155
Views
23
CrossRef citations to date
0
Altmetric
Reviews

Microtubule stabilising agents for cancer chemotherapy

, &
Pages 607-622 | Published online: 09 May 2009

Bibliography

  • Jordan MA, Wilson L. Microtubules as a target for anticancer drugs. Nat Rev Cancer 2004;4:253-65
  • Altmann K-H, Gertsch J. Anticancer drugs from nature—natural products as a unique source of new microtubule-stabilizing agents. Nat Prod Rep 2007;24:327-57
  • Molodtsov MI, Ermakova EA, Shnol EE, et al. A molecular-mechanical model of the microtubule. Biophys J 2005;88:3167-79
  • He L, Orr GA, Horwitz SB. Novel molecules that interact with microtubules and have functional activity similar to Taxol. Drug Discov Today 2001;6:1153-64
  • Altmann K-H. Microtubule-stabilizing agents: a growing class of important anticancer drugs. Curr Opin Chem Biol 2001;5:424-31
  • Kamath K, Jordan MA. Suppression of microtubule dynamics by epothilone. Cancer Res 2003;63:6026-31
  • Honore S, Kamath K, Braguer D, et al. Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res 2004;64:4957-64
  • Bhat KM, Setaluri V. Microtubule-associated proteins as targets in cancer chemotherapy. Clin Cancer Res 2007;13:2849-54
  • Jordan MA, Wendell K, Gardiner S, et al. Mitotic block induced in HeLa cells by low concentrations of paclitaxel (Taxol) results in abnormal mitotic exit and apoptotic cell death. Cancer Res 1996;56:816-25
  • Trielli MO, Andreassen PR, Lacroix FB, et al. Differential taxol-dependent arrest of transformed and nontransformed cells in the G1 phase of the cell cycle, and specific-related mortality of transformed cells. J Cell Biol 1996;135:689-700
  • Chen J-GC, Horwitz SB. Differential mitotic responses to microtubule-stabilizing and -destabilizing drugs. Cancer Res 2002;14:1935-8
  • Chen J-GC, Yang C-PHY, Cammer M, Horwitz SB. Gene expression and mitotic exit induced by microtubule-stabilizing drugs. Cancer Res 2003;15:7891-9
  • Kim T-J, Lim Y, Kim D-W, et al. Epothilone D, a microtubule-stabilizing compound, inhibits neointimal hyperplasia after rat carotid artery injury by cell cycle arrest via regulation of G1-checkpoint proteins. Vasc Pharmcol 2007;47:229-37
  • Rodi DJ, Janes RW, Sanganee HJ, et al. Screening of a library of phage-displayed peptides identifies human bcl-2 as a taxol-binding protein. J Mol Biol 1999;285:197-203
  • Byrd CA, Bornmann W, Erdjument-Bromage H, et al. Heat shock protein 90 mediates macrophage activation by Taxol and bacterial lipopolysaccharide. Proc Natl Acad Sci USA 1999;96:5645-50
  • Bhat N, Perera PY, Carboni JM, et al. Use of a photoactivatable taxol analogue to identify unique cellular targets in murine macrophages: identification of murine CD18 as a major taxol-binding protein and a role for Mac-1 in taxol-induced gene expression. J Immunol 1999;162:7335-42
  • Boehmerle W, Splittgerber U, Lazarus MB, et al. Paclitaxel induces calcium oscillations via an inositol 1,4,5-trisphosphate receptor and neuronal calcium sensor 1-dependent mechanism. Proc Natl Acad Sci USA 2006;103:18356-61
  • Aoki S, Morohashi K, Sunoki T, et al. Screening of paclitaxel-binding molecules from a library of random Peptides displayed on T7 phage particles using paclitaxel-photoimmobilized resin. Bioconjug Chem 2007;18:1981-6
  • Zimmer SM, Liu J, Clayton JL, et al. Paclitaxel binding to human and murine MD-2. J Biol Chem 2008;283:27916-26
  • André N, Braguer D, Brasseur G, et al. Paclitaxel induces release of cytochrome c from mitochondria isolated from human neuroblastoma cells. Cancer Res 2000;60:5349-53
  • Khawaja NR, Carré M, Kovacic H, et al. Patupilone-induced apoptosis is mediated by mitochondrial reactive oxygen species through Bim relocalization to mitochondria. Mol Pharmacol 2008;74:1072-83
  • Wani MC, Taylor HL, Wall ME, et al. Plant antitumor agents VI. The isolation and structure of taxol a novel anti-leukemic and anti-tumor agent from Taxus brevifolia. J Am Chem Soc 1971;93:2325-7
  • Schiff PB, Fant J, Horwitz SB. Promotion of microtubule assembly in vitro by taxol. Nature 1979;277:665-7
  • Nogales E, Wolf SG, Khan IA, et al. Structure of tubulin at 6.5Å and location of the taxol-binding site. Nature 1995;375:424-7
  • Nogales E. Structural insights into microtubule function. Annu Rev Biochem 2000;69:277-302
  • Safavy A. Taxane derivatives for targeted therapy of cancer. US6191290; 2001
  • Sohn Y-S, Ji D-E, Jun Y-J, Lee H-J. Water soluble micelle-forming and biodegradable cyclotriphosphazene-taxol conjugate anticancer agent and preparation method thereof. US20070292384; 2007
  • Polizzi D, Pratesi G, Monestiroli S, et al. Oral efficacy and bioavailability of a novel taxane. Clin Cancer Res 2000;6:2070-4
  • Sampath D, Discafani CM, Loganzo F, et al. MAC-321, a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mol Cancer Ther 2003;2:873-84
  • Beeram M, Takinoto CH, Gadgeel S, et al. Phase I and pharmacokinetics (PK) of DJ-927, an oral taxane, in patients (Pts) with advanced cancers. J Clin Oncol 2004;22:2028
  • Broker LE, deVos FY, Gall H, et al. A phase I trial of the novel oral taxane BMS-275183 in patients with advanced solid tumors. J Clin Oncol 2004;22:2029
  • Sampath D, Greenberger LM, Beyer C, et al. Preclinical pharmacologic evaluation of MST-997, and orally active taxane with superior in vitro and in vivo efficacy in paclitaxel- and docetaxel-resistant tumor models. Clin Cancer Res 2006;12:3459-69
  • Ferlini C, Gallo D, Scambia G. New taxanes in development. Expert Opin Investig Drugs 2008;17:335-47
  • Galletti E, Magnani M, Renzulli ML, Botta M. Paclitaxel and docetaxel resistance: molecular mechanisms and development of new generation taxanes. ChemMedChem 2007;2:920-42
  • Orr GA, Verdier-Pinard P, McDaid H, Horwitz SB. Mechanisms of Taxol resistance related to microtubules. Oncogene 2003;22:7280-95
  • Shirakawa K, Takara K, Tanigawara Y, et al. Interaction of docetaxel (“Taxotere”) with human P-glycoprotein. Jpn J Cancer Res 1999;90:1380-6
  • Jang SH, Wientjes MG, Au JL. Kinetics of P-glycoprotein-mediated efflux of paclitaxel. J Pharmacol Exp Ther 2001;298:1236-42
  • Yang C-G, Barasoain I, Li X, et al. Overcoming tumor drug resistance with high-affinity taxanes: a SAR study of C2-modified 7-acyl-10-deacetyl cephalomannines. ChemMedChem 2007;2:691-701
  • Ferlini C, Raspaglio G, Cicchillitti L, et al. Looking at drug resistance mechanisms for microtubule interacting drugs: dose TUBB3 work? Curr Cancer Drug Targets 2007;7:704-12
  • Kavallaris M, Kuo DY-S, Burkhart CA, et al. Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific β-tubulin isotypes. J Clin Invest 1997;100:1282-93
  • Mozzetti S, Ferlini C, Concolino P, et al. Class III β-tubulin overexpression is a prominent mechanism of paclitaxel resistance in ovarian cancer patients. Clin Cancer Res 2005;298:298-305
  • Dumontet C, Isaac S, Souquet P-J, et al. Expression of class III β-tubulin in non-small cell lung cancer is correlated with resistance to taxane chemotherapy. Bull Cancer 2005;92:E25-30
  • Sève P, Mackey J, Isaac S, et al. Class III β-tubulin expression in tumor cells predicts response and outcome in patients with non-small cell lung cancer receiving paclitaxel. Mol Cancer Ther 2005;4:2001-7
  • Banerjee A. Increased levels of tyrosinated α-, βIII-, and βIV-tubulin isotypes in paclitaxel-resistant MCF-7 breast cancer cells. Biochem Biophys Res Commun 2002;293:598-601
  • Shalli K, Brown I, Heys SD, Schofield AC. Alterations of β-tubulin isotypes in breast cancer cells resistant to docetaxel. FASEB J 2005;19:1299-301
  • Noguchi S. Predictive factors for response to docetaxel in human breast cancers. Cancer Sci 2006;97:813-20
  • Agoulnik S, Kuznetsov G, Littlefield BA. Tubulin isotype screening in cancer therapy using hemiasterlin analogs. US20060148014; 2006
  • Agoulnik S, Kuznetsov G, Littlefield BA. Tubulin isotype screening in cancer therapy using halichondrin B analogs. US20060154312; 2006
  • Ferlini C, Raspaglio G, Mozzetti S, et al. The seco-taxane IDN5390 is able to target class III β-tubulin and to overcome paclitaxel resistance. Cancer Res 2005;65:2397-405
  • Bollag DM, McQueney PA, Zhu J, et al. Epothilones, a new class of microtubule-stabilizing agents with a taxol-like mechanism of action. Cancer Res 1995;55:2325-33
  • Verrills NM, Flemming CL, Liu M, et al. Microtubule alterations and mutations induced by desoxyepothilone B: implications for drug-target interactions. Chem Biol 2003;10:597-607
  • Nettles JH, Li H, Cornett B, et al. The binding mode of epothilone A on α, β-tubulin by electron crystallography. Science 2004;305:866-9
  • Feyen F, Cachoux F, Gertsch J, et al. Epothilones as lead structures for the synthesis-based discovery of new chemotypes for microtubule stabilization. Acc Chem Res 2008;41:21-31
  • Fumoleau P, Coudert B, Isambert N, Ferrant E. Novel tubulin-targeting agents: anticancer activity and pharmacologic profile of epothilones and related analogues. Ann Oncol 2007;18(Suppl 5):v9-v15
  • Larkin JMG, Kaye SB. Potential clinical applications of epothilones: a review of phase II studies. Ann Oncol 2007;18(Suppl 5):v28-34
  • Bristol-Myers Squibb Company. Methods of administering epothilone analogs for the treatment of cancer. EP1938821; 2008
  • Lee FYF, Smykla R, Johnston K, et al. Preclinical efficacy spectrum and pharmacokinetics of ixabepilone. Cancer Chemother Pharmacol 2009;63:201-12
  • Donovan D, Vahdat LT. Epothilones: clinical update and future directions. Oncology (Williston Park) 2008;22:408-16
  • Perez EA, Lerzo G, Pivot X, et al. Efficacy and safety of ixabepilone (BMS-247550) in a phase II study of patients with advanced breast cancer resistant to an anthracycline, a taxane, and capecitabine. J Clin Oncol 2007;25:3407-14
  • Vahdat L. Ixabepilone: a novel antineoplastic agent with low susceptibility to multiple tumor resistance mechanisms. Oncologist 2008;13:214-21
  • Higa GM, Abraham J. Ixabepilone: a new microtubule-targeting agent for breast cancer. Expert Rev Anticancer Ther 2008;8:671-81
  • O'Reilly T, Wartmann M, Brueggen J, et al. Pharmacokinetic profile of the microtubule stabilizer patupilone in tumor-bearing rodents and comparison of anti-cancer activity with other MTS in vitro and in vivo. Cancer Chemother Pharmacol 2008;62:1045-54
  • Hoffman J, Fichtmer I, Lemm M, et al. Sagopilone crosses the blood-brain barrier in vivo to inhibit brain tumor growth and metastases. Neuro Oncol 2009;11:158-66
  • Gunasekera SP, Gunasekera M, Longley RE, Schulte GK. Discodermolide: a new bioactive polyhydroxylated lactone from the marine sponge Discodermia dissoluta. J Org Chem 1990;55:4912-5
  • Longley RE, Caddigan D, Harmody D, et al. Discodermolide–a new, marine-derived immunosuppressive compound. II. In vivo studies. Transplantation 1991;52:656-61
  • Gunasekera M, Gunasekera SP, Longley RE, Burres N. Discodermolide compounds, compositions containing same and methods of preparation and use. WO9101982; 1991
  • ter Haar E, Kowalski RJ, Hamel E, et al. Discodermolide, a cytotoxic marine agent that stabilizes microtubules more potently than taxol. Biochemistry 1996;35:243-50
  • Hung DT, Chen J, Schreiber SL. (+)-Discodermolide binds to microtubules in stoichiometric ratio to tubulin dimers, blocks taxol binding and results in mitotic arrest. Chem Biol 1996;3:287-93
  • Kowalski RJ, Giannakakou P, Gunasekera SP, et al. The microtubule-stabilizing agent discodermolide competitively inhibits the binding of paclitaxel (Taxol) to tubulin polymers, enhances tubulin nudeation reactions more potently than paclitaxel, and inhibits the growth of paclitaxel-resistant cells. Mol Pharmacol 1997;52:613-22
  • Kalesse M. The chemistry and biology of discodermolide. ChemBioChem 2000;1:171-5
  • Balachandran R, ter Haar E, Welsh MJ, et al. The potent microtubule-stabilizing agent (+)-discodermolide induces apoptosis in human breast carcinoma cells–preliminary comparisons to paclitaxel. Anticancer Drugs 1998;9:67-76
  • Longley RE, Gunasekera SP, Pomponi S. Discodermolide compounds and pharmaceutical compositions containing them for cancer therapy. WO9720835; 1997
  • Klein LE, Freeze BS, Smith III AB, Horwitz SB. The microtubule stabilizing agent discodermolide is a potent inducer of accelerated cell senescence. Cell Cycle 2005;4:501-7
  • Martello LA, McDaid HM, Regl DL, et al. Taxol and discodermolide represent a synergistic drug combination in human carcinoma cell lines. Clin Cancer Res 2000;6:1978-87
  • Horwitz SB, McDaid HM, Martello LA. Method for treating neoplasia using combination chemotherapy. US20020065234; 2002
  • Honore S, Kamath K, Braguer D, et al. Synergistic suppression of microtubule dynamics by discodermolide and paclitaxel in non-small cell lung carcinoma cells. Cancer Res 2004;64:4957-64
  • Huang GS, Lopez-Barcons L, Freeze BS, et al. Potentiation of taxol efficacy by discodermolide in ovarian carcinoma xenograft-bearing mice. Clin Cancer Res 2006;12:298-304
  • Paterson I, Florence GJ. The development of a practical total synthesis of discodermolide, a promising microtubule-stabilizing anticancer agent. Eur J Org Chem 2003;12:2193-208
  • Mickel SJ. Toward a commercial synthesis of (+)-discodermolide. Curr Opin Drug Discov Dev 2004;7:869-81
  • Shaw SJ, Sundermann KF, Burlingame MA, et al. Toward understanding how the lactone moiety of discodermolide affects activity. J Am Chem Soc 2005;127:6532-3
  • Shaw SJ, Menzella HG, Myles DC, et al. Coumarin-derived discodermolide analogues possessing equivalent antiproliferative activity to the natural product—a further simplification of the lactone region. Org Biomol Chem 2007;5:2753-5
  • Smith III AB, Freeze BS, LaMarche MJ, et al. Design, synthesis, and evaluation of carbamate-substituted analogues of (+)-discodermolide. Org Lett 2005;7:311-4
  • Isbrucker RA, Gunasekera SP, Longley RE. Structure-activity relationship studies of discodermolide and its semisynthetic acetylated analogs on microtubule function and cytotoxicity. Cancer Chemother Pharmacol 2001;48:29-36
  • Gunasekera SP, Longley RE, Isbrucker RA. Acetylated analogues of the microtubule-stabilizing agent discodermolide: preparation and biological activity. J Nat Prod 2001;64:171-4
  • Gunasekera SP, Paul GK, Longley RE, et al. Five new discodermolide analogues from the marine sponge Discodermia species. J Nat Prod 2002;65:1643-8
  • Jiang W, Kumar S, Robertson R, Wong S-M. Discodermolide compositions. US20070082945; 2007
  • Mita A, Lockhart AC, Chen T-L, et al. A phase I pharmacokinetic (PK) trial of XAA296A (Discodermolide) administered every 3 weeks to adult patients with advanced solid malignancies. J Clin Oncol 2004;22:2025
  • Attard G, Greystoke A, Kaye S, De Bono J. Update on tubulin-binding agents. Pathol Biol (Paris) 2006;54:72-84
  • Pettit GR, Cichacz ZA, Gao F, et al. Isolation and structure of the cancer cell growth inhibitor dicyostatin 1. J Chem Soc Chem Commun 1994;1994:1111-2
  • Pettit GR, Cichacz ZA. Isolation and structure of dictyostatin 1 and its use as anti-neoplastic agent. EP0680958; 1995
  • Isbrucker RA, Cummins J, Pomponi SA, et al. Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochem Pharmacol 2003;66:75-82
  • Madiraju C, Edler MC, Hamel E, et al. Tubulin assembly, taxoid site binding, and cellular effects of the microtubule-stabilizing agent dictyostatin. Biochemistry 2005;44:15053-63
  • Florence GJ, Gardner NM, Paterson I. Development of practical syntheses of the marine anticancer agents discodermolide and dictyostatin. Nat Prod Rep 2008;25:342-75
  • Lindel T, Jensen PR, Fenical W, et al. Eleutherobin, a new cytotoxin class that mimics paclitaxel (Taxol) by stabilizing microtubules. J Am Chem Soc 1997;119:8744-5
  • Long BH, Carboni JM, Wasserman AJ, et al. Eleutherobin, a novel cytotoxic agent that induces tubulin polymerization, is similar to paclitaxel (Taxol®). Cancer Res 1998;58:1111-5
  • Ciomei M, Albanese C, Pastori W, et al. Sarcodictyins: a new class of marine derivatives with mode of action similar to taxol [abstract 30]. Proc Am Assoc Cancer Res 1997;38:5
  • Hamel E, Sackett DL, Vourloumis D, Nicolaou KC. The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry 1999;38:5490-8
  • Nicolaou KC, Vandelft F, Hosokawa S, et al. Sarcodictyin and eleutherobin useful for stabilizing microtubules. WO9921862; 1999
  • Andersen RJ, Roberge M, Britton RA, de Silva ED. Antimitotic eleuthesides. WO0300711; 2003
  • Battistini C, Ciomei M, Pietra F, et al. Terpenoidic derivatives useful as antitumor agents. US5869514; 1999
  • Mongelli N, Menichincheri M, Ciomei M, et al. Simplified sarcondictyin derivatives as anti-tumor agents. US20050038112; 2005
  • Mooberry SL, Tien G, Hernandez AH, et al. Laulimalide and isolaulimalide, new paclitaxel-like microtubule-stubilizing agents. Cancer Res 1999;59:653-60
  • Corley DG, Herb R, Moore RE, et al. Laulimalide. New potent cytotoxic macrolides from a marine sponge and a nudibranch predator. J Org Chem 1988;53:3644-6
  • Mooberry SL, Davidson BS. Laulimalide microtubule stabilizing agents. US20020198256; 2002
  • Pryor DE, O'Brate A, Bilcer G, et al. The microtubule stabilizing agent laulimalide does not bind in the taxoid site, kills cells resistant to paclitaxel and epothilones, and may not require its epoxide moiety for activity. Biochemistry 2002;41:9109-15
  • Pineda O, Farrás J, Maccari L, et al. Computational comparison of microtubule-stabilising agents laulimalide and peloruside with taxol and colchicine. Bioorg Med Chem Lett 2004;14:4825-9
  • Gapud EJ, Bai R, Ghosh AK, Hamel E. Laulimalide and paclitaxel: a comparison of their effects on tubulin assembly and their synergistic action when present simultaneously. Mol Pharmacol 2004;66:113-21
  • Clark EA, Hills PM, Davidson BS, et al. Laulimalide and synthetic laulimalide analogues are synergistic with paclitaxel and 2-methoxyestradiol. Mol Pharm 2006;3:457-67
  • Lu H, Murtagh J, Schwartz EL. The microtubule binding drug laulimalide inhibits vascular endothelial growth factor-induced human endothelial cell migration and is synergistic when combined with docetaxel (Taxotere). Mol Pharmacol 2006;69:1207-15
  • Mulzer J, öhler E. Microtubule-stabilizing marine metabolite laulimalide and its derivatives: synthetic approaches and antitumor activity. Chem Rev 2003;103:3753-86
  • Liu J, Towle MJ, Cheng H, et al. In vitro and in vivo anticancer activities of synthetic (-)-laulimalide, a marine natural product microtubule stabilizing agent. Anticancer Res 2007;27:1509-18
  • West LM, Northcote PT, Battershill CN. Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J Org Chem 2000;65:445-9
  • Hood KA, West LM, Rouwé B, et al. Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res 2002;62:3356-60
  • Gaitanos TN, Buey RM, Díaz JF, et al. Peloruside A does not bind to the taxoid site on β-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res 2004;64:5063-7
  • Hamel E, Day BW, Miller JH, et al. Synergistic effects of peloruside A and laulimalide with taxoid site drugs, but not with each other, on tubulin assembly. Mol Pharmacol 2006;70:1555-64
  • Wilmes A, Bargh K, Kelly C, et al. Peloruside A synergizes with other microtubule stabilizing agents in cultured cancer cell lines. Mol Pharm 2007;4:269-80
  • Huzil JT, Chik JK, Slysz GW, et al. A unique mode of microtubule stabilization induced by peloruside A. J Mol Biol 2008;378:1016-30
  • Sato B, Muramatsu H, Miyauchi M, et al. A new antimitotic substance, FR182877: I. Taxonomy, fermentation, isolation, physico-chemical properties and biological activities. J Antibiot (Tokyo) 2000;53:123-30
  • Sato B, Nakajima H, Hori Y, et al. A new antimitotic substance, FR182877: II. The mechanism of action. J Antibiot 2000;53:204-6
  • Edler MC, Buey RM, Gussio R, et al. Cyclostreptin (FR182877), an antitumor tubulin-polymerizing agent deficient in enhancing tubulin assembly despite its high affinity for the taxoid site. Biochemistry 2005;44:11525-8
  • Buey RM, Calvo E, Barasoain I, et al. Cyclostreptin binds covalently to microtubule pores and luminal taxoid binding sites. Nat Chem Biol 2007;3:117-25
  • Smith III AB, LaMarche MJ, Falcone-Hindley M. Solution structure of (+)-discodermolide. Org Lett 2001;3:695-8
  • Sánchez-Pedregal VM, Kubicek K, Meiler J, et al. The tubulin-bound conformation of discodermolide derived by NMR studies in solution supports a common pharmacophore model for epothilone and discodermolide. Angew Chem Int Ed Engl 2006;45:7388-94
  • Ojima I, Chakravarty S, Inoue T, et al. A common pharmacophore for cytotoxic natural products that stabilize microtubules. Proc Natl Acad Sci USA 1999;96:4256-61
  • Giannakakou P, Gussio R, Nogales E, et al. A common pharmacophore for epothilone and taxanes: molecular basis for drug resistance conferred by tubulin mutations in human cancer cells. Proc Natl Acad Sci USA 2000;97:2904-9
  • Ganesh T, Guza RC, Bane S, et al. The bioactive taxol conformation on β-tubulin: Experimental evidence from highly active constrained analogs. Proc Natl Acad Sci USA 2004;101:10006-11
  • Geney R, Sun L, Pera P, et al. Use of the tubulin bound paclitaxel conformation for structure-based rational drug design. Chem Biol 2005;12:339-48
  • Ghosh AK. Microtubule stabilizing compounds. US20030203929; 2003
  • Bergstralh DT, Ting JP-Y. Microtubule stabilizing agents: their molecular signaling consequences and the potential for enhancement by drug combination. Cancer Treat Rev 2006;32:166-79
  • Kaye SB. Multidrug resistance: clinical relevance in solid tumours and strategies for circumvention. Curr Opin Oncol 1998;1:S15-9
  • Persidis A. Cancer multidrug resistance. Nat Biotechnol 1999;17:94-5
  • Sparreboom A, Nooter K. Dose P-glycoprotein play a role in anticancer drug pharmacokinetics? Drug Resist Updat 2000;3:357-63

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.