67
Views
12
CrossRef citations to date
0
Altmetric
Research Article

Interleukin‐1 and Tumor Necrosis Factor‐α Induce Collagenolysis and Bone Resorption by Regulation of Matrix Metalloproteinase‐2 in Mouse Calvarial Bone Cells

, , , , , , , , & show all
Pages 347-364 | Published online: 09 Feb 2003

References

  • Aubauch G. D., Marx S. J., Speigel A. M. Parathyroid hormone, calcitonin, and calciferols. Textbook of Endocrinology, 6th Ed., R. H. Williams. W. B. Saunders Co., Philadelphia 1981; 932–1031
  • Vaughan J. Bone metabolism and turn‐over. The Physiology of Bone, 3rd Ed. Clarendon Press, Oxford 1981; 139–172
  • Sato K., Kasono K., Fujii Y., Kawakami M., Tsushiam T., Shizume K. Tumor necrosis factor type alpha (cachetin) stimulates mouse osteoblast‐like cells (MC3T3‐E1) to produce macrophage‐colony stimulating activity and prostaglandin E2. Biochem. Biophys. Res. Comm. 1981; 145: 323–329
  • Harrison J. R., Lorenzo J. A., Kawaguchi H., Raisz L. G., Pilbeam C. C. Stimulation of prostaglandin E2 production by interleukin‐1α and transforming growth factor α in osteoblastic MC3T3‐E1 cells. J. Bone Miner. Res. 1994; 9: 817–823
  • Klein‐Nulend J., Pilbeam C. C., Harrison J. R., Fall P. M., Raisz L. G. Mechanism of regulation of prostaglandin production by parathyroid hormone, interleukin 1, and cortisol in cultured mouse parietal bones. Endocrinology 1991; 128: 2053–2510
  • Klein‐Nulend J., Pilbeam C. C., Raisz L. G. Effect of 1,25dihydroxyvitamin D3 on prostaglandin E2 production in cultured mouse parietal bones. J. Bone Miner. Res. 1991; 6: 1339–1344
  • McCarthy T. L., Cashinghino S., Mittanck D. W., Chank‐Hua J., Centrella M., Rotwein P. Promoter‐dependent and ‐independent activation of insulin‐like growth factor binding protein‐5 gene expression by prostaglandin E2 in primary rat osteoblasts. J. Biol. Chem. 1996; 271: 6666–6671
  • Akatsu T., Takahashi N., Udagawa N., Imamura K., Yamaguchi A., Sato K., Nagata N., Suda T. Role of prostaglandins in interleukin‐1‐induced bone resorption in mice in vitro. J. Bone Miner. Res. 1991; 6: 183–190
  • Kim C. H., Kang B. S., Lee T. K., Park W. H., Kim J. K., Park Y. G., Kim H. M., Lee Y. C. IL‐1β regulates cellular proliferarion, prostaglandin E2 synthesis, plasminogen activator activity, osteocalcin production, and bone resorptive activity of the mouse calvarial bone cells. Immunoparm. & Immunotoxicol. 2002; 32: 395–407
  • Meikle M. C., Bord S., Hembry R. M., Reynolds J. J. Rabbit calvarial osteoblasts in culture constitutively synthesize progelatinase‐A, and TIMP‐1 and TIMP‐2. Biochim. Biophys. Acta 1994; 1224: 99–102
  • Everts V., Delaisse J. M., Korper W., Niehof A., Vaes G., Beerts W. Degradation of collagen in the bone‐resorbing compartment underlying the osteoclast involves both cysteine–proteinases and matrix metalloproteinases. J. Cell Physiol. 1992; 150: 221–231
  • Meikle M. C., Bord S., Hembry R. M., Compston J., Croucher P. I., Reynolds J. J. Human osteoblasts in culture synthesize collagenase and other matrix metalloproteinases in response to osteotropic hormones and cytokines. J. Cell Sci. 1992; 103: 1093–1099
  • Onodera S., Nishihira J., Iwabuchi K., Koyama Y., Yoshida K., Tanaka S., Minami A. Macrophage migration inhibitory factor up‐regulates matrix metalloproteinase‐9 and ‐13 in rat osteoblasts Relecance to intracellular signaling pathways. J. Biol. Chem. 2002; 277: 7865–7874
  • Birkedal‐Hansen H., Moore W. G.I., Bodden M. K., Windsor L. J., Birkedal‐Hansen B., DeCarlo A., Engler J. A. Matrix metalloproteinases: a review. Crit. Rev. Oral Biol. Med. 1993; 4: 197–250
  • Mauviel A. Cytokine regulation of metalloproteinase gene expression. J. Cell. Biochem. 1993; 53: 288–295
  • Kuroki Y., Shiozawa S., Sugimoto T., Fujita T. Constitutive expression of c‐fos gene inhibits type‐I collagen synthesis in transfected osteoblasts. Biochem. Biophys. Res. Comm. 1992; 182: 1389–1394
  • Lorenzo J. A., Pilbeam C. C., Kalinowski J. F., Hibbs M. S. Production of both 92‐ and 72‐kDa gelatinases by bone cells. Matrix 1992; 12: 282–290
  • Jimenez M. J.G., Balbin M., Alvarez J., Komori T., Bianco P., Holmbeck K., Birkedal‐Hansen H., Lopez J. M., Lopez‐Otin C. A regulatory cascade involving retinoic acid, Cbfa1, and matrix metalloproteinases is coupled to the development of a process of perichondrial invasion and osteogenic differentiation during bone formation. J. Cell Biol. 2001; 155: 1333–1344
  • Reponen P., Sahlberg C., Muhnaut C., Thesleff I., Tryggvason K. High expression of 92‐kDa type IV collagenase (gelatinase B) in the osteoclast lineage during mouse development. J. Biol. Chem. 1994; 124: 1091–1102
  • Tezuka K., Nemoto K., Tezuka Y., Sato T., Ikeda Y., Kobori M., Kawashima H., Eguchi H., Hakeda Y., Kumegawa M. Identification of matrix metalloproteinase 9 in rabbit osteoclasts. J. Biol. Chem. 1994; 269: 15006–15009
  • Kusano K., Miyaura C., Inada M., Tamura T., Ito A., Nagase H., Kamoi K., Suda T. Regulation of matrix metalloproteinases (MMP‐2 and ‐9) by interleukin‐1 and TNF‐a in mouse calvaria: association of MMP induction with bone resorption. Endocrinology 1998; 139: 1338–1345
  • Hong H. T., Kim H. J., Kim D. W., Lee Y. C., Park Y. G., Kim H. M., Choo Y. K., Kim C. H. Inhibotory effect of a Korean traditional medicine, Honghwain–Jahage (water extracts of Carthamus tinctorius L. seed and Homminis placenta) on interleukin‐1‐mediated bone resorption. J. Ethnopharm. 2002; 79: 143–148
  • Chung T. W., Lee Y. C., Ko J. H., Kim J. G., Kim C. H. Enhanced expression of matrix metalloproteinase‐9 (MMP‐9) by hepatitis B virus (HBV) infection into liver cells. Arch. Biochem. Biophys. 2002; 15: 147–154
  • Kwang H. B., Kim D. M., Kim S. T., Kim T. H., Shin Y. C., Byun S. M. Importance of Leu‐5 and Pro‐6 in the inhibitory activity of the Serratia marcescens metalloprotease inhibitor (SmaPI). J. Biochem. Mol. Biol. 2001; 34: 109–113
  • Onoe Y., Miyaura C., Kaminakayashiki T., Nagai Y., Noguchi K., Chen Q. R., Seo H., Ohta H., Nozawa S., Kudo I., Suda T. IL‐13 and IL‐4 inhibit bone resorption by suppressing cyclooxygenase‐2‐dependent prostaglandin synthesis in osteoblasts. J. Immunol. 1996; 156: 758–764
  • Collier I. E., Wilhelm S. M., Eisen A. Z., Marmer B. L., Grant G. A., Seltzer J. L., Kronberger A., He C., Bauer E. A., Goldberg G. I. H‐ras oncogene‐transformed human bronchial epithelial cells (TBE‐1) secrete a single metalloprotease capable of degrading basement membrane collagen. J. Biol. Chem. 1988; 263: 6579–6587
  • Tanaka H., Hojo K., Yoshida H., Yoshioka T., Sugita K. Molecular cloning and expression of the mouse 105‐kDa gelatinase cDNA. Biochem. Biophys. Res. Commun. 1993; 190: 732–740
  • Lowry O. H., Rosenbrough N. J., Farr A. L., Randall R. J. Protein measurement with the Folin phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Dubois M., Gilles K. A., Hamilton J. K., Rebers P. A., Smith F. Colorimetric method for determination of sugars and related substances. Anal. Chem. 1956; 28: 350–356
  • Laemmli U. K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227: 680–685
  • Raiz L. G., Niemann I. Effect of phosphate, calcium and magnesium on bone resorption and hormonal responses in tissue culture. Endocrinology 1969; 85: 446–452
  • Wood D. M., Bayne E. K., Goldring M. B., Gowen M., Hamerman D., Humes J. L., Ihrie E. J., Lipsky P. E., Staruch M. J. The four biochemically distinct species of human interleukin 1 all exhibit similar biologic activities. J. Immunol. 1985; 134: 895–903
  • Dewhirst F. E., Ago J. M., Peros W. J., Stashenko P. Synergism between parathyoid hormone and interleukin 1 in stimulating bone resorption in organ culture. J. Bone Mineral Res. 1987; 2: 127–134
  • Kawaguchi H., Raisz L. G., Vosnesensky O. S., Alander C. B., Hakeda Y., Pilbeam C. C. Regulation of the two prostaglandin G/H synthases by parathyroid hormone, interleukin‐1, cortisol and prostaglandin E2 in cultured neonatal mouse calvariae. Endocrinology 1994; 135: 1157–1164
  • Okada Y., Naka K., Kawamura K., Matsumoto T., Nakanishi I., Fujimoto N., Sato H., Seiki M. Localization of matrix metalloproteinase 9 (92‐kilodalton gelatinase/type IV collagenase = gelatinase B) in osteoclasts: implications for bone resorption. Lab. Invest. 1995; 72: 311–322
  • Jimi E., Shuto T., Koga T. Macrophage colony‐stimulating factor and interleukin‐1 maintain the survival of osteoclast‐like cells. Endocrinology 1995; 136: 808–811
  • Kim H. H., Kim H. M., Kwack K. B., Kim S. W., Lee J. H. Osteoclast differentiation factor engages the PI 3‐kinase, p38, and ERK pathways for Avian osteoclast differentiation. J. Biochem. Mol. Biol. 2001; 34: 421–427

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.