39
Views
11
CrossRef citations to date
0
Altmetric
Original Article

A population approach to cortical dynamics with an application to orientation tuning

, , &
Pages 247-260 | Received 25 Apr 2000, Published online: 09 Jul 2009

References

  • Adorjan P, Barna G, Erdi P, Obermayer K. A statistical neural field approach to orientation selectivity. Neurocomputing 1999; 26: 477–82
  • Adorjan P, Levitt J, Lund J, Obermayer K. A model for the intracortical origin of orientation preference and tuning in macaque striate cortex. Visual Neurosci. 1999; 12: 303–18
  • Ben-Yishai R, Bar-Or R L, Sompolinsky H. Theory of orientation tuning in visual cortex. Proc. Natl Acad. Sci. USA 1995; 92: 3844–8
  • Benardete E, Kaplan E. The dynamics of primate M retinal ganglion cells. Visual Neurosci. 1999; 16: 355–68
  • Blasdel G. Differential imaging of ocular dominance and orientation selectivity in monkey striate cortex. J. Neurosci. 1992; 12: 3115–38
  • Bonhoeffer T, Grinvald A. Iso-orientation domains in cat visual cortex are arranged in pinwheel-like patterns. Nature 1991; 353: 267–94
  • Das A. Orientation in visual cortex: a simple mechanism emerges. Neuron 1996; 16: 447–80
  • de Boer E, Kuyper P. Triggered correlation. IEEE Trans. Biomed. Eng. 1968; 15: 281–4
  • Ferster D, Chuing S, Wheat H. Orientation selectivity of thalamic input to simple cells of cat visual cortex. Nature 1996; 380: 249–52
  • Gerstner W. Time structure of the activity in neural network models. Phys. Rev. E 1995; 51: 738–58
  • Gerstner W. Population dynamics of spiking neurons: fast transients, asynchronous states and locking. Neural Comput. 2000; 12: 43–89
  • Hata Y, Tsumoto T, Sato H, Hagihara K, Tamura H. Inhibition contributes to orientation selectivity in visual cortex of cat. Nature 1988; 335: 815–7
  • Hubel D, Wiesel T. Receptive fields, binocular interaction and functional architecture in the cat's visual cortex. J. Physiol. Lond. 1962; 160: 106–54
  • Hubel D, Wiesel T. Receptive fields and functional architecture of monkey striate cortex. J. Physiol. Lond. 1968; 195: 215–45
  • Hubel D, Wiesel T. Sequence regularity and geometry of orientation columns in the monkey striate cortex. J. Comp. Neurol. 1974; 158: 267–94
  • Jones J, Palmer L. The two-dimensional spatial structure of simple receptive fields in cat striate cortex. J. Neurophysiol. 1987; 58: 1187–211
  • Knight B. Dynamics of encoding in neuron populations: some general mathematical features. Neural Comput. 2000; 12: 473–518
  • Knight B, Manin D, Sirovich L. Dynamical models of interacting neuron populations. Symp. on Robotics and Cybernetics: Computational Engineering in Systems Applications, E C Gerf. Cite Scientifique, Lille 1996
  • Knight B, Omurtag A, Sirovich L. The approach of a neuron population firing rate to a new equilibrium: an exact theoretical result. Neural Comput. 2000; 12: 1045–55
  • McLaughlin D, Shapley R, Shelley M, Wielaard D. A neural network model of macaque primary visual cortex (v1): orientation selectivity and dynamics in the input layer 4c alpha. Proc. Natl Acad. Sci. USA 2000; 97: 8087–92
  • Michalski A, Gerstein G, Czarkowska J, Tarnecki R. Interactions between cat striate cortex neurons. Exp. Brain Res. 1983; 51: 97–107
  • Nykamp D, Tranchina D. A population density approach that facilitates large-scale modelling of neural networks: analysis and an application to orientation tuning. J. Comp. Neurosci. 2000; 8: 19–50
  • Omurtag A, Knight B, Kaplan E, Sirovich L. Efficient simulation of large neuronal populations: an investigation of orientation tuning in the visual cortex. Invest. Ophthalmol. Visual Sci. 1999; 40 S3018
  • Omurtag A, Knight B, Sirovich L. On the simulation of large populations of neurons. J. Comp. Neurosci. 2000; 8: 51–63
  • Peters A, Payne B, Budd J. A numerical analysis of the geniculocortical input to striate cortex in the monkey. Cerebral Cortex 1994; 4: 215–29
  • Ringach D, Hawken M, Shapley R. Dynamics of orientation tuning in macaque primary visual cortex. Nature 1997; 387: 281–4
  • Sclar G, Freeman R. Orientation selectivity in cat's striate cortex is invariant with stimulus contrast. Exp. Brain Res. 1982; 46: 457–61
  • Sirovich L, Everson R, Kaplan E, Knight B, O'Brien E, Orbach D. Modeling the functional organization of the visual cortex. Physica D 1996; 96: 355–66
  • Sirovich L, Knight B, Omurtag A. Dynamics of neuronal populations: the equilibrium solution. SIAM J. Appl. Math. 2000; 60: 2009–28
  • Skottun B, Bradley A, Sclar G, Ohzawa I, Freeman R. The effect of contrast on visual orientation and spatial frequency discrimination: a comparison of single cells and behavior. J. Neurophysiol. 1987; 57: 773–86
  • Somers D, Nelson S, Sur M. An emergent model of orientation selectivity in cat visual cortex simple cells. J. Neurosci. 1995; 15: 5448–65
  • Sompolinsky H, Shapley R. New perspectives on the mechanisms for orientation selectivity. Curr. Opin. Neurobiol. 1997; 7: 514–22
  • Tuckwell H. Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge 1988; 2, ch 9
  • Wilson H, Cowan J. A mathematical theory of the functional dynamics of cortical and thalamic nervous tissue. Kybernetik 1973; 13: 55–80

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.