34
Views
12
CrossRef citations to date
0
Altmetric
Original Article

Learning viewpoint-invariant face representations from visual experience in an attractor network

&
Pages 399-417 | Received 02 Jan 1998, Published online: 09 Jul 2009

References

  • Abbott L, Rolls E, Tovee M. Representational capacity of face coding in monkeys. Cerebral Cortex 1996; 6: 498–505
  • Amit D. The Hebbian paradigm reintegrated: local reverberations as internal representations. Behav. Brain Sci. 1995; 18: 617–57
  • Bartlett M S, Sejnowski T J. Unsupervised learning of invariant representations of faces through temporal association. Computational Neuroscience: Int. Rev. Neurobiol. Suppl. 1, J M Bower. Academic, San Diego, CA 1996
  • Bartlett M S, Sejnowski T J. Viewpoint invariant face recognition using independent component analysis and attractor networks. Advances in Neural Information Processing Systems 9, M Mozer, et al. MIT, Cambridge, MA 1997; 817–23
  • Becker S. Learning to categorize objects using temporal coherence. Advances in Neural Information Processing Systems 5, S Hanson, et al. Morgan Kaufman, San Mateo, CA 1993; 361–8
  • Becker S. Implicit learning in 3D object recognition: The importance of temporal coherence. Neural Comput. 1998, in press
  • Beymer D. Face recognition under varying pose. Proc., 1994, IEEE Computer Society Conf. on Computer Vision and Pattern Recognition. IEEE Computer Society Press, Los Alamitos, CA 1994; 756–61
  • Biederman I. Neural and psychophysical analysis of object and face recognition. Face Recognition: From Theory to Applications, H Wechsler, et al. Springer, Berlin 1998, in press
  • Bruce V. Human face perception and identification. Face Recognition: From Theory to Applications, H Wechsler, et al. Springer, Berlin 1998, in press
  • Bulthoff H H, Edelman S Y, Tarr M J. How are three-dimensional objects represented in the brain?. Cerebral Cortex 1995; 3: 247–60
  • Daugman J G. Complete discrete 2D Gabor transform by neural networks for image analysis and compression. IEEE Trans. Acoustics, Speech, Sig. Proc. 1988; 36: 1169–79
  • Földiák P. Learning invariance from transformation sequences. Neural Comput. 1991; 3: 194–200
  • Freeman W J. Characterization of state transitions in spatially distributed, chaotic, nonlinear, dynamical systems in cerebral cortex. Integrative Physiol. Behav. Sci. 1994; 29: 294–306
  • Gallant J L, Connor C E, Van Essen D C. Responses of visual cortical neurons in a monkey freely viewing natural scenes. Soc. Neurosci. Abstr. 1994; 20: 838
  • Gardner E. The space of interactions in neural network models. J. Phys. A: Math. Gen. 1988; 21: 257–70
  • Griniasty M, Tsodyks M, Amit D. Conversion of temporal correlations between stimuli to spatial correlations between attractors. Neural Comput. 1993; 5: 1–17
  • Grossberg S. Adaptive pattern classification and universal recoding: part 1. Parallel development and coding of neural feature detectors. Biol. Cybern. 1976; 23: 121–34
  • Hasselmo M, Rolls E, Baylis G, Nalwa V. Object-centered encoding by face-selective neurons in the cortex in the superior temporal sulcus of the monkey. Exp. Brain Res. 1989; 75: 417–29
  • Heeger D. Nonlinear model of neural responses in cat visual cortex. Computational Models of Visual Processing, M Landy, J Movshon. MIT, Cambridge, MA 1991; 119–33
  • Hinton G, Shallice T. Lesioning an attractor network: investigations of acquired dyslexia. Psychol. Rev. 1991; 98: 74–5
  • Hopfield J. Neural networks and physical systems with emergent collective computational abilities. Proc. Natl Acad. Sci. USA 1982; 79: 2554–8
  • Horn B, Schunk B. Determining optical flow. Artif. Intell. 1981; 17: 185–203
  • Jenkins W M, Merzenich M M, Recanzone G. Neocortical representational dynamics in adult primates: implications for neuropsychology. Neuropsychologia 1990; 28: 573–84
  • Kaas J H. Plasticity of sensory and motor maps in adult mammals. Ann. Rev. Neurosci. 1991; 14: 137–67
  • Lades M, Vorbrüggen J, Buhmann J, Lange J, Konen W, von der Malsburg C, Würtz R. Distortion invariant object recognition in the dynamic link architecture. IEEE Trans. Comput. 1993; 42: 300–11
  • Lander K, Bruce V. The role of movement in the recognition of famous faces. NATO ASI on Face Recognition: From Theory to Applications (Stirling, UK). 1997, poster presentation, submitted for journal publication
  • Logothetis N, Pauls. Psychophysical and physiological evidence for viewer-centered object representations in the primate. Cerebral Cortex 1995; 3: 270–88
  • Miyashita Y. Neuronal correlate of visual associative long-term memory in the primate temporal cortex. Nature 1988; 335: 817–20
  • Montague R, Gally J, Edelman G. Spatial signaling in the development and function of neural connections. Cerebral Cortex 1991; 1: 199–220
  • O'Reilly R, Johnson M. Object recognition and sensitive periods: a computational analysis of visual imprinting. Neural Comput. 1994; 6: 357–89
  • Oja E. Neural networks, principal components, and subspaces. Int. J. Neural Syst. 1989; 1: 61–8
  • Parga N, Rolls E. Transform invariant recognition by association in a recurrent network. Neural Comput. 1998, in press
  • Perrett D, Mistlin A, Chitty A. Visual neurones responsive to faces. Trends Neurosci. 1989; 10: 358–64
  • Pike G E, Kemp R I, Towell N A S, Phillips K C. Recognizing moving faces: the relative contribution of motion and perspective view information. Visual Cogn. 1997; 4: 409–37
  • Poggio T, Edelman S. A network that learns to recognize 3-dimensional objects. Nature 1990; 343: 263–6
  • Rhodes P. The long open time of the NMDA channel facilitates the self-organization of invariant object responses in cortex. Soc. Neurosci. Abstr. 1992; 18: 740
  • Rolls E T. Neurophysiological mechanisms underlying face processing within and beyond the temporal cortical visual areas. Phil. Trans. R. Soc. Lond. B 1992; 335(1273)11–20
  • Rolls E T. Learning mechanisms in the temporal lobe visual cortex. Behav. Brain Res. 1995; 66: 177–85
  • Rumelhart D, Zipser D. Feature discovery by competitive learning. Cognitive Sci. 1985; 9: 75–112
  • Sanger T. Optimal unsupervised learning in a single-layer linear feedforward neural network. Neural Networks 1989; 2: 459–73
  • Shepard R N, Cooper L A. Mental Images and their Transformations. MIT, Cambridge, MA 1982
  • Stone J V. Learning perceptually salient visual parameters using spatiotemporal smoothness constraints. Neural Comput. 1996; 8: 1463–92
  • Stone J V. Object recognition using spatiotemporal signatures. Vision Res. 1998; 38: 947–951
  • Stryker M. Temporal associations. Nature 1991; 354: 108–9
  • Tanaka K. Neuronal mechanisms of object recognition. Science 1993; 262: 685–8
  • Tsodyks M, Feigel'man M. The enhanced storage capacity in neural networks with low activity level. Europhys. Lett. 1988; 2: 101–5
  • Turk M, Pentland A. Eigenfaces for recognition. J. Cogn. Neurosci. 1991; 3: 71–86
  • Turrigiano G G, Leslie K R, Desai N S, Rutherford L C, Nelson S B. Activity-dependent scaling of quantal amplitude in neocortical neurons. Nature 1998; 391: 892–6
  • Ullman S, Basri R. Recognition by linear combinations of models. IEEE Trans. Pattern Anal. Machine Intell. 1991; 13: 992–1006
  • Wallis G, Baddeley P. Optimal, unsupervised learning in invariant object recognition. Neural Comput. 1997; 9: 883–94
  • Wallis G, Rolls E T. Invariant face and object recognition in the visual system. Prog. Neurobiol. 1997; 51: 167–94
  • Weinshall D, Edelman S. A self-organizing multiple view representation of 3D objects. Biol. Cybern. 1991; 64: 209–19
  • Young M, Yemane S. Sparse population coding of faces in the inferotemporal cortex. Science 1992; 256: 1327–31

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.