216
Views
19
CrossRef citations to date
0
Altmetric
Research Article

INTRACELLULAR SIGNAL TRANSDUCTION IN EOSINOPHILS AND ITS CLINICAL SIGNIFICANCE

, , &
Pages 165-186 | Published online: 17 Jun 2002

REFERENCES

  • Weller P.F. Eosinophils: Structure and Functions. Curr. Opin. Immunol 1994; 6: 85–90
  • Walsh G.M. Advances in the Immunobiology of Eosinophils and Their Role in Disease. Crit. Rev. Clin. Lab. Sci. 1999; 36: 453–496
  • Gleich G.J. Mechanisms of Eosinophil-associated Inflammation. J. Allergy Clin. Immunol. 2000; 105: 651–663
  • Woerly G., Roger N., Loiseau S., Capron M. Expression of Th1 and Th2 Immunoregulatory Cytokines by Human Eosinophils. Int. Arch. Allergy Immunol. 1999; 118: 95–97
  • Wang W., Tanaka T., Okamura H., Sugita M., Higa S., Kishimoto T., Suemura M. Interleukin-18 Enhances the Production of Interleukin-8 by Eosinophils. Eur. J. Immunol. 2001; 4: 1010–1016
  • Kroegel C., Yukawa T., Dent G., Venge P., Chung K.F., Barnes P.J. Stimulation of Degranulation From Human Eosinophils by Platelet-activating Factor. J. Immunol. 1989; 142: 3518–3526
  • Koenderman L., Tool A.T., Roos D., Verhoeven A.J. Priming of the Respiratory Burst in Human Eosinophils is Accompanied by Changes in Signal Transduction. J. Immunol. 1990; 145: 3883–3888
  • Miyamasu M., Hirai K., Takahashi Y., Iida M., Yamaguchi M., Koshino T., Takaishi T., Morita Y., Ohta K., Kasahara T. Chemotactic Agonists Induce Cytokine Generation in Eosinophils. J. Immunol. 1995; 154: 1339–1349
  • Murphy P.M. The Molecular Biology of Leukocyte Chemoattractant Receptors. Annu. Rev. Immunol. 1994; 12: 593–633
  • Tavernier J., Van Der Heyden J., Verhee A., Brusselle G., Van Ostade X., Vandekerckhove J., North J., Rankin S.M., Kay A.B., Robinson D.S. Interleukin 5 Regulates the Isoform Expression of its Own Receptor Alpha-subunit. Blood 2000; 95: 1600–1607
  • Bruggen T.V.D., Koenderman L. Signal Transduction in Eosinophils. Clin. Exp. Allergy 1996; 26: 880–891
  • Neer E.J. Heterotrimeric G proteins: Organizers of Transmembrane Signals. Cell 1995; 80: 249–257
  • Bokoch G.M. Chemoattractant Signaling and Leukocyte Activation. Blood 1995; 86: 1649–1660
  • Agrawal D.K., Ali N., Numao T. PAF Receptors and G-proteins in Human Blood Eosinophils and Neutrophils. J. Lipid Mediat. 1992; 5: 101–104
  • Koenderman L., Coffer P.J. Controlling Allergic Inflammation by Signaling Regulation of Eosinophils. Allergy 2001; 56: 204–214
  • Rankin S.M., Conroy D.M., Williams T.J. Eotaxin and Eosinophil Recruitment: Implications for Human Disease. Mol. Med. Today 2000; 6: 20–27
  • Nakajima T., Yamada H., Iikura M., Miyamasu M., Izumi S., Shida H., Ohta K., Imai T., Yoshie O., Mochizuki M., Schroder J.M., Morita Y., Yamamoto K., Hirai K. Intracellular Localization and Release of Eotaxin from Normal Eosinophils. FEBS Lett. 1998; 434: 226–230
  • Garcia-Zepeda E.A., Rothenberg M.E., Ownbey R.T., Celestin J., Leder P., Luster A.D. Human Eotaxin is a Specific Chemoattractant for Eosinophil Cells and Provides a New Mechanism to Explain Tissue Eosinophilia. Nat. Med. 1996; 2: 449–456
  • Fujisawa T., Kato Y., Nagase H., Atsuta J., Terada A., Iguchi K., Kamiya H., Morita Y., Kitaura M., Kawasaki H., Yoshie O., Hirai K. Chemokines Induce Eosinophil Degranulation Through CCR-3. J. Allergy Clin. Immunol. 2000; 106: 507–513
  • Kay A.B., Corrigan C.J. Asthma, Eosinophils and Neutrophils. Br. Med. Bull. 1992; 48: 51–64
  • Heath H., Qin S., Rao P., Wu L., LaRosa G., Kassam N., Ponath P.D., Mackay C.R. Chemokine Receptor Usage by Human Eosinophils. The Importance of CCR3 Demonstrated Using an Antagonistic Monoclonal Antibody. J. Clin. Invest. 1997; 99: 178–184
  • Boehme S.A., Sullivan S.K., Crowe P.D., Santos M., Conlon P.J., Sriramarao P., Bacon K.B. Activation of Mitogen-activated Protein Kinase Regulates Eotaxin-induced Eosinophil Migration. J. Immunol. 1999; 163: 1611–1618
  • Kampen G.T., Stafford S., Adachi T., Jinquan T., Quan S., Grant J.A., Skov P.S., Poulsen L.K., Alam R. Eotaxin Induces Degranulation and Chemotaxis of Eosinophils Through the Activation of ERK2 and p38 Mitogen-Activated Protein Kinases. Blood 2000; 95: 1911–1917
  • Bertrand C.P., Ponath P.D. CCR3 Blockade as a New Therapy for Asthma. Exp. Opin. Invest. Drugs 2000; 9: 43–52
  • Miyajima A., Mui A.L., Ogorochi T., Sakamaki K. Receptors for Granulocyte-macrophage Colony-stimulating Factor, Interleukin-3, and Interleukin-5. Blood 1993; 82: 1960–1974
  • Takaki S., Kanazawa H., Shiiba M., Takatsu K. A Critical Cytoplasmic Domain of the Interleukin 5 (IL-5) Receptor Alpha Chain and its Function in IL-5-mediated Growth Signal Transduction. Mol. Cell Biol. 1994; 14: 7404–7413
  • Bates M.E., Bertics P.J., Busse W.W. IL-5 Activates a 45-kilodalton Mitogen-activated Protein (MAP) Kinase and Jak-2 Tyrosine Kinase in Human Eosinophils. J. Immunol. 1996; 156: 711–718
  • Pazdrak K., Stafford S., Alam R. The Activation of the Jak-STAT 1 Signaling Pathway by IL-5 in Eosinophils. J. Immunol. 1995; 155: 397–402
  • Bruggen T.V.D., Caldenhoven E., Kanters D., Coffer P., Raaijmakers J.A., Lammers J.W., Koenderman L. Interleukin-5 Signaling in Human Eosinophils Involves JAK2 Tyrosine Kinase and STAT1α. Blood 1995; 85: 1442–1448
  • de Groot R.P., Coffer P.J., Koenderman L. Regulation of Proliferation, Differentiation and Survival by the IL-3/IL-5/GM-CSF Receptor Family. Cell Signal. 1998; 10: 619–628
  • Bates M.E., Green V.L., Bertics P.J. ERK1 and ERK2 Activation by Chemotactic Factors in Human Eosinophils is Interleukin 5-dependent and Contributes to Leukotriene C(4) Biosynthesis. J. Biol. Chem. 2000; 275: 10,968–10,975
  • Raingeaud J., Gupta S., Rogers J.S., Dickens M., Han J., Ulevitch R.J., Davis R.J. Pro-inflammatory Cytokines and Environmental Stress Cause p38 Mitogen- Activated Protein Kinase Activation by Dual Phosphorylation on Tyrosine and Threonine. J. Biol. Chem. 1995; 270: 7420–7426
  • Derijard B., Hibi M., Wu I.H., Barrett T., Su B., Deng T., Karin M., Davis R.J. JNK1: a Protein Kinase Stimulated by UV Light and Ha-Ras that Binds and Phosphorylates the c-Jun Activation Domain. Cell 1994; 76: 1025–1037
  • Herlaar E., Brown Z. p38 MAPK Signalling Cascades in Inflammatory Disease. Mol. Med. Today 1999; 5: 439–447
  • Davis R.J. The Mitogen-activated Protein Kinase Signal Transduction Pathway. J. Biol. Chem. 1993; 268: 14,553–14,556
  • Mary E.B., Paul J.B., William W.B. IL-5 Activates a 45-kilodalton Mitogen-activated Protein (MAP) Kinase and Jak-2 Tyrosine Kinase in Human Eosinophils. J. Immunol. 1996; 156: 711–718
  • Adachi T., Alam R. The Mechanism of IL-5 Signal Transduction. Am. J. Physiol. 1998; 275: C623–C633
  • Bracke M., Coffer P.J., Lammers J.W., Koenderman L. Analysis of Signal Transduction Pathways Regulating Cytokine-mediated Fc Receptor Activation on Human Eosinophils. J. Immunol. 1998; 161: 6768–6774
  • Wong C.K., Ho C.Y., Lam C.W.K., Zhang J.P., Hjelm N.M. Differentiation of a Human Eosinophilic Leukemic Cell Line, EoL-1: Characterization by the Expression of Cytokine Receptors, Adhesion Molecules, CD95 and Eosinophilic Cationic Protein (ECP). Immunol. Lett. 1999; 68: 317–323
  • Wong C.K., Zhang J.P., Lam W.K., Ho C.Y., Hjelm N.M. Sodium Salicylate-induced Apoptosis of Human Peripheral Blood Eosinophils is Independent of the Activation of C-Jun N-terminal Kinase and p38 Mitogen-Activated Protein Kinase. Int. Arch. Allergy Immunol. 2000; 121: 44–52
  • Johnson N.L., Gardner A.M., Diener K.M., Lange-Carter C.A., Gleavy J., Jarpe M.B., Minden A., Karin M., Zon L.I., Johnson G.L. Signal Transduction Pathways Regulated by Mitogen-activated/extracellular Response Kinase Kinase Kinase Induce Cell Death. J. Biol. Chem. 1996; 271: 3229–3237
  • Xia Z., Dickens M., Raingeaud J., Davis R.J., Greenberg M.E. Opposing Effects of ERK and JNK-p38 MAP Kinases on Apoptosis. Science 1995; 270: 1326–1331
  • Kankaanranta H., De Souza P.M., Barnes P.J., Salmon M., Giembycz M.A., Lindsay M.A. SB 203580, An Inhibitor of p38 Mitogen-activated Protein Kinase, Enhances Constitutive Apoptosis of Cytokine-deprived Human Eosinophils. J. Pharmacol. Exp. Ther. 1999; 290: 621–628
  • Tsukahara K., Nakao A., Hiraguri M., Miike S., Mamura M., Saito Y., Iwamoto I. Tumor Necrosis Factor-alpha Mediate Antiapoptotic Signals Partially Via p38 MAP Kinase Activation in Human Eosinophils. Int. Arch. Allergy Immunol. 1999; 120(Suppl 1)54–59
  • Zhang J.P., Wong C.K., Lam C.W.K. Role of Caspase in Dexamethasone-Induced Apoptosis and Activation of c-Jun NH2-terminal Kinase and p38 Mitogen-activated Protein Kinase in Human Eosinophils. Clin. Exp. Immunol. 2000; 122: 20–27
  • Shida Y., Daniel C.H., Kurt B. Requirement of Lyn and Syk Tyrosine Kinase for the Prevention of Apoptosis by Cytokines in Human Eosinophils. J. Exp. Med. 1996; 183: 1407–1414
  • Pazdrak K., Olszewska-Pazdrak B., Stafford S., Garofalo R.P., Alam R. Lyn, Jak2, and Raf-1 Kinases are Critical for the Antiapoptotic Effect of Interleukin 5, Whereas only Raf-1 Kinase is Essential for Eosinophil Activation and Degranulation. J. Exp. Med. 1998; 188: 421–429
  • Yousefi S., Green D.R., Blaser K., Simon H.U. Protein-tyrosine Phosphorylation Regulates Apoptosis in Human Eosinophils and Neutrophils. Proc. Natl. Acad. Sci. 1994; 91: 10,868–10,872, USA
  • Pazdrak K., Schreiber D., Forsythe P., Justement L., Alam R. The Intracellular Signal Transduction Mechanism of Interleukin 5 in Eosinophils: The Involvement of Lyn Tyrosine Kinase and the Ras-Raf-1-MEK-microtubule-associated Protein Kinase Pathway. J. Exp. Med. 1995; 181: 1827–1834
  • Machide M., Mano H., Todokoro K. Interleukin 3 and Erythropoietin Induce Association of Vav with Tec Kinase Through Tec Homology Domain. Oncogene 1995; 11: 619–625
  • Li Y., Shen B.F., Karanes C., Sensenbrenner L., Chen B. Association between Lyn Protein Tyrosine Kinase (p53/56lyn) and the Beta Subunit of the Granulocyte-macrophage Colony-stimulating Factor (GM-CSF) Receptors in a GM-CSF-dependent Human Megakaryocytic Leukemia Cell Line (M-07e). J. Immunol. 1995; 155: 2165–2174
  • Mano H., Yamashita Y., Sato K., Yazaki Y., Hirai H. Tec Protein-tyrosine Kinase is Involved in Interleukin-3 Signaling Pathway. Blood 1995; 85: 343–350
  • Burton E.A., Hunter S., Wu S.C., Anderson S.M. Binding of Src-like Kinases to the Beta-subunit of the Interleukin-3 Receptor. J. Biol. Chem. 1997; 272: 16,189–16,195
  • Wei S., Liu J.H., Epling-Burnette P.K., Gamero A.M., Ussery D., Pearson E.W., Elkabani M.E., Diaz J.I., Djeu J.Y. Critical Role of Lyn Kinase in Inhibition of Neutrophil Apoptosis by Granulocyte-macrophage Colony-stimulating Factor. J. Immunol. 1996; 157: 5155–5162
  • Yousefi S., Hoessli D.C., Blaser K., Mills G.B., Simon H.U. Requirement of Lyn and Syk Tyrosine Kinases for the Prevention of Apoptosis by Cytokines in Human Eosinophils. J. Exp. Med. 1996; 183: 1407–1414
  • Darnell J.E., Jr. STATs and Gene Regulation. Science 1997; 277: 1630–1635
  • Schindler C., Darnell J.E., Jr. Transcriptional Responses to Polypeptide Ligands: the JAK-STAT Pathway. Annu. Rev. Biochem. 1995; 64: 621–651
  • Watanabe S., Itoh T., Arai K. Roles of JAK Kinases in Human GM-CSF Receptor Signal Transduction. J. Allergy Clin. Immunol. 1996; 98: S183–S191
  • Durstin M., Inhorn R.C., Griffin J.D. Tyrosine Phosphorylation of Shc is not Required for Proliferation or Viability Signaling by Granulocyte-macrophage Colony-stimulating Factor in Hematopoietic Cell Lines. J. Immunol. 1996; 157: 534–540
  • Inhorn R.C., Carlesso N., Durstin M., Frank D.A., Griffin J.D. Identification of a Viability Domain in the Granulocyte/macrophage Colony-stimulating Factor Receptor Beta-chain Involving Tyrosine-750. Proc. Natl. Acad. Sci. 1995; 92: 8665–8669, USA
  • van Dijk T.B., Caldenhoven E., Raaijmakers J.A., Lammers J.W., Koenderman L., de Groot R.P. Multiple Tyrosine Residues in the Intracellular Domain of the Common Beta Subunit of the Interleukin 5 Receptor are Involved in Activation of STAT5. FEBS Lett. 1997; 412: 161–164
  • Pazdrak K., Adachi T., Alam R. Src Homology 2 Protein Tyrosine Phosphatase (SHPTP2)/Src Homology 2 Phosphatase 2 (SHP2) Tyrosine Phosphatase is a Positive Regulator of the Interleukin 5 Receptor Signal Transduction Pathways Leading to the Prolongation of Eosinophil Survival. J. Exp. Med. 1997; 186: 561–568
  • Chin H., Nakamura N., Kamiyama R., Miyasaka N., Ihle J.N., Miura O. Physical and Functional Interactions Between Stat5 and the Tyrosine-phosphorylated Receptors for Erythropoietin and Interleukin-3. Blood 1996; 88: 4415–4425
  • Woodcock J.M., Bagley C.J., Zacharakis B., Lopez A.F. A Single Tyrosine Residue in the Membrane-proximal Domain of the Granulocyte-macrophage Colony-stimulating Factor, Interleukin (IL)-3, and IL-5 Receptor Common Beta-chain is Necessary and Sufficient for High Affinity Binding and Signaling by all Three Ligands. J. Biol. Chem. 1996; 271: 25,999–26,006
  • Chin H., Nakamura N., Kamiyama R., Miyasaka N., Ihle J.N., Miura O. Physical and Functional Interactions Between Stat5 and the Tyrosine-Phosphorylated Receptors for Erythropoietin and Interleukin-3. Blood 1996; 88: 4415–4425
  • Woodcock J.M., Bagley C.J., Zacharakis B., Lopez A.F. A Single Tyrosine Residue in the Membrane-proximal Domain of the Granulocyte-macrophage Colony-stimulating Factor, Interleukin (IL)-3, and IL-5 Receptor Common Beta-chain is Necessary and Sufficient for High Affinity Binding and Signaling by all Three Ligands. J. Biol. Chem. 1996; 271: 25,999–26,006
  • David M., Petricoin E., 3rd., Benjamin C., Pine R., Weber M.J., Larner A.C. Requirement for MAP Kinase (ERK2) Activity in Interferon Alpha- and Interferon Beta-stimulated Gene Expression Through STAT Proteins. Science 1995; 269: 1721–1723
  • Miike S., Nakao A., Hiraguri M., Kurasawa K., Saito Y., Iwamoto I. Involvement of JAK2, but not PI 3-kinase/Akt and MAP Kinase Pathways, in Anti-apoptotic Signals of GM-CSF in Human Eosinophils. J. Leukoc. Biol. 1999; 65: 700–706
  • Toker A., Cantley L.C. Signalling Through the Lipid Products of Phosphoinositide-3-OH Kinase. Nature 1997; 387: 673–676
  • Coffer P.J., Schweizer R.C., Dubois G.R., Maikoe T., Lammers J.W., Koenderman L. Analysis of Signal Transduction Pathways in Human Eosinophils Activated by Chemoattractants and the T-helper 2-derived Cytokines Interleukin-4 and Interleukin-5. Blood 1998; 91: 2547–2557
  • Hiraguri M., Miike S., Sano H., Kurasawa K., Saito Y., Iwamoto I. Granulocyte-macrophage Colony-stimulating Factor and IL-5 Activate Mitogen-activated Protein Kinase Through Jak2 Kinase and Phosphatidylinositol 3-kinase in Human Eosinophils. J. Allergy Clin. Immunol. 1997; 100: S45–S51
  • Palframan R.T., Collins P.D., Severs N.J., Rothery S., Williams T.J., Rankin S.M. Mechanisms of Acute Eosinophil Mobilization from the Bone Marrow Stimulated by Interleukin 5: the Role of Specific Adhesion Molecules and Phosphatidylinositol 3-kinase. J. Exp. Med. 1998; 188: 1621–1632
  • Miike S., Kurasawa K., Saito Y., Iwamoto I. Platelet-activating Factor Activates Mitogen-activated Protein Kinases Through the Activation of Phosphatidylinositol 3-kinase and Tyrosine Kinase in Human Eosinophils. J. Leukoc. Biol. 2000; 67: 117–126
  • Sotsios Y., Ward S.G. Phosphoinositide 3-kinase: A Key Biochemical Signal for Cell Migration in Response to Chemokines. Immunol. Rev. 2000; 177: 217–235
  • Blackwell T.S., Christman J.W. The Role of Nuclear Factor-κB in Cytokine Gene Regulation. Am. J. Respir. Cell Mol. Biol. 1997; 17: 3–9
  • Schmitz M.L., Baeuerle P.A. The p65 Subunit is Responsible for the Strong Transcription Activating Potential of NF-κB. EMBO J. 1991; 10: 3805–3817
  • Yamashita N., Koizumi H., Murata M., Mano K., Ohta K. Nuclear Factor kappa B Mediates Interleukin-8 Production in Eosinophils. Int. Arch. Allergy Immunol. 1999; 120: 230–236
  • Gilmore T.D. The Rel/NF-kappaB Signal Transduction Pathway: Introduction. Oncogene 1999; 18: 6842–6844
  • Baldwin A.S., Jr. The NF-kappa B and I kappa B Proteins: New Discoveries and Insights. Annu. Rev. Immunol. 1996; 14: 649–683
  • Yamashita N., Koizumi H., Murata M., Mano K., Ohta K. Nuclear Factor kappa B Mediates Interleukin-8 Production in Eosinophils. Int. Arch. Allergy Immunol. 1999; 120: 230–236
  • Fiedler M.A., Wernke-Dollries K., Stark J.M. Inhibition of TNF-alpha-induced NF-kappaB Activation and IL-8 Release in A549 Cells with the Proteasome Inhibitor MG-132. Am. J. Respir. Cell Mol. Biol. 1998; 19: 259–268
  • Yang L., Cohn L., Zhang D.H., Homer R., Ray A., Ray P. Essential Role of Nuclear Factor kappaB in the Induction of Eosinophilia in Allergic Airway Inflammation. J. Exp. Med. 1998; 188: 1739–1750
  • Hart L.A., Krishnan V.L., Adcock I.M., Barnes P.J., Chung K.F. Activation and Localization of Transcription Factor, Nuclear Factor-κB, in Asthma. Am. J. Respir. Crit. Care Med. 1998; 158: 1585–1592
  • Wu M., Lee H., Bellas R.E., Schauer S.L., Arsura M., Katz D., FitzGerald M.J., Rothstein T.L., Sherr D.H., Sonenshein G.E. Inhibition of NF-kappaB/Rel Induces Apoptosis of Murine B Cells. EMBO J. 1996; 15: 4682–4690
  • Grimm S., Bauer M.K., Baeuerle P.A., Schulze-Osthoff K. Bcl-2 Down-regulates the Activity of Transcription Factor NF-kappaB Induced upon Apoptosis. J. Cell Biol. 1996; 134: 13–23
  • Beg A.A., Baltimore D. An Essential Role for NF-kappaB in Preventing TNF-alpha-induced Cell Death. Science 1996; 274: 782–784
  • Feinman R., Koury J., Thames M., Barlogie B., Epstein J., Siegel D.S. Role of NF-kappaB in the Rescue of Multiple Myeloma Cells from Glucocorticoid-induced Apoptosis by bcl-2. Blood 1999; 93: 3044–3052
  • Ward C., Chilvers E.R., Lawson M.F., Pryde J.G., Fujihara S., Farrow S.N., Haslett C., Rossi A.G. NF-kappaB Activation is a Critical Regulator of Human Granulocyte Apoptosis in Vitro. J. Biol. Chem. 1999; 274: 4309–4318
  • Kung T.T., Stelts D.M., Zurcher J.A., Adams G.K., 3rd., Egan R.W., Kreutner W., Watnick A.S., Jones H., Chapman R.W. Involvement of IL-5 in a Murine Model of Allergic Pulmonary Inflammation: Prophylactic and Therapeutic Effect of an Anti-IL-5 Antibody. Am. J. Respir. Cell Mol. Biol. 1995; 13: 360–365
  • Elsner J., Petering H., Hochstetter R., Kimmig D., Wells T.N., Kapp A., Proudfoot A.E. The CC Chemokine Antagonist Met-RANTES Inhibits Eosinophil Effector Functions Through the Chemokine Receptors CCR1 and CCR3. Eur. J. Immunol. 1997; 27: 2892–2898
  • Wilkinson S.E., Parker P.J., Nixon J.S. Isoenzyme Specificity of Bisindolylmaleimides, Selective Inhibitors of Protein Kinase C. Biochem. J. 1993; 294: 335–337
  • Chijiwa T., Mishima A., Hagiwara M., Sano M., Hayashi K., Inoue T., Naito K., Toshioka T., Hidaka H. Inhibition of Forskolin-induced Neurite Outgrowth and Protein Phosphorylation by a Newly Synthesized Selective Inhibitor of Cyclic AMP-dependent Protein Kinase, N-[2-(p-bromocinnamylamino)ethyl]-5-isoquinolinesulfonamide (H-89), of PC12D Pheochromocytoma Cells. J. Biol. Chem. 1990; 265: 5267–5272
  • Hart R.C., Bates M.D., Cormier M.J., Rosen G.M., Conn P.M. Synthesis and Characterization of Calmodulin Antagonistic Drugs. Methods Enzymol. 1983; 102: 195–204
  • Alessi D.R., Cuenda A., Cohen P., Dudley D.T., Saltiel AR. PD 098059 is a Specific Inhibitor of the Activation of Mitogen-activated Protein Kinase Kinase in Vitro and in Vivo. J. Biol. Chem. 1995; 270: 27,489–27,494
  • Favata M.F., Horiuchi K.Y., Manos E.J., Daulerio A.J., Stradley D.A., Feeser W.S., Van Dyk D.E., Pitts W.J., Earl R.A., Hobbs F., Copeland R.A., Magolda R.L., Scherle P.A., Trzaskos J.M. Identification of a Novel Inhibitor of Mitogen-activated Protein Kinase Kinase. J. Biol. Chem. 1998; 273: 18,623–18,632
  • Badger A.M., Bradbeer J.N., Votta B., Lee J.C., Adams J.L., Griswold D.E. Pharmacological Profile of SB 203580, A Selective Inhibitor of Cytokine Suppressive Binding Protein/p38 Kinase, in Animal Models of Arthritis, Bone Resorption, Endotoxin Shock and Immune function. J. Pharmacol. Exp. Ther. 1996; 279: 1453–1461
  • Underwood D.C., Osborn R.R., Kotzer C.J., Adams J.L., Lee J.C., Webb E.F., Carpenter D.C., Bochnowicz S., Thomas H.C., Hay D.W., Griswold D.E. SB 239063, A Potent p38 MAP Kinase Inhibitor, Reduces Inflammatory Cytokine Production, Airways Eosinophil Infiltration, and Persistence. J. Pharmacol. Exp. Ther. 2000; 293: 281–288
  • Arcaro A., Wymann M.P. Wortmannin is a Potent Phosphatidylinositol 3-kinase Inhibitor: the Role of Phosphatidylinositol 3,4,5-trisphosphate in Neutrophil Responses. Biochem. J. 1993; 296: 297–301
  • Bracke M., Coffer P.J., Lammers J.W., Koenderman L. Analysis of Signal Transduction Pathways Regulating Cytokine-mediated Fc Receptor Activation on Human Eosinophils. J. Immunol. 1998; 161: 6768–6774
  • Barnes P.J., Karin M. Nuclear factor-kappaB: A Pivotal Transcription Factor in Chronic Inflammatory Diseases. N. Engl. J. Med. 1997; 336: 1066–1071
  • Barnes P.J., Adcock I.M. Transcription Factors and Asthma. Eur. Respir. J. 1998; 12: 221–234
  • LeVan T.D., Bloom J.W., Adams D.G., Hensel J.L., Halonen M. Platelet-activating Factor Induction of Activator Protein-1 Signaling in Bronchial Epithelial Cells. Mol. Pharmacol. 1998; 53: 135–140
  • Fiedler M.A., Wernke-Dollries K., Stark J.M. Inhibition of TNF-alpha-induced NF-kappaB Activation and IL-8 Release in A549 Cells with the Proteasome Inhibitor MG-132. Am. J. Respir. Cell Mol. Biol. 1998; 19: 259–268
  • Sallusto F., Mackay C.R., Lanzavecchia A. Selective Expression of the Eotaxin Receptor CCR3 by Human T Helper 2 Cells. Science 1997; 277: 2005–2007
  • Uguccioni M., Mackay C.R., Ochensberger B., Loetscher P., Rhis S., LaRosa G.J., Rao P., Ponath P.D., Baggiolini M., Dahinden C.A. High Expression of the Chemokine Receptor CCR3 in Human Blood Basophils. Role in Activation by Eotaxin, MCP-4, and Other Chemokines. J. Clin. Invest. 1997; 100: 1137–1143
  • Hochstetter R., Dobos G., Kimmig D., Dulkys Y., Kapp A., Elsner J. The CC Chemokine Receptor 3 CCR3 is Functionally Expressed on Eosinophils but not on Neutrophils. Eur. J. Immunol. 2000; 30: 2759–2764
  • Elsner J., Petering H., Kimmig D., Wells T.N., Proudfoot A.E., Kapp A. The CC Chemokine Receptor Antagonist Net-RANTES Inhibits Eosinophil Effector Functions. Int. Arch. Allergy Immunol. 1999; 118: 462–465
  • England B.P., Balasubramanian P., Uings I., Bethell S., Chen M.J., Schatz P.J., Yin Q., Chen Y.F., Whitehorn E.A., Tsavaler A., Martens C.L., Barrett R.W., McKinnon M. A Potent Dimeric Peptide Antagonist of Interleukin-5 that Binds Two Interleukin-5 Receptor Alpha Chains. Proc. Natl. Acad. Sci. 2000; 97: 6862–6867, USA
  • Leckie M.J., ten Brinke A., Khan J., Diamant Z., O'Connor B.J., Walls C.M., Mathur A.K., Cowley H.C., Chung K.F., Djukanovic R., Hansel T.T., Holgate S.T., Sterk P.J., Barnes P.J. Effects of an Interleukin-5 Blocking Monoclonal Antibody on Eosinophils, Airway Hyper-responsiveness, and the Late Asthmatic Response. Lancet 2000; 356: 2114–2116
  • Hart T.K., Cook R.M., Zia-Amirhosseini P., Minthorn E., Sellers T.S., Maleeff B.E., Eustis S., Schwartz L.W., Tsui P., Appelbaum E.R., Martin E.C., Bugelski P.J., Herzyk D.J. Preclinical Efficacy and Safety of Mepolizumab (SB-240563), a Humanized Monoclonal Antibody to IL-5, in Cynomolgus Monkeys. J. Allergy Clin. Immunol. 2001; 108: 250–257
  • Bochner B.S., Schleimer R.P. The Role of Adhesion Molecules in Human Eosinophil and Basophil Recruitment. J. Allergy Clin. Immunol. 1994; 94: 427–438
  • Kumano K., Nakao A., Nakajima H., Miike S., Kurasawa K., Saito Y., Iwamoto I. Blockade of JAK2 by Tyrphostin AG-490 Inhibits Antigen-induced Eosinophil Recruitment into the Mouse Airways. Biochem. Biophys. Res. Commun. 2000; 270: 209–214
  • Wegner C.D., Gundel R.H., Reilly P., Haynes N., Letts L.G., Rothlein R. Intercellular Adhesion Molecule-1 (ICAM-1) in the Pathogenesis of Asthma. Science 1990; 247: 456–459
  • Tohda Y., Kubo H., Nakajima S., Fukuoka M. Effect of Anti-ICAM-1 on Bronchial Response: Bronchoalveolar Lavage Fluid (BALF) and Ultrastructural Changes of Bronchial Epithelium in Guinea Pigs with Dual Phase Bronchial Response. Methods Find Exp. Clin. Pharmacol. 1999; 21: 541–547
  • Yates D.H. Role of Exhaled Nitric Oxide in Asthma. Immunol. Cell Biol. 2001; 79: 178–190
  • Koarai A., Ichinose M., Sugiura H., Yamagata S., Hattori T., Shirato K. Allergic Airway Hyperresponsiveness and Eosinophil Infiltration is Reduced by a Selective iNOS Inhibitor, 1400W, in mice. Pulm. Pharmacol. Ther. 2000; 13: 267–275
  • Floyd H., Ni J., Cornish A.L., Zeng Z., Liu D., Carter K.C., Steel J., Crocker P.R. Siglec-8. A Novel Eosinophil-specific Member of the Immunoglobulin Superfamily. J. Biol. Chem. 2000; 275: 861–866
  • Kikly K.K., Bochner B.S., Freeman S.D., Tan K.B., Gallagher K.T., D'alessio K.J., Holmes S.D., Abrahamson J.A., Erickson-Miller C.L., Murdock P.R., Tachimoto H., Schleimer R.P., White J.R. Identification of SAF-2, a Novel Siglec Expressed on Eosinophils, Mast Cells, and Basophils. J. Allergy Clin. Immunol. 2000; 105: 1093–1100
  • Brenner V., Lindauer K., Parkar A., Fordham J., Hayes I., Stow M., Gama R., Pollock K., Jupp R. Analysis of Cellular Adhesion by Microarray Expression Profiling. J. Immunol. Methods 2001; 250: 15–28
  • Itoh K., Okubo K., Utiyama H., Hirano T., Yoshii J., Matsubara K. Expression Profile of Active Genes in Granulocytes. Blood 1998; 92: 1432–1441
  • Rothenberg M.E. Eosinophilia. N. Engl. J. Med. 1998; 338: 1592–1600
  • Simon H.U., Yousefi S., Schranz C., Schapowal A., Bachert C., Blaser K. Direct Demonstration of Delayed Eosinophil Apoptosis as a Mechanism Causing Tissue Eosinophilia. J. Immunol. 1997; 158: 3902–3908
  • Mehta H., Busse W.W. Eosinophil as a Therapeutic Target in Allergic Disease. Compr. Ther. 1994; 20: 651–657
  • Ward I., Dransfield I., Chilvers E.R., Haslett I., Rossi A.G. Pharmacological Manipulation of Granulocyte Apoptosis: Potential Therapeutic Targets. Trends Pharmacol. Sci. 1999; 20: 503–509
  • So H.S., Park R.K., Kim M.S., Lee S.R., Jung B.H., Chung S.Y., Jun C.D., Chung H.T. Nitric Oxide Inhibits c-Jun N-terminal Kinase 2 (JNK2) via S-nitrosylation. Biochem. Biophys. Res. Commun. 1998; 247: 809–813
  • Tsuyuki S., Bertrand C., Erard F., Trifilieff A., Tsuyuki J., Wesp M., Anderson G.P., Coyle A.J. Activation of the Fas Receptor on Lung Eosinophils Leads to Apoptosis and the Resolution of Eosinophilic Inflammation of the Airways. J. Clin. Invest. 1995; 96: 2924–2931
  • Cousin J.M., Haslett C., Rossi A.G. Regulation of Granulocyte Apoptosis by PKC Inhibition and Elevation of [Ca2+]i. Biochem. Soc. Trans. 1997; 25: 243S
  • Ohta K., Yamashita N. Apoptosis of Eosinophils and Lymphocytes in Allergic Inflammation. J. Allergy Clin. Immunol. 1999; 104: 14–21
  • Ward C., Dransfield I., Chilvers E.R., Haslett C., Rossi A.G. Pharmacological Manipulation of Granulocyte Apoptosis: Potential Therapeutic Targets. TIPS 1999; 20: 503–509

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.