671
Views
40
CrossRef citations to date
0
Altmetric
CLINICAL STUDY

Attenuation of Cyclosporine-Induced Renal Dysfunction by Catechin: Possible Antioxidant Mechanism

, &
Pages 691-707 | Published online: 07 Jul 2009

References

  • Borel J.F., Bauman G., Ghapman I., Donatsh P., Fhr A., Mueller E.A., Vigouret J.M. In-vivo pharmacological effect of cyclosporine analogues. Adv. Pharmacol. 1996; 35: 115–246
  • Schreiber S.L., Crabtree G.R. The mechanism of cyclosporine-A and FK-506. Immunol. Today 1992; 13: 136–142
  • Khan B.D. Cyclosporine. New. Engl. J. Med. 1989; 321: 1725–1738
  • Diederich D., Yang Z., Lusher T.F. Chronic cyclosporine therapy impairs endothelium dependent relaxation in the renal artery of the rat. J. Am. Soc. Nephrol. 1992; 2: 1291–1297
  • Marumo T., Nakaki T., Hishikawa K., Suzuki H., Kato R., Saruta T. Cyclosporine-A inhibits nitric oxide synthase induction in vascular smooth muscle cells. Hypertension 1995; 25: 764–768
  • Stephan D., Billing A., Krieger J.P., Grima M., Fabre M., Hofner M., Lmbs J.L., Barthelmcbs M. Endothelium-dependent relaxation in the isolated rat kidney: impairment by cyclosporine-A. J. Cardi. Pharmacol. 1995; 26: 859–868
  • Campistol J.M. Mechanism of nephrotoxicity. Transplantation 2000; 69: SS5–SS10
  • Tariq M., Morais C., Sobki S., Al Sulaiman M., Al Khader A. Effect of lithium on cyclosporine-induced nephrotoxicity in rats. Renal Failure 2000; 22: 545–560
  • Weir M.R., Klasen D.K., Shen S.Y. Acute effect of cyclosporine on renal function in healthy humans. Transplant Proc. 1989; 21: 915–917
  • Bennett W.M. Mechanism of acute and chronic nephrotoxicity from immunosuppressive drugs. Renal Failure 1996; 18: 453–460
  • Andoh T.F., Burdmann E.A., Fransechini N., Houghton D.C., Benett W.M. Comparison of acute rapamycin nephrotoxicity with cyclosporine and FK-506. Kidney Int. 1998; 50: 1110–1117
  • Wang C., Salahudeen A.K. Cyclosporine nephrotoxicity: attenuation by an antioxidant-inhibitor of lipid peroxidation in vitro and in vivo. Transplantation 1994; 58: 940–946
  • Sturrock N.D., Lang C.C., MacFarlane L.J., Dockrell M.E., Ryan M., Webb D.J., Struthers A.D. Serial changes in the blood pressure, renal function, endothelin and lipoprotein (A) during the first 9 days of cyclosporine therapy in males. J. Hypertens. 1995; 13: 667–673
  • Abassi Z.A., Pieruzzi F., Nakhout F., Keiser Hr. Effect of cyclosporine-A on the synthesis, excretion and metabolism of endothelin in the rat. Hypertension 1996; 27: 1140–1148
  • Wolf A., Clemann N., Frieauff W., Ryffel B., Cordier A. Role of reactive oxygen formation in the cyclosporine-A-mediated impairment of renal functions. Transplant Proc. 1994; 26: 2902–2907
  • Longoni B., Boschi E., Demontis G.C., Ratto G.M., Mosca F. Apoptosis and adaptive responses to oxidative stress in human endothelial cells exposed to cyclosporine-A correlate with BCL-2 expression levels. FASEB J. 2001; 15: 731–740
  • Knight J.A., Cheung A.K., Servilla K. Increase urinary excretion of lipid peroxidation levels in renal transplant patients. Ann. Clin. Lab. Sci. 1989; 19: 238–243
  • Ahmed S.S., Napoli K.L., Strobel H.W. Oxygen radical formation during cytochrome P450-catalyzed cyclosporine metabolism in heart and human liver microsomes at varying hydrogen ion concentrations. Mol. Cell Biochem. 1995; 15: 131–140
  • Diederich D., Skopec J., Diederich A., Dai F.X. Cyclosporine produces endothelial dysfunction by increased production of superoxide. Hypertension 1994; 23: 957–961
  • Moss N.G., Powell S.L., Falk S.L. Intravenous cyclosporine-A activates afferent and efferent renal nerves and causes sodium retention in innervated kidneys in rats. Proc. Natl. Acad. Sci. USA 1985; 82: 8222–8226
  • Lo Russo A., Passaquin A.C., Andre P., Skutella M., Ruegg U.T. Effect of cyclosporine-A and analogues on cytosolic calcium and vasoconstriction: passible lack of relationship to immunosuppressive activity. Br. J. Pharmacol. 1996; 118: 888–892
  • Cook N.C., Samman S. Flavonoids: chemistry, metabolism, cardio protective effects and dietary source. J. Nutritional Biochemistry 1996; 7: 66–77
  • Halliwell B., Gutterridge J.M.C. Free Radicals in Biology and Medicine, 3rd Ed. Oxford University Press, Oxford 1999; Vol. 1
  • Plumb W., Price K.R., Williamson G. Antioxidant properties of flavonol glycosides from green beans. Redox. Rep. 1999; 4: 123–127
  • Ishikawa T., Suzukawa M., Ito T., Yoshida H., Ayaori M., Nishiwaki M., Yonemura A., Hara Y., Nakamura H. Effect of tea flavonoid supplementation on the susceptibility of low-density lipoprotein to oxidative modification. American J. Of Clinical Nutrition 1997; 66: 261–266
  • Jankun J., Selman S.H., Swiercz R., Skrzypczak-Jankun E. Why drinking green tea could prevent cancer. Nature 1997; 387: 561
  • Yamanaka N., Oda O., Nagao S. Green tea catechins such as (−)-epicatechin and (−)-epigallocatechin accelerate Cu2+-induced low density lipoproteins oxidation in propagation phase. FEBS Letters 1997; 401: 230–234
  • Satyanarayana P.S.V., Singh D., Chopra K., Quercetin A. Bioflavonoid, protects against oxidative stress-related renal dysfunction by cyclosporine in rats. Methods Find Exp. Clin. Pharmacol. 2001; 24(4)175–181
  • Satyanarayana P.S.V., Chopra K. Oxidative stress-mediated renal dysfunction by cyclosporine-A in rats: attenuation by trimetazidine. Renal Failure 2002; 24(3)259–274
  • Naidu P.S., Singh A., Kulkarni S.K. Carvedilol attenuates neuroleptic-induced orofacial dyskinesia: possible antioxidant mechanisms. Br. J. Pharmacol. 2002; 136: 193–200
  • Wills E.D. Mechanism of lipid peroxide formation in animal tissues. Biochem. J. 1996; 99: 667–676
  • Ellman G.L. Tissue sulfhydryl group. Arch. Biochem. Biophys. 1959; 82: 70–77
  • Kono Y. Generation of superoxide radical during autooxidation of hydroxylamine and an assay for superoxide dismutase. Arch. Biochem. Biophy. 1978; 186: 189–195
  • Luck H. Catalase. Methods of Enzymatic Analysis, H.U. Bergmeyer. Academic Press, New York 1971; 885–893
  • Lowry O.H., Rosenbrough N.J., Farr A.L., Randall R.J. Protein measurement with the folin-phenol reagent. J. Biol. Chem. 1951; 193: 265–275
  • Andoh T.F., Bennett W.M. Chronic cyclosporine nephrotoxicity. Curr. Opin. Nephrol. Hypertens. 1996; 7: 260–270
  • Baliga R., Ueda N., Walker P.D., Shah S.V. Oxidative mechanism in toxic acute renal failure. Am. J. Kidney Dis. 1997; 29: 465–477
  • Haberland A., Hence W., Grune T., Siems W., Jung K., Schimke I. Differential response of oxygen radical metabolism in rat heart, liver and kidneyc to cyclosporine-A treatment. Inflamm. Res. 1997; 46: 452–454
  • Zhong Z., Arteel G.E., Cornor H.D., In M., Frankenberg M.V., Stachlewitz R.F., Raleigh J.A., Mason R.P. Cyclosporine-A increases hypoxia and free radicals production in rat kidneys: prevention by dietary glycine. Am. J. Physiology 1999; 275: F595–F604
  • Wang C., Salahudeen A.K. Lipid peroxidation accompanies cyclosporine nephrotoxicity: effect of vitamin E. Kidney Int. 1995; 47: 927–934
  • Clarke H., Ryan M.P. Cyclosporine A-induced alteration in magnesium homeostasis in rat. Life Sci. 1999; 64: 1295–1306
  • Ferguson C.J., Ruhland C., Parry-Jones D.J. Low-dose cyclosporine-A nephrotoxicity in the rat. Nephrol. Dial. Transplant. 1993; 8: 1258–1263
  • Zhong Z., Connor H.D., Yin M., Moss. N., Mason R.P., Bunzendahl H., Forman D.T., Thurman R.G. Dietary glycine and renal denervation prevents cyclosporine A-induced hydroxyl radical production in rat kidney. Mol. Pharmacol. 1998; 56: 455–463
  • Lanese D.M., Conger J.D. Effect of endothelin receptor antagonist on cyclosporine induced vasoconstriction in isolated rat renal arterioles. J. Clin. Investigation 1993; 91: 2144–2149
  • Lanese D.M., Falk S.A., Conger J.D. Sequential agonist activation and site-specific mediation of acute cyclosporine constriction in rat renal arterioles. Transplantation 1994; 58: 1371–1378
  • Baud L., Ardaillou R. Involvement of reactive oxygen species in kidney damage. Br. Med. Bull. 1993; 49: 621–629
  • Bomzon A., Holt S., Moore K. Bile acids, oxidative stress and renal function in bilary obstruction. Semin. Nephrol. 1997; 17: 549–562
  • Avdonin P.V., Cottet-Maire F., Afanasjeva G.V., Loktionova S.A., Lhote P., Ruegg U.T. Cyclosporine-A up-regulates angiotensin-II receptors and calcium responses in human vascular smooth muscle cells. Kidney Int. 1999; 55: 2407–2414
  • Murray B.M., Paller M.S., Ferris T.F. Effect of cyclosporine-A administration on renal hemodynamics in conscious rats. Kidney Int. 1985; 28: 767–774
  • Perico N., Benigni A., Zoja C., Delani F., Remuzzi G. Functional significance of exaggerated renal thromboxane A2 synthesis induced by cyclosporine-A. Am. J. Physiol. 1986; 251: F581–F587
  • Fogo A., Hellings S.E., Inagami T., Kon V. Endothelin receptor antagonism is protective in in vivo acute cyclosporine toxicity. Kidney Int. 1992; 42: 774–779
  • Benighi A., Chlabrando C., Piccinelli A., Perico N., Gavinelli M., Furei L., Patino O., Abbate M., Bertani T., Remuzzi G. Increased urinary excretion of thromboxane B2 and 2,3-dinor-Txb2 in cyclosporine-A nephrotoxicity. Kidney Int. 1988; 34: 164–174
  • Takahashi K., Nammour T.M., Fukunaga M., Ebert J., Murrow J.D., Robert L.J 2nd., Hoover R.L., Badr K.F. Glomerular actions of a free radical generated novel prostaglandin, 8-epiprostaglandin F2 A, in the rat: evidence for interaction with thromboxane A2 receptors. J. Clin. Invest. 1992; 90: 136–141
  • Inselmann G., Hannemann J., Baumann K. Cyclosporine-A induced lipid peroxidation and influence of glucose-6-phospahtase in rat hepatic and renal microsomes. Res. Commun. Chem. Pathol. Pharmacol. 1990; 68: 189–203
  • Freeman B.A., Crapho J.D. Biology of disease: free radicals and tissue injury. Lab. Invest. 1982; 47: 412–426
  • Thurman R.G., Zhong Z., Frankenberg M.V. Prevention of cyclosporine-induced nephrotoxicity with dietary glycine. Transplantation 1997; 63: 1661–1667
  • Krysztopik R.J., Benttley F.R., Spin D.A., Wilson M.A., Garrison R.N. Lazaroids prevent acute cyclosporine A-induced renal vasoconstriction. Transplantation 1997; 63: 1215–1220
  • Tariq M., Morais C., Sobki S., Al Sulaiman M., Al Khader A. N-acetylcysteine attenuates cyclosporine-induced nephrotoxicity in rats. Nephrol. Dial. Transplant. 1999; 14: 923–929
  • Kanji V.K., Wang C., Salahudeen A.K. Vitamin E suppresses cyclosporine A-induced increase in the urinary excretion of arachidonic acid metabolites including F2-isoprostanes in the rat model. Transplant Proc. 1999; 31: 1724–1728
  • Vijay Kumar K., Naidu M.U.R., Shifow A.A., Prayag A., Ratnakar K.S. Melatonin: an antioxidant protective cyclosporine-induced nephrotoxicity. Transplantation 1999; 7: 1065–1083
  • De-Whalley C., Rankin S.M., Houct J.R.S., Jessup W., Leake D.S. Flavonoids inhibits the oxidative modification of low-density lipoproteins by macrophages. Biochem. Pharmacol. 1990; 39: 1743–1750
  • Francel E.N., Kanner J., German J.B., Packs E., Kinsella J.E. Inhibition of oxidation of human low-density lipoprotein by phenols substances in red wine. Lancet 1993; 341: 454–457
  • Rice-Evans C.A., Miller N.J., Bolwell P.G., Bramley P.M., Pridham J.B. The relative antioxidant activities of plant-derived polyphenolic flavonoids. Free Radic. Res. 1995; 22: 375–383
  • Nanjo F., Mori M., Goto K, Hara Y. Radical scavenging activity of tea catechins and their related compounds. Biosci. Biotechnol. Biochem. 1999; 63: 1621–1623
  • Sano M., Takahashi Y., Yoshino K., Shimoi K., Nakamura Y., Tomita I., Oguni I., Konomoto H. Effect of tea (Camellia sinensis L.) on lipid peroxidation in rat liver and kidney: a comparison of green and black tea feeding. Biol. Pharm. Bull. 1995; 18: 1006–1008
  • Gupta S., Ahmad N., Mohan R.R.N., Husain M.M., Mukhtar H. Prostate cancer chemoprevention by green tea: in vivo and in vitro inhibition of testosterone-mediated induction of ornithin decarboxylase. Cancer Res. 1999; 59: 2115–2120
  • Vanhet Hof K.H., Wiseman S.A., Yang C.S., Tijburg L.B. Plasma and lipoprotein levels of tea catechins following repeated tea consumption. Proc. Soc. Exp. Biol. Med. 1999; 220: 203–209
  • Hara Y., Matsuzaki T., Suzuki T. Angiotensin-I converting enzyme inhibiting activity of tea components. Nippon Nogeikagaku Kaishi 1987; 61: 803–808
  • Hara Y., Tono-oka F. Hypotensive effect of tea catechins on blood pressure of rats. J. of the Japanese Society of Nutr. and Food Sci. 1990; 43: 345–348
  • Baba S., Osakabe N., Natsume M., Yassuda A., Takizawa T., Nakamura T., Tearao J. Coca powder enhances the levels of antioxidative activity in rat plasma. Br. J. of Nutr. 2000; 84: 673–680

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.