89
Views
35
CrossRef citations to date
0
Altmetric
Research Article

RADIOPROTECTIVE EFFICACY AND ACUTE TOXICITY OF 5-ANDROSTENEDIOL AFTER SUBCUTANEOUS OR ORAL ADMINISTRATION IN MICE

, , , , &
Pages 595-626 | Published online: 12 Feb 2002

REFERENCES

  • Davison B., Large D.M., Anderson D.C., Robertson W.R. Basal Steroid Production by the Zona Reticularis of the Guinea-Pig Adrenal Cortex. J. Steroid Biochem. 1983; 18: 285–290
  • Loria R.M., Inge T.H., Cook S.S., Szakal A.K., Regelson W. Protection Against Acute Lethal Viral Infections with the Native Steroid Dehydroepiandrosterone (DHEA). J. Med. Virol. 1988; 26: 301–314
  • Ben-Nathan D., Lachmi B., Lustig S., Feuerstein G. Protection by Dehydroepiandrosterone in Mice Infected with Viral Encephalitis. Arch. Virol. 1991; 120: 263–271
  • Loria R.M., Padgett D.A. Mobilization of Cutaneous Immunity for Systemic Protection Against Infections. Ann. N. Y. Acad. Sci. 1992; 650: 363–366
  • Loria R.M., Padgett D.A. Androstenediol Regulates Systemic Resistance Against Lethal Infections in Mice. Arch. Virol. 1992; 127: 103–115
  • Rasmussen K.R., Healey M.C. Dehydroepiandrosterone-Induced Reduction of Cryptosporidium parvum Infections in Aged Syrian Golden Hamsters. J. Parasitol. 1992; 78: 554–557
  • Rasmussen K.R., Martin E.G., Healey M.C. Effects of Dehydroepiandrosterone in Immunosuppressed Rats Infected with Cryptosporidium parvum. J. Parasitol. 1993; 79: 364–370
  • Araneo B., Daynes R. Dehydroepiandrosterone Functions as More than an Antiglucocorticoid in Preserving Immunocompetence After Thermal Injury. Endocrinology 1995; 136: 393–401
  • Padgett D.A., Sheridan J.A., Loria R.M. Steroid Hormone Regulation of a Polyclonal TH2 Immune Response. Ann. N. Y. Acad. Sci. 1995; 774: 323–325
  • Gianotti L., Alexander J.W., Fukushima R., Pyles T. Steroid Therapy can Modulate Gut Barrier Function, Host Defense, and Survival in Thermally Injured Mice. J. Surg. Res. 1996; 62: 53–58
  • Padgett D.A., Loria R.M., Sheridan J.F. Endocrine Regulation of the Immune Response to Influenza Virus Infection with a Metabolite of DHEA-Androstenediol. J. Neuroimmunol. 1997; 78: 203–211
  • Suitters A.J., Shaw S., Wales M.R., Porter J.P., Leonard J., Woodger R., Brand H., Bodmer M., Foulkes R. Immune Enhancing Effects of Dehydroepiandrosterone and Dehydroepiandrosterone Sulphate and the Role of Steroid Sulphatase. Immunology 1997; 91: 314–321
  • Daigle J., Carr D.J. Androstenediol Antagonizes Herpes Simplex Virus Type 1-Induced Encephalitis through the Augmentation of Type I IFN Production. J. Immunol. 1998; 160: 3060–3066
  • Carr D.J. Increased Levels of IFN-Gamma in the Trigeminal Ganglion Correlate with Protection Against HSV-1-Induced Encephalitis Following Subcutaneous Administration with Androstenediol. J. Neuroimmunol. 1998; 89: 160–167
  • Whitnall M.H., Elliott T.B., Harding R.A., Inal C.E., Landauer M.R., Wilhelmsen C.L., McKinney L., Miner V.L., Jackson W.E., Loria R.M., Ledney G.D., Seed T.M. Androstenediol Stimulates Myelopoiesis and Enhances Resistance to Infection in Gamma-Irradiated Mice. Int. J. Immunopharmacol. 2000; 22: 1–14
  • Whitnall M.H., Inal C.E., Jackson W.E., Miner V.L., Villa V., Seed T.M. In vivo Radioprotection by 5-Androstenediol: Stimulation of the Innate Immune System. Radiat. Res. 2001; 156: 283–293
  • Whitnall M.H., Elliott T.B., Landauer M.R., Jackson W.E., Wilhelmsen C.L., McKinney L., Kumar K.S., Srinivasan V., Ledney G.D., Seed T.M. In vivo Protection against Gamma-Irradiation with 5-Androstenediol. Exp. Biol. Med. (Maywood) 2001; 226: 625–627
  • Neta R., Oppenheim J.J., Douches S.D. Interdependence of the Radioprotective Effects of Human Recombinant Interleukin 1α, Tumor Necrosis Factor α, Granulocyte Colony-Stimulating Factor, and Murine Recombinant Granulocyte-Macrophage Colony-Stimulating Factor. J. Immunology 1988; 140: 108–111
  • Waddick K.G., Song C.W., Souza L., Uckun F.M. Comparative Analysis of the In vivo Radioprotective Effects of Recombinant Granulocyte Colony-Stimulating Factor (G-CSF), Recombinant Granulocyte-Macrophage CSF, and their Combination. Blood 1991; 77: 2364–2371
  • Advances in the Treatment of Radiation Injuries, T.J. MacVittie, J.F. Weiss, D. Browne. Pergamon/Elsevier Science Inc., Tarrytown, NY 1996
  • Kumar K.S., Srinivasan V., Palazzolo D., Kendrick J.M., Clark E.P. Synergistic Protection of Irradiated Mice by a Combination of Iloprost and Misoprostol. Eicosanoids and Other Bioactive Lipids in Cancer, Inflammation, and Radiation Injury 2, K.V. Honn, S Nigam, L.J. Marnett. Plenum Press, New York 1997; 831–839
  • Peterson V.M., Adamovicz J.J., Elliott T.B., Moore M.M., Madonna G.S., Jackson W.E. III, Ledney G.D., Gause W.C. Gene expression of hematoregulatory cytokines is elevated endogenously after sublethal gamma irradiation and is differentially enhanced by therapeutic administration of biologic response modifiers. J. Immunol. 1994; 153: 2321–2330
  • Institute of Laboratory Animal Resources - Commission on Life Sciences - National Research Council. Guide for the Care and Use of Laboratory Animals. National Academy Press, Washington, DC 1996
  • Radiation Toxicology: Bone Marrow and Leukaemia, J.H. Hendry, B.I. Lord. Taylor & Francis Inc., London 1995
  • Myska, J.C.; Adams, T.L.; Bhatt, R.C.; Broom, J.G.; Pitcher, C.D.; Sharpnack, F.M., II; St. John, T.J.; Torres, B.A.; Vavrina, G.; Gerstenberg, H.M. Arrays for Use at the Cobalt Irradiation Facility, AFRRI Technical Report 97-2; Armed Forces Radiobiology Research Institute: Bethesda, MD, 1997
  • A Protocol for the Determination of Absorbed Dose from High-Energy Photon and Electron Beams. Med. Phys. 1983; 10: 741–771
  • Hammer J.G., Harris H.A., Komm B.S., Goodwin T., Goldberg K., Van Winkle T. Comparison of Gross and Histologic Effects of Six Vehicles for Subcutaneous Injection of Hydrophobic Steroid Mimetic Compounds in Rats (Abstract). Contemp. Top. Lab. Anim. Sci. 1996; 35: 72
  • Bartsch W., Sponer G., Dietmann K., Fuchs G. Acute Toxicity of Various Solvents in the Mouse and Rat. Arzneimittelforschung 1976; 26: 1581–1583
  • Fliedner T.M., Nothdurft W., Heit H. Biological Factors Affecting the Occurrence of Radiation Syndromes. Response of Different Species to Total Body Irradiation, J.J. Broerse. Martinus Nijhoff Publishers, Boston 1984; 209–219
  • Hendry J.H., Feng-Tong Y. Response of Bone Marrow to Low Let Irradiation. Radiation Toxicology; Bone Marrow and Leukaemia, J.H. Hendry, B.I. Lord. Taylor & Francis, London 1995; 91–116
  • Mauch P., Constine L., Greenberger J., Knospe W., Sullivan J., Liesveld J.L., Deeg H.J. Hematopoietic Stem Cell Compartment: Acute and Late Effects of Radiation Therapy and Chemotherapy. Int. J. Radiat. Oncol. Biol. Phys. 1995; 31: 1319–1339
  • Weiss J.F. Pharmacologic Approaches to Protection against Radiation-Induced Lethality and other Damage. Environ. Health Perspect. 1997; 105 Suppl 6: 1473–1478
  • Danenberg H.D., Alpert G., Lustig S., Ben-Nathan D. Dehydroepiandrosterone Protects Mice from Endotoxin Toxicity and Reduces Tumor Necrosis Factor Production. Antimicrob. Agents Chemother. 1992; 36: 2275–2279
  • Araghi-Niknam M., Zhang Z., Jiang S., Call O., Eskelson C.D., Watson R.R. Cytokine Dysregulation and Increased Oxidation is Prevented by Dehydroepiandrosterone in Mice Infected with Murine Leukemia Retrovirus. Proc. Soc. Exp. Biol. Med. 1997; 216: 386–391
  • Hernandez-Pando R., De La Luz Streber M., Orozco H., Arriaga K., Pavon L., Al-Nakhli S.A., Rook G.A. The Effects of Androstenediol and Dehydroepiandrosterone on the Course and Cytokine Profile of Tuberculosis in BALB/c Mice. Immunology 1998; 95: 234–241
  • Inserra P., Zhang Z., Ardestani S.K., Araghi-Niknam M., Liang B., Jiang S., Shaw D., Molitor M., Elliott K., Watson R.R. Modulation of Cytokine Production by Dehydroepiandrosterone (DHEA) Plus Melatonin (MLT) Supplementation of Old Mice. Proc. Soc. Exp. Biol. Med. 1998; 218: 76–82
  • Kimura M., Tanaka S.-I., Yamada Y., Kiuchi Y., Yamakawa T., Sekihara H. Dehydroepiandrosterone Decreases Serum Tumor Necrosis Factor-α and Restores Insulin Sensitivity: Independent Effect from Secondary Weight Reduction in Genetically Obese Zucker Fatty Rats. Endocrinology 1998; 139: 3249–3253
  • Moynihan J.A., Callahan T.A., Kelley S.P., Campbell L.M. Adrenal Hormone Modulation of Type 1 and Type 2 Cytokine Production by Spleen Cells: Dexamethasone and Dehydroepiandrosterone Suppress Interleukin-2, Interleukin-4, and Interferon-Gamma Production In vitro. Cell. Immunol. 1998; 184: 58–64
  • Padgett D.A., Loria R.M. Endocrine Regulation of Murine Macrophage Function: Effects of Dehydroepiandrosterone, Androstenediol, and Androstenetriol. J. Neuroimmunol. 1998; 84: 61–68
  • MacVittie T.J., Farese A.M. Experimental Approaches to Treatment of Radiation-Induced Hemopoietic Injury. In Radiation Toxicology: Bone Marrow and Leukaemia, J.H. Hendry, B.I. Lord. Taylor and Francis, London 1995; 141–194
  • Patchen M.L. Single and Combination Cytokine Therapies for the Treatment of Radiation-Induced Hemopoietic Injury. Adv. Biosci. 1996; 94: 21–36
  • Neta R. Modulation of Radiation Damage by Cytokines. Stem Cells Dayt. 1997; 15 Suppl. 2: 87–94
  • Loria R.M., Conrad D.H., Huff T., Carter H., Ben-Nathan D. Androstenetriol and Androstenediol Protection Against Lethal Radiation and Restoration of Immunity After Radiation Injury. Ann. N. Y. Acad. Sci. 2000; 917: 860–867
  • Risdon G., Kumar V., Bennett M. Differential Effects of Dehydroepiandrosterone on Murine Lymphopoiesis and Myelopoiesis. Exp. Hematol. 1991; 19: 128–131
  • Risdon G., Moore T.A., Kumar V., Bennett M. Inhibition of Murine Natural Killer Cell Differentiation by Dehydroepiandrosterone. Blood 1991; 78: 2387–2391
  • Yen S.S.C., Morales A.J., Khorram O. Replacement of DHEA in Aging Men and Women Potential Remedial Effects. Ann. N. Y. Acad. Sci. 1995; 774: 128–142
  • Kramer J.W. Clinical Enzymology. In Clinical Biochemistry of Domestic Animals, J.J. Kaneko. 4th Edition Academic Press, San Diego 1989; 338–363
  • Schwartz A.G. Inhibition of Spontaneous Breast Cancer Formation in Female C3H(Avy/a) Mice by Long-Term Treatment with Dehydroepiandrosterone. Cancer Res. 1979; 39: 1129–1132
  • Shepherd A., Cleary M.P. Metabolic Alterations After Dehydroepiandrosterone Treatment in Zucker Rats. Am. J. Physiol. 1984; 246: E123–128
  • Ottosson M., Vikman-Adolfsson K., Enerback S., Olivecrona G., Bjorntorp P. The Effects of Cortisol on the Regulation of Lipoprotein Lipase Activity in Human Adipose Tissue. J. Clin. Endocrinol. Metab. 1994; 79: 820–825
  • McCarty M.F. Modulation of Adipocyte Lipoprotein Lipase Expression as a Strategy for Preventing or Treating Visceral Obesity. Med. Hypotheses 2001; 57: 192–200
  • Regelson W., Kalimi M. Dehydroepiandrosterone (DHEA)– the Cell Proliferation Multifunctional Steroid. II. Effects on the CNS, Cell Proliferation, Metabolic and Vascular, Clinical and Other Effects. Mechanism of Action?. N. Y. Acad. Sci. 1994; 719: 564–575
  • Feingold K.R., Hardardottir I., Grunfeld C. Beneficial Effects of Cytokine Induced Hyperlipidemia. Z. Ernahrungswiss 1998; 37 Suppl 1: 66–74
  • Ward K.M., Cockayne S. Enzymology. Clinical Chemistry Concepts and Applications, S.C. Anderson, W.B. Saunders. W.B. Saunders, Philadelphia 1993; 238–279
  • Majumdar A.P. Effects of Hydrocortisone and Pentagastrin on the Activity of Intestinal Disaccharidases and Alkaline Phosphatase in Weanling Rats. Scan. J. Gastroenterol. 1981; 16: 177–182
  • Silbermann M., Toister Z., Lewinson D. Glucocorticoid-Induced Changes in the Activity of Cartilage Alkaline Phosphatase. Metab. Bone Dis. Relat. Res. 1981; 3: 67–75
  • Cornelius C.E. Liver Function. In Clinical Biochemistry of Domestic Animals, J.J. Kaneko. 4th Edition, Academic Press, San Diego 1989; 364–397
  • De Matteis F., Dawson S.J., Boobis A.R., Comoglio A. Inducible Bilirubin-Degrading System of Rat Liver Microsomes: Role of Cytochrome P450IA1. Mol. Pharmacol. 1991; 40: 686–691
  • Yen T.T., Allan J.A., Pearson D.V., Acton J.M., Greenberg M.M. Prevention of Obesity in Avy/A Mice by Dehydroepiandrosterone. Lipids 1977; 12: 409–413
  • Schwartz A.G., Hard G.C., Pashko L.L., Abou-Gharbia M., Swern D. Dehydroepiandrosterone: an Anti-obesity and Anti-carcinogenic Agent. Nutr. Cancer 1981; 3: 46–53
  • Cleary M.P., Seidenstat R., Tannen R.H., Schwartz A.G. The Effect of Dehydroepiandrosterone on Adipose Tissue Cellularity in Mice. Proc. Soc. Exp. Biol. Med. 1982; 171: 276–284
  • Lea-Currie Y.R., Wu S.M., McIntosh M.K. Effects of Acute Administration of Dehydroepiandrosteron-Sulfate on Adipose Tissue Mass and Cellularity in Male Rats. Int. J. Obes. 1997; 21: 147–154
  • Mohan P.F., Cleary M.P. Effect of Short-Term DHEA Administration on Liver Metabolism of Lean and Obese Rats. Am. J. Physiol. 1988; 255: E1-8.
  • McIntosh M.K., Berdanier C.D. Antiobesity Effects of Dehydroepiandrosterone are Mediated by Futile Substrate Cycling in Hepatocytes of BHE/cdb Rats. J. Nutr. 1991; 121: 2037–2043
  • Lea-Currie Y.R., Wen P., McIntosh M.K. Dehydroepiandrosterone reduces Proliferation and Differentiation of 3T3- L1 Preadipocytes. Biochem. Biophys. Res. Commun. 1998; 248: 497–504
  • Leighton B., Tagliaferro A.R., Newsholme E.A. The Effect of Dehydroepiandrosterone Acetate on Liver Peroxisomal Enzyme Activities of Male and Female Rats. J. Nutr. 1987; 117: 1287–1290
  • Sakuma M., Yamada J., Suga T. Induction of Peroxisomal Beta-Oxidation by Structural Analogues of Dehydroepiandrosterone in Cultured Rat Hepatocytes: Structure-Activity Relationships. Biochim. Biophys. Acta 1993; 1169: 66–72
  • Prough R.A., Webb S.J., Wu H.Q., Lapenson D.P., Waxman D.J. Induction of Microsomal and Peroxisomal Enzymes by Dehydroepiandrosterone and its Reduced Metabolite in Rats. Cancer Res. 1994; 54: 2878–2886
  • Peters J.M., Zhou Y.C., Ram P.A., Lee S.S., Gonzalez F.J., Waxman D.J. Peroxisome Proliferator–Activated Receptor Alpha required for Gene Induction by Dehydroepiandrosterone-3 Beta-Sulfate. Molec. Pharmacol. 1996; 50: 67–74

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.