45
Views
16
CrossRef citations to date
0
Altmetric
Research Article

Natural Killer Cell Activity, Lymphocyte Proliferation, and Cytokine Profile in Tumor‐Bearing Mice Treated with MAPA, a Magnesium Aggregated Polymer from Aspergillus oryzae

, & , Ph.D.
Pages 305-319 | Published online: 09 Feb 2003

References

  • Chattopadhyay U., Bhattacharyya S., Chakrabarty N. G. Tumor associated macrophage mediated lysis of autologous tumor cells. Neoplasma 1986; 33: 157
  • Nelson D. S., Nelson M. Evasion of host defenses by tumor. Immunol. Cell Biol. 1987; 65: 287
  • Parhar R. S., Lala P. K. Changes in the host natural killer cell population in mice during tumor development. 1. Kinetics and in vivo significance. Cell. Immunol. 1985; 93: 250
  • Parhar R. S., Lala P. K. Prostaglandin E2‐mediated inactivation of various killer lineage cells by tumor‐bearing host macrophages. J. Leukocyte Biol. 1988; 44: 185
  • Lopez D. M., Lopez‐Cepero M., Watson G. A., Ganju A., Sotomayor E. M., Fu Y‐X. Modulation of the immune system by mammary tumor‐derived factors. Cancer Invest. 1991; 9: 643
  • Arteaga C. L., Hurd S. D., Winnier A. R., Johnson M. D., Fendly B. M., Forbes J. T. Anti‐transforming growth factor (TGF)‐β antibodies inhibit breast cancer cell tumorigenicity and increase mouse spleen natural killer cell activity. Implications for a possible role of tumor cell/host TGF‐β interactions in human breast cancer progression. J. Clin. Invest. 1993; 92: 2569
  • Gosh P., Komschlies K. L., Cippitelli M., Longo D. L., Subleski J., Ye J., Sica A., Young H. A., Wiltrout R. H., Ochoa A. C. Loss of T‐helper 1 populations in spleen of mice during progressive tumor growth. J. Natl. Cancer Inst. 1995; 87: 1478
  • Handel‐Fernandez M. E., Cheng X., Herbert L. M., Lopez D. M. Down‐regulation of IL‐12, not a shift from a T helper‐1 to a T helper‐2 phenotype, is responsible for impaired IFN‐γ production in mammary tumor‐bearing mice. J. Immunol. 1997; 158: 280
  • Huang M., Sharma S., Mao J. T., Dubinett S. M. Non‐small cell lung cancer‐derived soluble mediators and prostaglandin E2 enhanced peripheral blood lymphocyte IL‐10 transcription and protein production. J. Immunol. 1995; 157: 5512
  • Ruiz de Morales J., Vélez D., Subiza J. L. Ehrlich tumor stimulates extramedullar hematopoiesis in mice without secreting identifiable colony‐stimulating factors and without engagement of host T cells. Exp. Hematol. 1999; 27: 1757
  • Segura J. A., Barbero L. G., Márquez J. Early tumor effect on splenic Th lymphocytes in mice. FEBS Lett. 1997; 414: 1
  • Subiza J. L., Viñuela J. E., Rodriguez R., Gil J., Figueredo M. A., De la Concha E. G. Development of splenic natural suppressor (NS) cells in Ehrlich tumor‐bearing mice. Int. J. Cancer 1989; 44: 307
  • Parhar R. S., Lala P. K. Changes in the host natural killer cell population in mice during tumor development. 2. The mechanism of suppression of NK activity. Cell. Immunol. 1985; 93: 265
  • Chouaib S., Welte W., Martelsmann R., Dupont B. Prostaglandin E2 acts at two distinct pathways of T lymphocyte activation: inhibition of interleukin‐2 production and down regulation of transferrin receptor expression. J. Immunol. 1985; 135: 1172
  • Segura J. A., Barbero L. G., Márquez J. Ehrlich ascites tumor unbalances splenic cell populations and reduces responsiveness of T cells to Staphylococcus aureus enterotoxin B stimulation. Immunol. Lett. 2000; 74: 111
  • Durán N., Nunes O. D.S. Characterization of an aggregated polymer from Penicillium sp. (PB‐73 strain). Brazil. J. Med. Biol. Res. 1990; 23: 1289
  • Durán N., Haun M., Pereira‐da‐Silva L., Pisani R., Pisani F. J.C., Souza‐Brito A. R.M., Mazetto M. N., Nunes O. D.S. Comparison of the antiviral activity and toxicity of the protein magnesium ammonium phospholinoleate anhydride polymer with other antiviral drugs. Brazil. J. Med. Biol. Res. 1990; 23: 1303
  • Durán N., Souza‐Brito A. R.M., Haun M., De Oliveira J. A., Hetem S., Vargas L., Saavedra I., Justo G. Z. SB‐73‐immunostimulant. Drugs Fut. 1993; 18: 327
  • Durán N., Justo G. Z., Souza‐Brito A. R.M., Rettori O., Vieira‐Matos A. N. SB‐73/MAPA: Protein magnesium ammonium phospholinoleate‐palmitoleate anhydride. Drugs Fut. 1997; 22: 454
  • Melo A., Justo G. Z., Queiroz M. L.S. Stimulation of myelopoiesis in Listeria monocytogenes‐infected mice by an aggregated polymer isolated from Aspergillus oryzae. Human Exp. Toxicol. 2001; 20: 38
  • Durán N., Justo G. Z., Queiroz M. L.S., Vieira‐Matos A. N., Rettori O. New perspectives in immunomodulatory therapy of tumor induced by an extracellular aggregated polymer isolated from Aspergillus oryzae. Int. J. Mol. Med. 1999; 4: S49
  • Justo G. Z., Durán N., Queiroz M. L.S. Myelopoietic response in tumor‐bearing mice by an aggregated polymer isolated from Aspergillus oryzae. Eur. J. Pharmacol. 2000; 388: 219
  • Olfert E. D., Cross B. M., McWilliam A. A. Guide to the Care and Use of Experimental Animals. Canadian Council on Animal Care, Ottawa 1993; 1: 1
  • Viñuela J. E., Rodríguez R., Gil J., Coll J., De la Concha E. G., Subiza J. L. Antigen shedding vs. development of natural suppressor cells as mechanism of tumor escape in mice bearing Ehrlich tumor. Int. J. Cancer 1991; 47: 86
  • Kim S., Iizuka K., Aguila H. L., Weissman I. L., Yokoyama W. M. In vivo natural killer cell activities revealed by natural killer cell‐deficient mice. Proc. Natl. Acad. Sci. USA 2000; 97: 2731
  • Trinchieri G. Biology of natural killer cells. Adv. Immunol. 1989; 47: 187
  • Scott P., Trinchieri G. The role of natural killer cells in host‐parasite interactions. Curr. Opin. Immunol. 1995; 7: 34
  • Djeu J. Y., Heinbaugh J. A., Holden H. T., Herberman R. B. Augmentation of mouse natural killer cell activity by interferon and interferon inducers. J. Immunol. 1979; 122: 175
  • Kuribayashi K., Gillis S., Kern D. E., Henney C. S. Murine NK cell cultures: effects of interleukin‐2 and interferon on cell growth and cytotoxic reactivity. J. Immunol. 1981; 126: 2321
  • Malkovsky M., Loveland M., North M., Asherson G., Gao L., Ward P., Fiers W. Recombinant interleukin‐2 directly augments the cytotoxicity of human monocytes. Nature 1987; 325: 262
  • Pace J. L., Russel S. W., Torres B. A., Johnson H. M., Gray P. W. Recombinant mouse γ interferon induces the priming step in macrophage activation for tumor cell killing. J. Immunol. 1983; 130: 2011
  • Yamamoto N., Zou J. P., Li X. F., Takenaka H., Noda S., Fujii T., Ono S., Kobayashi Y., Mukaida N., Matsushima K., Fujiwara H., Hamaoka T. Regulatory mechanisms for production of IFN‐γ and TNF by antitumor T‐cells or macrophages in the tumor‐bearing state. J. Immunol. 1995; 154: 2281
  • Hefeneider S. H., Conlon P. J., Henney C. S., Gillis S. In vivo interleukin 2 administration augments the generation of alloreactive cytolytic T lymphocytes and resident natural killer cells. J. Immunol. 1983; 130: 222
  • Henney C. S., Kuribayashi K., Kern D. E., Gillis S. Interleukin‐2 augments natural killer cell activity. Nature 1981; 291: 335
  • Misawa E., Sakurai T., Yamada M., Hayasawa H., Motoyoshi K. Effects of macrophage colony‐stimulating factor and interleukin‐2 administration on NK1.1+ cells in mice. Int. J. Immunopharmacol. 2000; 22: 967
  • Sayers T. J., Wiltrout R. H. Differing roles for interleukin 2 and interferon γ in the augmentation of mouse peritoneal natural killer cell activity in vivo. Natural Killer Cells and Host Defenses, E. W. Ades, C. Lopez. S. Karger, Basel, AG 1989; 88
  • Young H. A., Ortaldo J. R. One‐signal requirement for interferon‐γ production by human large granular lymphocytes. J. Immunol. 1987; 139: 724
  • Allavena P., Scala G., Djeu J. Y., Procopio A. D., Oppenheim J. S., Herberman R. B., Ortaldo J. R. Production of multiple cytokines by clones of human large granular lymphocytes. Cancer Immunol. Immunother. 1985; 19: 121
  • Svedersky L. P., Nedwin G. E., Goeddel D. V., Palladino M. A., Jr. Interferon‐γ enhances induction of lymphotoxin in recombinant interleukin 2‐stimulated peripheral blood mononuclear cells. J. Immunol. 1985; 134: 1604
  • Ehrhardt R. O., Ludviksson B. R., Gray B., Neurath M., Strober W. Induction and prevention of chronic inflammation in IL‐2‐deficient mice. J. Immunol. 1997; 158: 566
  • Taniguchi T., Matsui H., Fujita T., Takaoka C., Kashima N., Yoshimoto R., Hamuro J. Structure and expression of cloned cDNA for human interleukin‐2. Nature 1983; 302: 305
  • Licastro F., Davis L. J., Morini M. C. Lectins and superantigens: membrane interactions of these compounds with T lymphocytes affect immune responses. Int. J. Biochem. 1993; 25: 845
  • Elexpuru A., Martin‐Nieto J., Jimenez A., Gomez C., Villalobo A. Ehrlich ascites tumor cells produce a transforming growth factor‐beta (TGFβ)‐like activity but lack receptors with TGFβ‐binding capacity. Mol. Cell. Biochem. 1997; 170: 153
  • Stefanski H. E., Mathur A. Decreased expression and function of Vβ6+ and Vβ14+ T cells is associated with decreased Th1 cytokine production in mice with plasma cell tumors. Tumori 1996; 82: 22
  • Tada T., Ohzeki S., Utsumi K., Takiuchi H., Muramatsu M., Li X.‐F., Shimizu J., Fujiwara H., Hamaoka T. Transforming growth factor‐β‐induced inhibition of T cell function. Susceptibility difference in T cells of various phenotypes and functions and its relevance to immunosuppression in the tumor‐bearing state. J. Immunol. 1991; 146: 1077
  • Yssel H., De Wall Malefyt R., Roncarolo M., Abrams J. S., Lahesmaa R., Spits H., De Vries J. E. IL‐10 is produced by subsets of human CD4+ T cell clones and peripheral blood T cells. J. Immunol. 1992; 149: 2378
  • Howard M., O'Garra A. Biological properties of interleukin 10. Immunol. Today 1992; 13: 198
  • Mehrotra P. T., Donnelly R. P., Wong S., Kanegane H., Geremew A., Mostowski H. S., Furuke K., Siegel J. P., Bloom E. T. Production of IL‐10 by human natural killer cells stimulated with IL‐2 and/or IL‐12. J. Immunol. 1998; 160: 2637
  • Ding L., Shevach E. M. IL‐10 inhibits mitogen‐induced T cell proliferation by selectively inhibiting macrophage costimulatory function. J. Immunol. 1992; 148: 3133

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.