489
Views
34
CrossRef citations to date
0
Altmetric
Reviews

Liver X receptor modulators: a review of recently patented compounds (2007 – 2009)

, &
Pages 535-562 | Published online: 20 Mar 2010

Bibliography

  • Kalaany NY, Mangeksdorf DJ. LXRs and FXR: the yin and yang of cholesterol and fat metabolism. Annu Rev Physiol 2006;68:159-91
  • Tontonoz P, Mangelsdorf DJ. Liver x receptor signaling pathways in cardiovascular disease. Mol Endocrinol 2003;17:985-93
  • Joseph SB, Castrillo A, Laffitte BA, Reciprocal regulation of inflammation and lipid metabolism by liver X receptors. Nat Med 2003;9:213-19
  • Schultz JR, Tu H, Luk A, Role of LXRs in control of lipogenesis. Genes Dev 2000;14:2831-8
  • Horton JD, Goldstein JL, Brown MS. SREBPs: transcriptional mediators of lipid homeostasis. Cold Spring Harb Symp Quant Biol 2002;67:491-8
  • Joseph SB, Laffitte BA, Patel PH, Direct and indirect mechanisms for regulation of fatty acid synthase gene expression by liver X receptors. J Biol Chem 2002;277:11019-25
  • Grefhorst A, Elzinga BM, Voshol PJ, Stimulation of lipogenesis by pharmacologicalactivation of the liver X receptor leads to production of large, triglyceride-rich very low density lipoprotein particles. J Biol Chem 2002;277:34182-90
  • Groot PHE, Pearc NJ, Yates JW, Synthetic LXR agonists increase LDL in CETP species. J Lipid Res 2005;46:2182-91
  • Quinet EM, Halpern AR, Basso MD, A mixed LXR/PPARgamma/δ agonist fails to rescue LXR-mediated dyslipidemia in a nonhuman primate model. In XIV International Symposium on Atherosclerosis; Rome, Italy; 2006
  • Lund EG, Menke JG, Sparrow CP. Liver X receptor agonists as potential therapeutic agents for dyslipidemia and atherosclerosis. Arterioscler Thromb Vasc Biol 2003;23:1169-77
  • Lund EG, Peterson LB, Adams AD, Different roles of liver X receptor alpha and beta in lipid metabolism: effects of an alpha-selective and a dual agonist in mice deficient in each subtype. Biochem Pharmacol 2006;71:453-63
  • Molteni V, Li X, Nabakka J, N-Acylthiadiazolines, a new class of liver X receptor agonists with selectivity for LXRbeta. J Med Chem 2007;50:4255-59
  • Peng D, Hiipakka RA, Dai Q, Antiatherosclerotic effects of a novel synthetic tissue-selective steroidal liver X receptor agonist in low-density lipoprotein receptor-deficient mice. J Pharmacol Exp Ther 2008;327:332-42
  • Kratzer A, Buchebner M, Pfeifer T, Synthetic LXR agonist attenuates plaque formation in apoEdeficient mice without inducing liver steatosis and hypertriglyceridemia. J Lipid Res 2009;50:312-26
  • Quinet EM, Savio DA, Halpern AR, Geneselective modulation by a synthetic oxysterol ligand of the liver X receptor. J Lipid Res 2004;45:1929-42
  • Quinet EM, Basso MD, Halpern AR, LXR ligand lowers LDL cholesterol in primates, is lipid neutral in hamster, and reduces atherosclerosis in mouse. J Lipid Res 2009. [Epub ahead of print]
  • Katz A, Udata C, Ott E, Safety, pharmacokinetics, and pharmacodynamics of single doses of LXR-623, a novel liver X-receptor agonist, in healthy participants. J Clin Pharm 2009;49:643-9
  • Repa JJ, Li H, Frank-Cannon TC, Liver X receptor activation enhances cholesterol loss from the brain, decreases neuroinflammation, and increases survival of the NPC1 mouse. J Neurosci 2007;27:14470-80
  • Ou X, Dai X, Long Z, Liver X receptor agonist T0901317 reduces atherosclerotic lesions in apoE-/- mice by up-regulating NPC1 expression. Sci China C Life Sci 2008;51:418-29
  • Dai XY, Ou X, Hao XR, The effect of T0901317 on ATP-binding cassette transporter A1 and Niemann-Pick type C1 in apoE-/- mice. J Cardiovasc Pharmacol 2008;51:467-75
  • Andersson S, Gustafsson N, Warner M, Gustafsson JA. Inactivation of liver X receptor beta leads to adult-onset motor neuron degeneration in male mice. Proc Natl Acad Sci USA 2005;102:3857-62
  • Kim HJ, Fan X, Gabbi C, Liver X receptor beta (LXRbeta): a link between beta-sitosterol and amyotrophic lateral sclerosis-Parkinson's dementia. Proc Natl Acad Sci USA 2008;105:2094-9
  • Koldamova R, Lefterov I. Role of LXR and ABCA1 in the pathogenesis of Alzheimer's disease – implications for a new therapeutic approach. Curr Alzheimer Res 2007;4:171-8
  • Zelcer N, Khanlou N, Clare R, Attenuation of neuroinflammation and Alzheimer's disease pathology by liver X receptors. Proc Natl Acad Sci USA 2007;104:10601-6
  • Miller LJ, Chacko R. The role of cholesterol and statins in Alzheimer's disease. Ann Pharmacother 2004;38:91-8
  • Puglielli L, Tanzi RE, Kovacs DM. Alzheimer's disease: the cholesterol connection. Nat Neurosci 2005;6:345-51
  • Wolozin B. A fluid connection: cholesterol and Abeta. Proc Natl Acad Sci USA 2001;98:5371-3
  • Du J, Chang J, Guo S, ApoE 4 reduces the expression of Abeta degrading enzyme IDE by activating the NMDA receptor in hippocampal neurons. Neurosci Lett 2009;464:140-5
  • Fan J, Donkin J, Wellington C. Greasing the wheels of Abeta clearance in Alzheimer's disease: the role of lipids and apolipoprotein E. Biofactors 2009;35:239-48
  • Jiang Q, Lee CY, Mandrekar S, ApoE promotes the proteolytic degradation of Abeta. Neuron 2008;58:681-93
  • Riddell DR, Zhou H, Atchison K, Impact of apolipoprotein E (ApoE) polymorphism on brain ApoE levels. J Neurosci 2008;28:11445-53
  • Wahrle SE, Jiang H, Parsadanian M, Deletion of Abca1 increases Abeta deposition in the PDAPP transgenic mouse model of Alzheimer disease. J Biol Chem 2005;280:43236-42
  • Wahrle SE, Jiang H, Parsadanian M, Overexpression of ABCA1 reduces amyloid deposition in the PDAPP mouse model of Alzheimer disease. J Clin Invest 2008;118:671-82
  • Riddell DR, Zhou H, Comery TA, The LXR agonist TO901317 selectively lowers hippocampal Abeta42 and improves memory in the Tg2576 mouse model of Alzheimer's disease. Mol Cell Neurosci 2007;34:621-8
  • Koldamova RP, Lefterov IM, Staufenbiel M, The liver X receptor ligand T0901317 decreases amyloid beta production in vitro and in a mouse model of Alzheimer's disease. J Biol Chem 2005;280:4079-88
  • Lefterov I, Bookout AL, Wang Z, Expression profiling in APP23 mouse brain: inhibition of Abeta amyloidosis and inflammation in response to LXR agonist treatment. Mol Neurodegener 2007;2:20
  • Vanmierlo T, Rutten K, Dederen J, Liver X receptor activation restores memory in aged AD mice without reducing amyloid. Neurobiol Aging 2009. [Epub ahead of print]
  • Xu J, Wagoner G, Douglas JC, Drew PD. Liver X receptor agonist regulation of Th17 lymphocyte function in autoimmunity. J Leukoc Biol 2009;86:401-9
  • A-Gonzales N, Bensinger SJ, Hong C, Apoptotic cells promote their own clearanceand immune tolerance through activation of the nuclear receptor LXR. Immunity 2009;31:245-58
  • Bennett DJ, Brown LD, Cooke AJ, An update on non-steroidal liver X receptor agonists and their potential use in the treatment of atherosclerosis. Expert Opin Ther Patents 2006;16:1673-99
  • Wrobel J, Steffan R, Bowen SM, Indazole-based liver X receptor (LXR) modulators with maintained atherosclerotic lesion reduction activity but diminished stimulation of hepatic triglyceride synthesis. J Med Chem 2008;51:7161-8
  • Wyeth. Cinnoline compounds and their use as liver X receptor modulators. WO094034; 2006
  • Hu B, Unwalla R, Collini M, Discovery and SAR of cinnolines/quinonlines as liver X receptor (LXR) agonists with binding selectivity for LXRbeta. Bioorg Med Chem Lett 2009;17:3519-27
  • Hu B, Quinet E, Unwalla R, Carboxylic acid based quinolines as liver X receptor modulators that have LXRbeta receptor binding selectivity. Bioorg Med Chem Lett 2008;18:54-9
  • Bernotas RC, Singhaus RR, Kaufman DH, Biarylether amide quinolines as liver X receptor agonists. Bioorg Med Chem Lett 2009;17:1663-70
  • Bernotas RC, Kaufman DH, Singhaus RR, 4-(3-Aryloxyaryl)quinoline alcohols are liver X receptor agonists. Bioorg Med Chem Lett 2009;17:8086-92
  • Wyeth. Quinoline compounds. WO049047; 2008
  • Bernotas RC, Kaufman DH, Singhaus RR, 4-(3-Aryloxyaryl)quinoline sulfones are potent liver X receptor agonists. Bioorg Med Chem Lett 2010;20:209-12
  • Hu B, Bernotas RC, Unwalla R, Quinoline-3-carboxamide containing sulfones as liver X receptor (LXR) agonists with binding selectivity for LXRbeta?and low blood-brain penetration. Bioorg Med Chem Lett 2010;20:689-93
  • Wyeth. Quinazoline compounds. WO020683; 2009
  • Wyeth. Benzimidazole compounds. WO086138; 2009
  • Travins JM, Bernotas RC, Kaufman DH, 1-(3-Aryloxyaryl)benzimidazole sulfones are liver X receptor agonists. Bioorg Med Chem Lett 2010;20:526-30
  • Wyeth. Imidazole [1,2-A] pyridine compounds. WO086123; 2009
  • Singhaus RR, Bernotas RC, Steffan R, 3-(3-Aryloxyaryl)imidazo[1,2-a]pyridine sulfones as liver X receptor agonists. Bioorg Med Chem Lett 2010;20:521-5
  • Wyeth. Imidazo [1,2-B] pyridazine compounds as modulators of liver X receptors. WO086130; 2009
  • Wyeth. Pyrazolo [1,5-A] pyrimidine compounds. WO086129; 2009
  • Wyeth Exelixis. Pyrazole based LXR modulators. WO002559; 2007
  • Wyeth Exelixis. Imidazole based LXR modulators. WO002563; 2007
  • Merck & Co. Therapeutic compounds for treating dyslipidemic conditions. WO081335A1; 2007
  • Merck & Co. Pyrazole amide derivatives, composition containing such compounds and methods of use. WO017055A2; 2006
  • Merck & Co. Substituted aryl and heteroaryl derivatives. WO102067A1; 2006
  • NV Organon. N-benzyl N′-arylcarbonyl piperazine derivatives as LXR modulators. WO024550A1; 2009
  • F Hoffman-La Roche AG. Novel hexafluoroisopropanol substituted ether derivatives. US0074115A1; 2006
  • F Hoffman-La Roche AG. Novel hexafluoroisopropanol substituted cyclohexane derivatives. US0135601A1; 2006
  • F Hoffman-La Roche AG. Novel piperazine amide derivatives. WO021868A2; 2009
  • F Hoffman-La Roche AG. Biaryl sulfonamide derivatives. WO040289A2; 2009
  • Bristol-Myers-Squibb. Tetrahydroisoquinoline as LXR modulators. WO047991; 2007
  • Bristol-Myers-Squibb. LXR modulators. WO050425; 2007
  • AstraZeneca. Derivatives of isothiazol-3(2H)-one 1,1-dioxides as liver X receptor modulators. WO073363; 2006
  • AstraZeneca. Derivatives of isothiazol-3(2H)-thione 1,1-dioxides as liver X receptor modulators. WO073364; 2006
  • AstraZeneca. Non-anilinic derivatives of isothiazol-3(2H)-thione 1,1-dioxides as liver X receptor modulators. WO073365; 2006
  • AstraZeneca. Non-anilinic derivatives of isothiazol-3(2H)-one 1,1-dioxides as liver X receptor modulators. WO073366; 2006
  • AstraZeneca. 5-Thioxo-1, 5-dihydro-2H-pyrrol-2-one as liver X receptor modulators WO073367; 2006
  • Barry Forman. Synthetic ligands selective for LXRbeta over LXRalpha, identification and method of use thereof. US0030082; 2009
  • Kowa. Substituted carbinol compounds. WO065754; 2008
  • Kowa. LXR agonists. JP179562; 2008
  • IRM LLC & Novartis AG. Compounds and compositions as LXR modulators. WO092065; 2007
  • Naik SU, Wang X, Da Silva JS, Pharmacological activation of liver X receptors promotes reverse cholesterol transport in vivo. Circulation 2006;13:90-7
  • Joseph SB, McKilligin E, Pei L, Synthetic LXR ligand inhibits the development of atherosclerosis in mice. Proc Natl Acad Sci USA 2002;99:7604-9
  • Levin N, Bischoff ED, Daige CL, Macrophage liver X receptor is required for antiatherogenic activity of LXR agonists. Arterioscler Thromb Vasc Biol 2005;25:135-42
  • Tangirala RK, Bischoff ED, Joseph SB, Identification of macrophage liver X receptors as inhibitors of atherosclerosis. Proc Natl Acad Sci USA 2002;99:11896-901
  • Williams S, Bledsoe RK, Collins JL, X-ray crystal structure of the liver X receptor beta ligand binding domain: regulation by a histidine-tryptophan switch. J Biol Chem 2003;278:27138-43
  • Bradley MN, Hong C, Chen M, Ligand activation of LXR beta reverses atherosclerosis and cellular cholesterol overload in mice lacking LXR alpha and apoE. Clin Invest 2007;117:2337-46

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.