroxisoma, and mitochondrial enzyme activities in the liver and kidney. Drug Metab. Disp. 1987; 18: 441–515
  • Reddy J. K., Lalwani N. D. Carcinogenesis by hepatic peroxisome proliferators: Evaluation of the risk of hypolipidemic drugs and industrial plasticizers to humans. CRC Crit. Rev. Toxicol. 1983; 12: 1–58
  • Eacho P. I., Lanier T. L., Brodhecker C. A. Hepatocellular DNA synthesis in rats given peroxisome proliferating agents: Comparison of Wy-14,643 to clofibric acid, nafenopin and LY171883. Carcinogenesis 1991; 12: 1557–1561
  • Marsman D. S., Cattley R. C., Conway J. G., Popp J. A. Relationship of hepatic peroxisome proliferation and replicative DNA synthesis to the hepatocarcinogenicity of the peroxisome proliferators Di(2-ethylhexyl)-phthalate and [4-Chloro-6-(2,3-xylidino)-2-pyrimidinylthio]acetic acid (Wy-14,643) in rats. Cancer Res. 1988; 48: 6739–6744
  • Reddy J. K., Rao M. S. Oxidative DNA damage caused by persistent peroxisome proliferation: Its role in hepatocarcinogenesis. Mutat. Res. 1989; 214: 63–68
  • Mannaerts G. P., Van Veldhoven P., Van Broekhoven A., Vandebroek G., Debeer L. J. Evidence that peroxisomal acyl-CoA synthetase is located at the cytoplasmic side of the peroxisomal membrane. Biochem. J. 1982; 204: 17–23
  • Conway J. G., Tomaszewski K. E., Cattley R. C., Marsman D. S., Melnick R. L., Popp J. A. Relationship of oxidative damage to carcinogenicity with the peroxisome proliferators Di(2-ethylhexyl) phthalate (DEHP) and WY-14,643 (WY). Toxicologist 1988; 8: 167
  • Kasai H., Okada Y., Nishimura S., Rao M. S., Reddy J. K. Formation of 8-hydroxydeoxyguanosine in liver DNA of rats following long-term exposure to a peroxisome proliferator. Cancer Res. 1989; 49: 2603–2605
  • Takagi A., Sai K., Umemura T., Hasegawa R., Kurokawa Y. Production of 8-hydroxydeoxyguanosine in rodent liver by the adminstration of peroxisome proliferators. Peroxisomes: Biology and Importance in Toxicology and Medicine, G. Gibson, B. Lake. Taylor and Francis, London 1993
  • Nicholls P., Schonbaum G. R. Catalases. The Enzymes, P. D. Boyer. Academic Press, New York 1963
  • Handler J. A., Thurman R. G. Catalase-dependent ethanol oxidation in perfused rat liver. Requirement for fatty acid-stimulated H2O2 production by peroxisomes. Eur. J. Biochem. 1988; 176: 477–484
  • Handler J. A., Seed C. B., Bradford B. U., Thurman R. G. Induction of peroxisomes by treatment with perfluorooctanoate does not increase rates of H2O2 production in intact liver. Toxicol. Lett. 1992; 60: 61–68
  • Foerster E-C., Faehrenkemper T., Rabe U., Graf P., Sies H. Peroxisomal fatty acid oxidation as detected by H2O2 production in intact perfused rat liver. Biochem. J. 1981; 196: 705–712
  • Kornbrust D. J., Barfknecht T. R., Ingram P., Shelburne J. D. Effect of di(2-ethylhexyl)phthalate on DNA repair and lipid peroxidation in rat hepatocytes and on metabolic cooperation in Chinese hamster V-79 cells. J. Toxicol. Environ. Health 1984; 13: 99–116
  • Price R. J., Evans J. G., Lake B. G. Comparison of the effects of nafenopin on hepatic peroxisome proliferation replicative DNA synthesis in the rat and Syrian hamster. Food Chem. Toxicol. 1992; 30: 937–944
  • Cattley R. C., Marsmann D. S., Popp J. A. Age-related susceptibility to the carcinogenic effect of the peroxisome proliferator WY-14,643 in rat liver. Carcinogenesis 1991; 12: 469–473
  • Kraupp-Grasl B., Huber W., Taper H., Schulte-Hermann R. Increased susceptibility of aged rats to hepatocarcinogenesis by the peroxisome proliferator nafenopin and the possible involvement of altered liver foci occurring spontaneously. Cancer Res. 1991; 51: 666–671
  • Marsman D. S., Popp J. A. Biological potential of basophilic hepatocellular foci and hepatic adenoma induced by the peroxisome proliferator, WY-14,643. Carcinogenesis 1994; 15: 111–117
  • Bojes H. K., Thurman R. G. Peroxisome proliferators activate Kupffer cells in vivo. Cancer Res. 1996; 56: 1–4
  • Bojes H. K., Germolec D. R., Simeonova P., Bruccoleri A., Luster M. I., Thurman R. G. Antibodies to tumor necrosis factor α prevent increases in cell replication in liver due to the potent peroxisome proliferator, WY-14,643. Carcinogenesis 1997; 18: 669–674
  • Rose M. L., Germolec D. R., Schoonhoven R., Thurman R. G. Kupffer cells are causally responsible for the mitogenic effect of peroxisome proliferators. Carcinogenesis 1997; 18: 1453–1456
  • Rose M. L., Germolec D. R., Arteel G. E., Schoonhoven R., Thurman R. G. Dietary glycine completely prevents the increase in hepatocyte proliferation caused by the peroxisome proliferator WY-14,643. Chem. Res. Toxicol. 1997; 10: 1198–1204
  • Rusyn I., Thurman R. G. WY-14,643 rapidly activates the nuclear factor κB in non-parenchymal cells. Hepatology 1997; 26: 460
  • Nishizuka Y. The role of protein kinase C in cell surface signal transduction and tumor promotion. Nature 1984; 308: 693–698
  • Nishizuka Y. The molecular heterogeneity of protein kinase C and its implications for cellular regulation. Nature 1988; 334: 661–665
  • Bojes H. K., Thurman R. G. Peroxisomal proliferators inhibit acyl CoA synthetase and stimulate protein kinase C in vivo. Toxicol. Appl. Pharmacol. 1994; 126: 233–239
  • Bronfman M., Orellana A., Morales M. N., Bieri F., Waechter F., Staubli W., Bentley P. Potentiation of diacylglycerol-activated protein kinase C by acyl-coenzyme A thioesters of hypolipidaemic drugs. Biochem. Biophys. Res. Commun. 1989; 159: 1026–1031
  • McPhail L. C., Clayton C. C., Snyderman R. A potential second messenger role for unsaturated fatty acids: Activation of Ca2+-dependent protein kinase. Science 1984; 224: 622–624
  • Mitchell F. E., Price S. C., Hinton R. C., Grasso P., Bridges J. W. Time and dose-response study of the effects on rats of the plasticizer di(2-ethylhexyl) phthalate. Toxicol. Appl. Pharmacol. 1985; 81: 371–392
  • Price S. C., Hinton R. H., Mitchell F. E., Hall D. E., Grasso P., Blane G. F., Bridges J. W. Time and dose study on the response of rats to the hypolipidaemic drug fenofibrate. Toxicology 1986; 41: 169–191
  • Foxworthy P. S., Perry D. N., Hoover D. M., Eacho P. I. Changes in hepatic lipid metabolism associated with lipid accumulation and its reversal in rats given peroxisome proliferator LY171883. Toxicol. Appl. Pharmacol. 1990; 106: 375–383
  • George M. E., Andersen M. E. Toxic effects of nonadecafluoro-n-decanoic acid in rats. Toxicol. Appl. Pharmacol. 1986; 85: 169–180
  • Krisans S. K., Mortensen R. M., Lazarow P. B. Acyl-CoA synthetase in rat liver peroxisomes. J. Biol. Chem. 1980; 255: 9599–9607
  • Greenberg M. E., Greene L. A., Ziff E. B. Nerve growth factor and epidermal growth factor induce rapid transient changes in proto-oncogen transcription in PC12 cells. J. Biol. Chem. 1985; 260: 14101–14110
  • Greenberg M. E., Ziff E. B. Stimulation of 3T3 cells induces transcription of the c-fos proto-oncogene. Nature 1984; 311: 433–438
  • Issemann I., Green S. Activation of a member of the steroid hormone receptor superfamily by peroxisome proliferators. Nature 1990; 347: 645–650
  • Gottlicher M., Widmark E., Qiao L., Gustafsson J. Fatty acids activate a chimera of the clofibric acid-activated receptor and the glucocorticoid receptor. Proc. Natl. Acad. Sci. USA 1992; 89: 4653–4657
  • Sher T., Yi H. F., McBride O. W., Gonzalez F. J. cDNA Cloning, chromosomal mapping, and functional characterization of the human peroxisome proliferator activated receptor. Biochemistry 1993; 32: 5598–5604
  • Aldridge T. C., Tugwood J. D., Green S. Identification and characterization of DNA elements implicated in the regulation of CYP4A1 transcription. Biochem. J. 1995; 306: 473–479
  • Lee S. S., Pineau T., Drago J., Lee E. J., Owens J. W., Kroetz D. L., Fernandez-Salguero P. M., Westphal H., Gonzalez F. J. Targeted disruption of the alpha isoform of the peroxisome proliferator-activated receptor gene in mice results in abolishment of the pleiotropic effects of peroxisome proliferators. Mol. Cell. Biol. 1995; 15: 3012–3022
  • Marsman D. S., Swanson-Pfeiffer C. L., Popp J. A. Lack of comitogenicity by the peroxisome proliferator hepatocarcinogens. WY-14,643 and clofibiric acid, Toxicol. Appl. Pharmacol. 1993; 122: 1–6
  • Nagel R. A., Dirix L. Y., Hayllar K. M., Preisig R., Tredger J. M., Williams R. Use of quantitative liver function tests—Caffeine clearance and galactose elimination capacity after orthotopic liver transplantation. Hepatology 1990; 10: 149–157
  • Birmelin M., Decker K. Ca2+ flux as an initial event in phagocytosis by rat Kupffer cells. Eur. J. Biochem. 1983; 131: 539–543
  • Buckley A. R., Crowe P. D., Russell D. H. Rapid activation of protein kinase C in isolated rat liver nuclei by prolactin, a known hepatic mitogen. Proc. Natl. Acad. Sci. USA 1988; 85: 8649–8653
  • Rose M. L., Thurman R. G. Rapid phagocytosis of particles of the peroxisome proliferator LY171883 activates Kupffer cells. Fund. Appl. Toxicol. 1995; 30(1)1060
  • Pieters M. N., Esbach S., Schouten D., Brower A., Knook D. L., van Berkel T. J. Cholesteryl esters from oxidized low-density lipoproteins are in vivo rapidly hydrolyzed in rat Kupffer cells and transported to liver parenchymal cells and bile. Hepatology 1994; 6: 1459–1467
  • Baldwin J. R., Witiak D. T., Feller D. R. Disposition of clofibrate in the rat. Acute and chronic administration. Biochem. Pharmacol. 1980; 29: 3143–3154
  • Rose M. L., Rivera C. A., Schoonhoven R., Swenberg J. A., Thurman R. G. Peroxisome proliferators activate Kupffer cells directly. Toxicol. Sci. 1998; 42: 11
  • Beutler B., Cerami A. Cachectin (tumor necrosis factor): A macrophage hormone governing cellular metabolism and inflammatory response. Endocr. Rev. 1988; 9: 57–66
  • Akerman P., Cote P., Yang S. Q., McClain C., Nelson S., Bagby G. J., Diehl A. M. Antibodies to tumor necrosis factor-α inhibit liver regeneration after partial hepatectomy. Am. J. Physiol. 1992; 263: G579–G585
  • Beyer H. S., Theologides A. Tumor necrosis factor-α is a direct hepatocyte mitogen in the rat. Biochem. Mol. Biol. Int. 1993; 29: 1–4
  • Feingold K. R., Soued M., Grunfeld C. Tumor necrosis factor stimulates DNA synthesis in the liver of intact rats. Biochem. Biophys. Res. Commun. 1988; 153: 576–582
  • Rolfe M., James R., Roberts R. A. Tumour necrosis factor α suppresses apoptosis and induces DNA synthesis in rodent hepatocytes: A mediator of the hepatocarcinogenicity of peroxisome proliferators. Carcinogenesis 1997; 18: 2277–2280
  • Cornell R. P., Liljequist B. L., Bartizal K. F. Depressed liver regeneration after partial hepatectomy of germ-free, athymic and lipopolysaccharide-resistant mice. Hepatology 1990; 11: 916–922
  • Shinagawa T., Yoshioka K., Kakumu S., Wakita T., Ishikawa T., Itoh Y., Takayanagi M. Apoptosis in cultured rat hepatocytes: The effects of tumor necrosis factor α and interferon γ. J. Pathol. 1991; 165: 247–253
  • Stewart A. G., Tomlinson P. R., Fernandes D. J., Wilson J. W., Harris T. Tumor necrosis factor alpha modulates mitogenic responses of human cultured airway smooth muscle. Am. J. Respir. Cell Mol. Biol. 1995; 12: 110–119
  • Cowper K. B., Currin R. T., Dawson T. L., Lindert K. A., Lemasters J. J., Thurman R. G. A new method to monitor Kupffer cell function continuously in the perfused rat liver: Dissociation of glycogenolysis from particle phagocytosis. Biochem. J. 1990; 266: 141–147
  • Gunawardhana L., Mobley S. A., Sipes I. G. Modulation of 1,2-dichlorobenzene hepatotoxicity in the Fischer-344 rat by a scavenger of superoxide anions and an inhibitor of Kupffer cells. Toxicol. Appl. Pharmacol. 1993; 119: 205–213
  • Marzi I., Cowper K. B., Takei Y., Lindert K. A., Lemasters J. J., Thurman R. G. Methyl palmitate prevents Kupffer cell activation and improves survival after orthotopic liver transplantation in the rat. Transplant. Int. 1991; 4: 215–220
  • Kato K., Onodera K., Kato J., Kasai S., Mito M. The immuno-stimulant OK-432 enhances liver regeneration after 70% hepatectomy. J. Hepatol. 1995; 23: 87–94
  • Decker K. Biologically active products of stimulated liver macrophages (Kupffer cells). Eur. J. Biochem. 1990; 192: 245–261
  • Inestrosa N. C., Bronfman M., Leighton F. Detection of peroxisomal fatty acyl-coenzyme A oxidase activity. Biochem. J. 1979; 182: 779–788
  • Kayama F., Yoshida T., Elwell M. R., Luster M. I. Role of tumor necrosis factor-α in cadmium-induced hepatotoxicity. Toxicol. Appl. Pharmacol. 1995; 131: 224–234
  • Ikejima K., Iimuro Y., Forman D. T., Thurman R. G. A diet containing glycine improves survival in endotoxin shock in the rat. Am. J. Physiol. 1996; 271: G97–G103
  • Ikejima K., Qu W., Stachlewitz R. F., Thurman R. G. Kupffer cells contain a glycine-gated chloride channel. Am. J. Physiol. 1997; 272: G1581–G1586
  • Dieter P., Schulze-Specking A., Decker K. Ca2+ requirement of prostanoid but not of superoxide production by rat Kupffer cells. Eur. J. Biochem. 1988; 177: 61–67
  • Kawada N., Mizoguchi Y., Kobayashi K., Monna T., Morisawa S. Calcium-dependent prostaglandin biosynthesis by lipopolysaccharide-stimulated rat Kupffer cells. Prostaglandins Leukot. Essent. Fatty Acids 1992; 47: 209–214
  • Currin R. T., Lichtman S. N., Thurman R. G., Lemasters J. J. Pentoxifylline, adenosine, prostaglandin E1 and nisoldipine inhibit tumor necrosis factor release from LPS-stimulated rat Kupffer cells. Hepatology 1991; 14: 470
  • Watanabe N., Suzuki J., Kobayashi Y. Role of calcium in tumor necrosis factor-α produced by activated macrophages. J. Biochem. 1996; 120: 1190–1195
  • Baldwin A. S. The NF-κB and IκB proteins: New discoveries and insights. Annu. Rev. Immunol. 1996; 14: 649–681
  • Li Y., Leung L. K., Glauert H. P., Spear B. T. Treatment of rats with the peroxisome proliferator ciprofibrate results in increased liver NF-κB activity. Carcinogenesis 1996; 17: 2305–2309
  • Menegazzi M., Carcereri-De Prati A., Suzuki H., Shinozuka H., Pibiri M., Piga R., Columbano A., Ledda-Columbano G. M. Liver cell proliferation induced by nafenopin and cyproterone acetate is not associated with increases in activation of transcription factors NF-κB and AP-1 or with expression of TNF alpha. Hepatology 1997; 25: 585–592
  • Ohmura T., Ledda-Columbano G. M., Piga R., Columbano A., Glemba J., Katyal S. L., Locker J., Shinozuka H. Hepatocyte proliferation induced by a single dose of a peroxisome proliferator. Am. J. Pathol. 1996; 148: 815–824
  • Rusyn I., Tsukamoto H., Thurman R. G. WY-14,643 rapidly activates nuclear factor κB in Kupffer cells before hepatocytes. Carcinogenesis 1998; 7: 1217–1222
  • Diaz-Meco M. T., Dominguez I., Sanz L., Dent P., Lozano J., Municio M. M., Berra E., Hay R. T., Sturgill T. W., Moscat J. Zeta PKC induces phosphorylation and inactivation of I kappa B-alpha in vitro. EMBO J. 1994; 13: 2842–2848
  • Flohe L., Brigelius-Flohe R., Saliou C., Traber M. G., Packer L. Redox regulation of NF-kappa B activation. Free Rad. Biol. Med. 1997; 22: 1115–1126
  • Wiezorek J. S., Brown D. H., Kupperman D. E., Brass C. A. Rapid conversion to high xanthine oxidase activity in viable Kupffer cells during hypoxia. J. Clin. Invest. 1994; 94: 2224–2230
  • Grilli M., Chiou J. S., Lenardo M. J. NF-κB and Rel: Participants in a multiform transcriptional regulatory system. Int. Rev. Cytol. 1993; 143: 1–62
  • Columbano A., Shinozuka H. Liver regeneration versus direct hyperplasia. FASEB J 1996; 10: 1118–1128
  • Peters J. M., Cattley R. C., Gonzalez F. J. Role of PPARα in the mechanism of action of the nongenotoxic carcinogen and peroxisome proliferator WY-14,643. Carcinogenesis 1997; 18: 2029–2033
  • Nanji A. A., Dannenberg A. J., Thomas P., Bass N. M. Ethanol selectively induces expression of peroxisome proliferator-activated receptor α (PPARα) in hepatocytes: Evidence for a role for oxidized products of arachidonic acid. Hepatology 1996; 24(4)1256

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.