69
Views
30
CrossRef citations to date
0
Altmetric
Original Article

Persistent activity and the single-cell frequency–current curve in a cortical network model

Pages 261-280 | Received 10 Jan 2000, Published online: 09 Jul 2009

References

  • Abeles M. Corticonics. Cambridge University Press, New York 1991
  • Abramowitz M, Stegun I A. Tables of Mathematical Functions. Dover, New York 1970
  • Amit D J, Brunel N. Dynamics of a recurrent network of spiking neurons before and following learning. Netw., Comput. Neural Syst. 1997a; 8: 373–404
  • Amit D J, Brunel N. Model of global spontaneous activity and local structured activity during delay periods in the cerebral cortex. Cerebral Cortex 1997b; 7: 237–52
  • Amit D J, Evans M, Abeles M. Attractor neural networks with biological probe neurons. Netw., Comput. Neural Syst. 1990; 1: 381–405
  • Amit D J, Tsodyks M V. Quantitative study of attractor neural network retrieving at low spike rates: I. Substrate - spikes, rates and neuronal gain. Netw., Comput. Neural Syst. 1991; 2: 259–74
  • Braitenberg V, Schütz A. Anatomy of the Cortex. Springer, Berlin 1991
  • Brunel N. Dynamics of sparsely connected networks of excitatory and inhibitory spiking neurons. J. Comput. Neurosci. 2000; 8: 183–208
  • Brunel N, Hakim V. Fast global oscillations in networks of integrate-and-fire neurons with low firing rates. Neural Comput. 1999; 11: 1621–71
  • Brunel N, Sergi S. Firing frequency of integrate-and-fire neurons with finite synaptic time constants. J. Theor. Biol. 1998; 195: 87–95
  • Camperi M, Wang X-J. A model of visuospatial short-term memory in prefrontal cortex: recurrent network and cellular bistability. J. Comput. Neurosci. 1998; 5: 383–405
  • Compte A, Brunel N, Goldman-Rakic P S, Wang X-J. Synaptic mechanisms and network dynamics underlying spatial working memory in a cortical network model. Cerebral Cortex 2000; 10: 910–23
  • Destexhe A, Mainen Z F, Sejnowski T J. Kinetic models of synaptic transmission. Methods in Neuronal Modeling2nd edn, C Koch, I Segev. MIT Press, Cambridge, MA 1998; 1–25
  • Funahashi S, Bruce C J, Goldman-Rakic P S. Mnemonic coding of visual space in the monkey's dorsolateral prefrontal cortex. J. Neurophysiol. 1989; 61: 331–49
  • Fuster J M. Inferotemporal units in selective visual attention and short-term memory. J. Neurophysiol. 1990; 64: 681–97
  • Fuster J M. Memory in the Cerebral Cortex. MIT Press, Cambridge, MA 1995
  • Gerstner W, van Hemmen J L. Associative memory in a network of ‘spiking’ neurons. Netw., Comput. Neural Syst. 1992a; 3: 139–64
  • Gerstner W, van Hemmen J L. Universality in neural networks: the importance of the mean firing rate. Biol. Cybernet. 1992b; 67: 195–205
  • Goldman-Rakic P S. Cellular basis of working memory. Neuron 1995; 14: 477–85
  • Hopfield J J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 1982; 79: 2554–8
  • Mason A, Nicoll A, Stratford K. Synaptic transmission between individual pyramidal neurons of the rat visual cortex. in vitro, J. Neurosci. 1991; 11: 72–84
  • McCormick D, Connors B, Lighthall J, Prince D. Comparative electrophysiology of pyramidal and sparsely spiny stellate neurons in the neocortex. J. Neurophysiol. 1985; 54: 782–806
  • Miller E K, Erickson C A, Desimone R. Neural mechanisms of visual working memory in prefrontal cortex of the macaque. J. Neurosci. 1996; 16: 5154–67
  • Miyashita Y. Inferior temporal cortex: where visual perception meets memory. Annu. Rev. Neurosci. 1993; 16: 245–63
  • Nakamura K, Kubota K. Mnemonic firing of neurons in the monkey temporal pole during a visual recognition memory task. J. Neurophysiol. 1995; 74: 162–78
  • Rao S G, Williams G V, Goldman-Rakic P S. Isodirectional tuning of adjacent interneurons and pyramidal cells during working memory: evidence for microcolumnar organization in PFC. J. Neurophysiol. 1999; 81: 1903–16
  • Ricciardi L M. Diffusion Processes and Related Topics on Biology. Springer, Berlin 1977
  • Romo R, Brody C D, Hernández A, Lemus L. Neuronal correlates of parametric working memory in the prefrontal cortex. Nature 1999; 399: 470–4
  • Tuckwell H C. Introduction to Theoretical Neurobiology. Cambridge University Press, Cambridge 1988
  • Wang X-J. Synaptic basis of cortical persistent activity: the importance of NMDA receptors to working memory. J. Neurosci. 1999; 19: 9587–603
  • Wilson F A W, Ó Scalaidhe S P, Goldman-Rakic P S. Dissociation of object and spatial processing domains in primate prefrontal cortex. Science 1993; 260: 1955–8
  • Zipser D, Kehoe B, Littlewort G, Fuster J. A spiking network model of short-term active memory. J. Neurosci. 1993; 13: 3406–20

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.