92
Views
46
CrossRef citations to date
0
Altmetric
Miscellaneous

Human peptide transporters: therapeutic applications

, , , &
Pages 1329-1350 | Published online: 25 Feb 2005

Bibliography

  • ADIBI SA, MORSE EL: Intestinal transport of dipeptides in man; relative importance of hydrolysis and intact absorption. I Clin. Invest. (1971) 50:2266–2275.
  • NAKASHIMA E, TSUJI A, MIZUO H, YAMANA T: Kinetics and mechanism of in vitro uptake of amino-P-lactam antibiotics by rat small intestine and relation to the intact-peptide transport system. Biochem. Pharmacol. (1984) 33:3345–3352.
  • BRETSCHNEIDER B, BRANDSCH M, NEUBERT R Intestinal transport of P-lactam antibiotics: analysis of the affinity at the H+/ peptide symporter (PEPT1), the uptake into Caco-2 cell monolayers and the transepithelial flux. Pharm. Rey. (1999) 16:55–61.
  • ••Investigates the affinities of a number of p- lactarn antibiotics and successfully correlates the values to oral bioavailabilities.
  • NICKLIN PL, IRWIN WJ, TIMMINS P,MORRISON RA: Uptake and transport of the ACE-inhibitor ceranopril (SQ 29852) by monolayers of human intestinal absorptive Caco-2 cells M vitro. Int. J. Pharm. (1996) 140:175–183.
  • THWAITES DT, CAVET M, HIRST BH, SIMMONS NL: Angiotensin-converting enzyme (ACE) inhibitor transport in human intestinal epithelial (Caco-2) cells. ELI-. Pharmacol. (1995) 114:981–986.
  • INUI K, TOMITA Y, KATSURA T, OKANO T, TAKANO M, HORI R: H± coupled active transport of bestatin via the dipeptide transport system in rabbit intestinal brush-border membranes J. Pharmacol. Exp. Ther. (1992) 260:482–486.
  • BOLL M, MARKOVICH D, WEBER WM, KORTE H, DANIEL H, MURER H: Expression cloning of a cDNA from rabbit small intestine related to proton-coupled transport of peptides, P-lactam antibiotics and ACE-inhibitors. Flingers Arch. (1994) 429:146–149.
  • DE VRUEH RL, SMITH PL, LEE CP: Transport of L-valine-acyclovir via the oligopeptide transporter in the human intestinal cell line, Caco-2. 1 Pharmacol. Exp. Ther. (1998) 286:1166–1170.
  • •The first study to show that the transport properties of L-valaciclovir are dependent on peptide transporter activity.
  • HAN H, VRUEH RLA, RHIE JK et al.: 5'-Amino acid esters of anti-viral nucleosides, acyclovir, and AZT are absorbed by the intestinal PEPT1 peptide transporter. Pharm. Res. (1998) 15:1154–1159.
  • PAULSEN IT, SKURRAY RA: The POT family of transport proteins. Trends Biochem. Sci. (1994) 19:404.
  • LIANG R, FEI YJ, PRASAD PD et al: Human intestinal HE/peptide cotransporter. Cloning, functional expression, and chromosomal localization. Bid. Chem. (1995) 270:6456–6463.
  • •Cloning of the human intestinal peptide transporter.
  • LIU W, LIANG R, RAMAMOORTHY S et al.: Molecular cloning of PEPT 2, a new member of the HE/peptide cotransporter family, from human kidney. Biochim. Biophys. Acta .(1995) 1235:461–466.
  • BOTKA CW, WITTIG TW, GRAUL RC et al.: Human Proton/oligopeptide transporter (POT) genes: identification of putative genes using bioinformatics. AAPS PharmSci. (2000) 2(2):E16.
  • DANTZIG AH, HOSKINS JA, TABAS LB et al.: Association of intestinal peptide transport with a protein related to the cadherin superfamily. Science (1994) 264:430–433.
  • ADIBI SA: Renal assimilation of oligopeptides: physiological mechanisms and metabolic importance. Am.' Physid. (1997) 272:E723–E736.
  • MATTHEWS DM: Intestinal absorption of peptides. Physid. Rev. (1975) 55:537–608.
  • ADIBI SA: The oligopeptide transporter (PepT-1) in human intestine: biology and function. Gastroenterology (1997) 113:332–340.
  • DANIEL H: Function and molecular structure of brush border membrane peptide/H+ symporters: j Mem& Biol. (1996) 154:197–203.
  • FEI YJ, GANAPATHY V, LEIBACH FH: Molecular and structural features of the proton-coupled oligopeptide transporter superfamily. Prog. Nucleic Add Res. (1998) 58:239–261.
  • MEREDITH D, BOYD CA: Structure and function of eukaryotic peptide transporters. Cell Mol Life ScL (2000) 57:754–778.
  • YANG CY, DANTZIG AH, PIDGEON C: Intestinal peptide transport systems and oral drug availability. Pharm. Res. (1999) 16:1331–1343.
  • BRODIN B, NIELSEN CU, STEFFANSEN B, FROKJAER S: Transport of peptidomimetic drugs by the intestinal di/tri-peptide transporter, PepTl. Pharmacol Toxicol (2002) 90:285–296.
  • GANAPATHY V, LEIBACH FH: Role of pH gradient and membrane potential in dipeptide transport in intestinal and renal brush-border membrane vesicles from the rabbit: Studies with L-carnosine and glycyl-L-proline. Biol. Chem. (1983) 258:14189–14192.
  • GANAPATHY V, LEIBACH FH: Is intestinal peptide transport energized by a proton gradient? Am. J. Physiol (1985) 249:G153–G160.
  • GANAPATHY V, MIYAMOTO Y, LEIBACH FH: Driving force for peptide transport in mammalian intestine and kidney. Beitr. Infusionther. Klin. Ernahr. (1987) 17:54–68.
  • CHEN XZ, ZHU T, SMITH DE, HEDI GER MA: Stoichiometry and kinetics of the high-affinity I-IF-coupled peptide transporter PepT2..1. Biol. Chem. (1999) 274:2773–2779.
  • MACKENZIE B, FEI YJ, GANAPATHY V, LEIBACH FH: The human intestinal Hioligopeptide cotransporter hPepT1 transports differently-charged dipeptides with identical electrogenic properties. Biochim. Biophys. Acta (1996) 1284:125–128.
  • WENZEL U, GEBERT I, WEINTRAUT H, WEBER WM, CLAUSS W, DANIEL H: Transport characteristics of differently charged cephalosporin antibiotics in oocytes expressing the cloned intestinal peptide transporter PepT1 and in human intestinal Caco-2 cells.' Pharmacol Exp. The]: (1996) 277:831–839.
  • THWAITES DT, FORD D, GLANVILLE M, SIMMONS NL: H(±)/ solute-induced intracellular acidification leads to selective activation of apical Na(±)/ H(±) exchange in human intestinal epithelial cells. Clin. Invest (1999) 104:629–635.
  • ALPERS DH: Uptake and fate of absorbedamino acids and peptides in the mammalian intestine. Fed. Proc. (1986) 45:2261–2267.
  • INUI K, YAMAMOTO M, SAITO H: Transepithelial transport of oral cephalosporins by monolayers of intestinal epithelial cell line caco-2: specific transport systems in apical and basolateral membranes. j. Pharmacol Exp. The]: (1992) 261:195–201.
  • IRIE M, TERADA T, SAWADA K, SAITO H, INUI KI: Recognition and transport characteristics of nonpeptidic compounds by basolateral peptide transporter in caco-2 cells. j Pharmacol Exp. The]: (2001) 298:711–717.
  • TERADA T, SAWADA K, SAITO H, HASHIMOTO Y, INUI K: Functional characteristics of basolateral peptide transporter in the human intestinal cell line Caco-2. Am. J. Physiol (1999) 276:G1435–G1441.
  • TERADA T, SAWADA K, ITO T, SAITO H, HASHIMOTO Y, INUI KI: Functional expression of novel peptide transporter in renal basolateral membranes. Am. j Physid Renal Physid. (2000) 279:F851–F857.
  • THWAITES DT, BROWN CDA, HIRST BH, SIMMONS NL: Transepithelial glycylsarcosine transport in intestinal caco-2 cells mediated by expression of H+-coupled carriers at both apical and basal membranes. j Biol. Chem. (1993) 268:7640–7642.
  • •Shows that the transepithelial transport of a dipeptide may be depedent on both apical and basolateral peptide transport activity.
  • SMITH DE, PAVLOVA A, BERGER UV et al.: Tubular localization and tissue distribution of peptide transporters in rat kidney. Pharm. Res. (1998) 15:1244–1249.
  • BOCKMAN DE, GANAPATHY V, OBLAK TG, LEIBACH FH: Localization of peptide transporter in nuclei and lysosomes of the pancreas. Int. j Pancreatol (1997) 22:221–225.
  • ZHOU X, THAMOTHARAN M, GANGOPADHYAY A, SERDIKOFF C, ADIBI SA: Characterization of an oligopeptide transporter in renal lysosomes. Biochim. Biophys. Acta (2000) 1466:372–378.
  • THAMOTHARAN M, LOMBARDO YB, BAWANI SZ, ADIBI SA: An active mechanism for completion of the final stage of protein degradation in the liver, lysosomal transport of dipeptides. 1 Biol. Chem. (1997) 272:11786–11790.
  • TERADA T, SAITO H, MUKAI M, INUI KI: Identification of the histidine residues involved in substrate recognition by a rat H±/peptide cotransporter, PepTl. FEBS Lett. (1996) 394:196–200.
  • FEI YJ, LIU W, PRASAD PD et al: Identification of the histidyl residue obligatory for the catalytic activity of the human HE/peptide cotransporters Peptl and PepT2. Biochemistry (1997) 36:452–460.
  • COVITZ KM, AMIDON GL, SADEE W: Human dipeptide transporter, hPepT1, stably transfected into Chinese hamster ovary cells. Pharm. Res. (1996) 13:1631–1634.
  • HAN HK, OH DM, AMIDON GL: Cellular uptake mechanism of amino acid ester prodrugs in Caco-2/hPepT1 cells overexpressing a human peptide transporter. Pharm. Res. (1998) 15:1382–1386.
  • HSU C, HILFINGER JM, WALTER E, MERKLE HP, ROESSLER BJ, AMIDON GL: Overexpression of human intestinal oligopeptide transporter in mammalian cells via adenoviral transduction. Pharm. Res. (1998) 15:1376–1381.
  • COVITZ KM, AMIDON GL, SADEE W: Membrane topology of the human dipeptide transporter, hPEPT1, determined by epitope insertions. Biochemistry (1998) 37:15214–15221.
  • AMASHEH S, WENZEL U, WAGENER M, WEBER WM, CLAUSS W, DANIEL H: Transport function of the renal peptide carrier rPepT2 expressed in Xenopus laevis oocytes. FASEB J. (1996) 10:465.
  • WENZEL U, THWAITES DT, DANIEL H: Stereoselective uptake of 13-lactam antibiotics by the intestinal peptide transporter. Br. J. Pharmacol (1995) 116:3021–3027.
  • DORING F, THEIS S, DANIEL H: Expression and functional characterization of the mammalian intestinal peptide transporter PepT1 in the methylotrophic yeast Fichte pastoris Biochem. Biophys. Res. Commun. (1997) 232:656–662.
  • DORING F, MICHEL T, ROSEL A, NICKOLAUS M, DANIEL H: Expression of the mammalian renal peptide transporter PEPT2 in the yeast Fichte pastoris and applications of the yeast system for functional analysis. MM. Membr: Biol. (1998) 15:79–88.
  • SAITO H, OKUDA M, TERADA T, SASAKI S, INUI K: Cloning and characterization of a rat H+/peptide cotransporter mediating absorption ofl3-lactam antibiotics in the intestine and kidney. Pharmacol Exp. Ther. (1995) 275:1631–1637.
  • FEI YJ, KANAI Y, NUSSBERGER S et al.: Expression cloning of a mammalian proton-coupled oligopeptide transporter. Nature (1994) 368:563–566.
  • ••Describes the first cloning of a di/tripeptide transporter.
  • FEI YJ, SUGAWARA M, LIU W et al.: cDNA structure, genomic organization, and promoter analysis of the mouse intestinal peptide transporter PEPT1. Biochimica et Biophysica Acta (2000) 1492:145–154.
  • WALKER D, THWAITES DT, SIMMONS NL, GILBERT HJ, HIRST BH: Substrate upregulation of the human small intestinal peptide transporter, hPepT1. j Physic] Loud. (1998) 507:697–706.
  • •An excellent study showing the up-regulation of peptide transporter activity in response to dipeptide substrates, and the cloning of hPepT1 from caco-2 cells.
  • http://www.pharmsci.org. Urtti A, Johns SJ, Sadee W: Genomic structure of proton-coupled oligopeptide transporter hPepT1 and pH-sensing regulatory splice variant. AAPS Pharmsci (2001).3: article 6
  • http://www.expasy.ch/prosite/
  • DORING F, DORN D, BACHFISCHER U, AMASHEH S, HERGET M, DANIEL H: Functional analysis of a chimeric mammalian peptide transporter derived from the intestinal and renal isoforms. I Physiol Loud. (1996) 497:773–779.
  • TERADA T, SAITO H, SAWADA K, HASHIMOTO K, INUI K: N-terminal halves of rat Hipeptide transporters are responsible for their substrate recognition. Pharm. Res. (2000) 17:15–20.
  • YEUNG AK, BASU SK, WU SK et al.: Molecular identification of a role for tyrosine 167 in the function of the human intestinal proton-coupled dipeptide transporter (hPepT1). Biochem. Biophys. Res. Commun. (1998) 250:103–107.
  • CHEN XZ, STEEL A, HEDIGER MA: Functional roles of histidine and tyrosine residues in the HE-peptide transporter PepT 1. Biochem. Biophys. Res. Commun. (2000) 272:726–730.
  • DORING F, MARTINI C, WALTER J, DANIEL H: Importance of a small N-terminal region in mammalian peptide transporters for substrate affinity and function. J. Membt: Biol. (2002) 186:55–62.
  • FRIEDMAN DI, AMIDON GL: Passive and carrier-mediated intestinal absorption components of two angiotensin converting enzyme (ACE) inhibitor prodrugs in rats: enalapril and fosinopril. Pharm. Res. (1989) 6:1043–1047.
  • FRIEDMAN DI, AMIDON GL: Intestinal absorption mechanism of dipeptide angiotensin converting enzyme inhibitors of the lysyl-proline type: lisinopril and SQ 29,852.1 Pharm. (1989) 78:995–998.
  • MOORE VA, IRWIN WJ, TIMMINS P et al.: A rapid screening system to determine drug affinities for the intestinal dipeptide transporter 2: affinities of ACE inhibitors. Int. J. Pharm.(2000) 210:29–44.
  • KRAMER W, GIRBIG F, GUTJAHR U et al.: Interaction of renin inhibitors with the intestinal uptake system for oligopeptides and 13-lactam antibiotics. Biochim. Biophys. Acta (1990) 1027:25–30.
  • WALTER E, KISSEL T, REERS M, DICKNEITE G, HOFFMANN D, STUBER W: Transepithelial transport properties of peptidomimetic thrombin inhibitors in monolayers of a human intestinal cell line (Caco-2) and their correlation to in vivo data. Pharm. Res. (1995) 12:360–365.
  • BALIMANE PV, TAMAI I, GUO A et al.: Direct evidence for peptide transporter (PepT1)-mediated uptake of a nonpeptide prodrug, valacyclovir. Biochem. Biophys. Res. Commun. (1998) 250:246–251.
  • HUM, SUBRAMANIAN P, MOSBERG HI, AMIDON GL: Use of the peptide carrier system to improve the intestinal absorption of L-a-methyldopa: carrier kinetics, intestinal permeabilities, and in vitro hydrolysis of dipeptidyl derivatives of L-a-methyldopa. Pharm. Res. (1989) 6:66–70.
  • SUGAWARA M, HUANG W, FEI YJ, LEIBACH FH, GANAPATHY V, GANAPATHY ME: Transport of valganciclovir, a ganciclovir prodrug, via peptide transporters PEPT1 and PEPT2. Pharm. Sci.(2000) 89:781–789.
  • WANG HP, LU HH, LEE JS et al.: Intestinal absorption studies on peptide mimetic a-methyldopa prodrugs. j. Pharm. Pharmacol (1996) 48:270–276.
  • EZRA A, HOFFMAN A, BREUER E et al.: A peptide prodrug approach for improving bisphosphonate oral absorption. J. Med. Chem. (2000) 43:3641–3652.
  • WEISS WJ, MIKELS SM, PETERSEN PJ et al.: In vivo activities of peptidic prodrugs of novel aminomethyl tetrahydrofuranyl-1 P-methylcarbapenems. Antimicrob. Agents Chemother: (1999) 43:460–464.
  • LIU.K., KATO Y, KAKU T et al: Hydroxyprolylserine derivatives JBP923 and JNP485 exhibit the antihepatitis activities after gastrointestinal absorption in rats. I Pharmacol Exp. Ther. (2000) 294:510–515.
  • SURENDRAN N, COVITZ KM, HAN H et al.: Evidence for overlapping substrate specificity between large neutral amino acid (LNAA) and dipeptide (hPEPT1) transporters for PD 158473, an NMDA antagonist. Pharm. Res. (1999) 16:391–395.
  • MORRISON RA, CHONG S, MARINO AM et al.: Suitability of enalapril as a probe of the dipeptide transporter system: in vitro and in vivo studies. Pharm. Res. (1996) 13:1078–1082.
  • SWAAN PW, STEHOUWER MC, TUKKER JJ: Molecular mechanism for the relative binding affinity to the intestinal peptide carrier. Comparison of three ACE-inhibitors: enalapril, enalaprilat, and lisinopril. Biochim. Biophys. Acta (1995) 1236:31–38.
  • BOLL M, HERGET M, WAGENER M et al. Expression cloning and functional characterization of the kidney cortex high-affinity proton-coupled peptide transporter. Proc. Natl Acad. ScL USA (1996) 93:284–289.
  • •Describes the expression cloning of PepT2.
  • DIECK ST, HEUER H, EHRCHEN J, OTTO C, BAUER K: The peptide transporter PepT2 is expressed in rat brain and mediates the accumulation of the fluorescent dipeptide derivative I3-Ala-Lys-Nepsilon-AMCA in astrocytes. Clia (1999) 25:10–20.
  • •Describes the expression and transport activity of PepT2 in rat brain.
  • SAITO H, TERADA T, OKUDA M, SASAKI S, INUI K: Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochirm Biophys. Acta (1996) 1280:173–177.
  • WANG H, FEI YJ, GANAPATHY V, LEIBACH FH: Electrophysiological characteristics of the proton-coupled peptide transporter PEPT2 cloned from rat brain. Am. J. Physiol (1998) 275:C967–C975.
  • BERGER UV, HEDIGER MA: Distribution of peptide transporter PEPT2 mRNA in the rat nervous system. Anat. Embryo]. (Ben) (1999) 199:439–449.
  • GRONEBERG DA, NICKOLAUS M, SPRINGER J, DORING F, DANIEL H, FISCHER A: Localization of the peptide transporter PEPT2 in the lung: implications for pulmonary oligopeptide uptake. Am. J. Pathol (2001) 158:707–714.
  • •A study of the expression and transport activity of PepT2 in human lung tissue.
  • GRONEBERG DA, EYNOTT PR, DORING F et al: Distribution and function of the peptide transporter PEPT2 in normal and cystic fibrosis human lung. Thorax (2002) 57:55–60.
  • GRONEBERG DA, DORING F, THEIS S, NICKOLAUS M, FISCHER A, DANIEL H: Peptide transport in the mammary gland: expression and distribution of PEPT2 mRNA and protein. Am. J. Physiol Endocrinol Metab (2002) 282:E1172–E1179.
  • DRINGEN R, HAMPRECHT B, BROER S. The peptide transporter PepT2 mediates the uptake of the glutathione precursor CysGly in astroglia-rich primary cultures. Neurochem. (1998) 71:388–393.
  • SHU C, SHEN H, TEUSCHER NS, LORENZI PJ, KEEP RF, SMITH DE: Role of PepT2 in peptide/mimetic trafficking at the blood-cerebrospinal fluid barrier: studies in rat choroid plexus epithelial cells in primary culture. Pharmacol Exp. The]: (2002) 301:820–829.
  • BRANDSCH M, BRANDSCH C, PRASAD PD, GANAPATHY V, HOPFER U, LEIBACH FH: Identification of a renal cell line that constitutively expresses the kidney-specific high-affinity HE/peptide cotransporter. FASEB J. (1995) 9:1489–1496.
  • •Introduction of the SKPT cell line as a powerful in vitro system to study PepT2.
  • SHU C, SHEN H, HOPFER U, SMITH DE. Mechanism of intestinal absorption and renal reabsorption of an orally active ace inhibitor: uptake and transport of fosinopril in cell cultures. Drug Metab Dispos. (2001) 29:1307–1315.
  • TERADA T, SAITO H, MUKAI M, INUI K: Recognition of I3-lactam antibiotics by rat peptide transporters, PEPT1 and PEPT2, in LLC-PK1 cells. Am. Physiol (1997) 273:F706–F711.
  • WENZEL U, DIEHL D, HERGET M, DANIEL H: Endogenous expression of the renal high-affinity H+-peptide cotransporter in LLC-PK1 cells. Am. J. Physio1(1998) 275:C1573–C1579.
  • RUBIO-ALIAGA I, BOLL M, DANIEL H: Cloning and characterization of the gene encoding the mouse peptide transporter PEPT2. Biochem. Biophys. Res. Commun. (2000) 276:734–741.
  • RAMAMOORTHY S, LIU W, MA YY, YANG-FENG TL, GANAPATHY V, LEIBACH FH: Proton/peptide cotransporter (PEPT 2) from human kidney: functional characterization and chromosomal localization. Biochim. Biophys. Acta (1995) 1240:1–4.
  • TERADA T, SAWADA K, IRIE M, SAITO H, HASHIMOTO Y, INUI K: Structural requirements for determining the substrate affinity of peptide transporters PEPT1 and PEPT2. Pflugers Arch. (2000) 440:679–684.
  • DANIEL H, ADIBI SA: Transport of 13-lactam antibiotics in kidney brush border membrane. Determinants of their affinity for the oligopeptide/H+ symporter. j Invest (1993) 92:2215–2223.
  • GANAPATHY ME, BRANDSCH M, PRASAD PD, GANAPATHY V, LEIBACH FH: Differential recognition of 13 -lactam antibiotics by intestinal and renal peptide transporters, PEPT 1 and PEPT 2. J. Biol. Chem. (1995) 270:25672–25677.
  • INUI K, TERADA T, MASUDA S, SAIT H: Physiological and pharmacological implications of peptide transporters, PEPT1 and PEPT2. Nephrol. Dial. Transplant. (2000) 15 (Suppl. 6):11–13.
  • ZHU T, CHEN X-Z, STEEL A, HEDIGER MA, SMITH DE: Differential recognitionof ACE inhibitors in Xenopus laevis oocytes expressing rat PepT1 and PepT2. Pharm. Res. (2000) 17:526–532.
  • DORING F, WALTER J, WILL Jet al.: 8-aminolevulinic acid transport by intestinal and renal peptide transporters and its physiological and clinical implications. J. Clin. Invest. (1998) 101:2761–2767.
  • TAKAGI H, SHIOMI H, UEDA H, AMANO H: Morphine-like analgesia by a new dipeptide, L-tyrosyl-L-arginine (Kyotorphin) and its analogue. Ear: J. Pharmacol (1979) 55:109–111.
  • FUJITA T, KISHIDA T, OKADA N, GANAPATHY V, LEIBACH FH, YAMAMOTO A: Interaction of kyotorphin and brain peptide transporter in synaptosomes prepared from rat cerebellum: implication of high affinity type HE/peptide transporter PEPT2 mediated transport system. Neurosci. Lett. (1999) 271:117–120.
  • •Demonstrates uptake of the endogenous brain peptide kyotorphin from rat brain synaptasomes, and argues that this could be due to PepT2 activity.
  • TAMURA K, BHATNAGER P, TAKATA JS, LEE CP, SMITH PL, BORCHARDT RT: Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val in the human intestinal cell line, Caco-2. Pharm. Res. (1996) 13:1213–1218.
  • TAMURA K, LEE CP, SMITH PL, BORCHARDT RT: Metabolism, uptake, and transepithelial transport of the stereoisomers of Val-Val-Val in the human intestinal cell line, Caco-2. Pharm. Res. (1996) 13:1663–1667.
  • MATHEWS DM, ADIBI SA: Peptide absorption. Gastroenterology (1976) 71:151–161.
  • TEMPLE CS, STEWART AK, MEREDITH D et al.: Peptide mimics as substrates for the intestinal peptide transporter. Biol. Chem. (1998) 273:20–22.
  • DORING F, WILL J, AMASHEH S, CLAUSS W, AHLBRECHT H, DANIEL H: Minimal molecular determinants of substrates for recognition by the intestinal peptide transporter. I Biol. Chem. (1998) 273:23211–23218.
  • BRANDSCH M, THUNECKE F, KULLERTZ G, SCHUTKOWSKI M, FISCHER G, NEUBERT K: Evidence for the absolute conformational specificity of the intestinal H±/peptide symporter, PEPT1. J. Biol. Chem. (1998) 273:3861–3864.
  • BRANDSCH M, KNOTTER I, THUNECKE F et al.: Decisive structural determinants for the interaction of proline derivatives with the intestinal HE/peptide symporter. Ear: Biochem. (1999) 266:502–508.
  • ADDISON JM, BURSTON D, MATTHEWS DM: Evidence for active transport of the dipeptide glycylsarcosine by hamster jejunum M vitro Clin. Sri. (1972) 43:907–911.
  • MATTHEWS DM: Mechanisms of peptide transport: Beitr. Infusionther. Kiln. Erna& (1987) 17:6–53.
  • HUM, AMIDON GL: Passive and carrier-mediated intestinal absorption components of captopril. ./. Pharm. Sci. (1988) 77:1007–1011.
  • BAI PF, SUBRAMANIAN P, MOSBERG HI, AMIDON GL: Structural requirements for the intestinal mucosal-cell peptide transporter: the need for N-terminal a-amino group. Pharm. Res. (1991) 8:593–599.
  • WALTER E, KISSEL T, AMIDON GL: The intestinal peptide carrier: a potential transport system for small peptide derived drugs. Adv. Drug Deily. Rev. (1996) 20:33–58.
  • FUJITA T, MORISHITA Y, ITO H, KURIBAYASHI D, YAMAMOTO A, MURANISHI S: Enhancement of the small intestinal uptake of phenylalanyl-glycine via a H±/oligopeptide transport system by chemical modification with fatty acids. Life Sciences (1997) 61:2455–2465.
  • MEREDITH D, TEMPLE CS, GUHA N, et al:Modified amino acids and peptides as substrates for the intestinal peptide transporter PepTl. Eur. I Biochem. (2000) 267:3723–3728.
  • BORNER V, FEI YJ, HARTRODT B et al. Transport of amino acid aryl amides by the intestinal H±/peptide cotransport system, PEPT1. Eur.j Biochem. (1998) 255:698–702.
  • SWAAN PW, TUKKER JJ: Molecular determinants of recognition for the intestinal peptide carrier. Pharm. Sci. (1997) 86:596–602.
  • SWAAN PW, KOOPS BC, MORET EE, TUKKERJJ: Mapping the binding site of the small intestinal peptide carrier (PepT1) using comparative molecular field analysis. Receptors Channels (1998) 6:189–200.
  • BAILEY PD, BOYD CAR, BRONK JR et al.: How to make drugs orally active: a substrate template for peptide transporter PepT 1. Angew. Chem. Int. Ed (2000) 39:505–508.
  • NIELSEN CU, ANDERSEN R, BRODIN B, FROKJAER S, TAUB ME, STEFFANSEN B: Dipeptide model prodrugs for the intestinal oligopeptide transporter. Affinity to and transport via hPepT1 in the human intestinal Caco-2 cell line. I Controlled Release (2001) 76:129–138.
  • KNOTTER I, THEIS S, HARTRODT B, et al.: A novel inhibitor of the mammalian peptide transporter PepTl. Biochemistry (2001) 40:4454–4458.
  • DANIEL H, MORSE EL, ADIBI SA: Determinants of substrate affinity for the oligopeptide/H+ symporter in the renal brush border membrane. I Biol. Chem. (1992) 267:9565–9573.
  • THEIS S, HARTRODT B, KOTTRA G, NEUBERT K, DANIEL H: Defining minimal structural features in substrates of the H(F)/peptide cotransporter PEPT2 using novel amino acid and dipeptide derivatives. Mol Pharmacol (2002) 61:214–221.
  • LIN CJ, AKARAWUT W, SMITH DE: Competetive inhibition of glycylsarcosine transport by enalapril in rabbit renal brush border membrane vesicles: interaction of ACE inhibitors with high-affinity HI peptide transporter. Pharm. Res. (1999) 16:609–615.
  • THEIS S, KNUTTER I, HARTRODT B et al.: Synthesis and characterization of high-affinity inhibitors of the HE/peptide transporter PEPT2. I Biol. Chem. (2002) 277:7287–7292.
  • DANIEL H, MORSE EL, ADIBI SA: The high and low affinity transport systems for dipeptides in kidney brush border membrane respond differently to alterations in pH gradient and membrane potential. J. Biol. Chem (1991) 266:19917–19924.
  • PIES M, WENZEL U, DANIEL H: Transport of cefadroxil in rat kidney brush-border membranes is mediated by two electrogenic H+-coupled systems. Pharmacol Exp. Ther. (1994) 271:1327–1333.
  • DANTZIG AH: Oral absorption of 13-lactams by intestinal peptide transport proteins. Adv. Drug Deliver. Rev (1997) 23:63–76.
  • •A comprehensive review discussing peptide transporter mediated uptake of p-lactarns.
  • GOCHOCO CH, RYAN FM, MILLER J, SMITH PL, HIDALGO IJ: Uptake and transepithelial transport of the orally absorbed cephalosporin cephalexin, in the human intestinal cell line, caco-2. hat. Pharm. (1994) 104:187–202.
  • HUM, CHEN J, ZHU Y, DANTZIG AH, STRATFORD REJ, KUHFELD MT: Mechanism and kinetics of transcellular transport of a new I3-lactam antibiotic loracarbef across an intestinal epithelial membrane model system (Caco-2). Pharm. Res. (1994) 11:1405–1413.
  • KIM JS, OBERLE RL, KRUMMEL DA, DRESSMAN JB, FLEISHER D: Absorption of ACE inhibitors from small intestine and colon. I Pharm. Sci. (1994) 83:1350–1356.
  • AMIDON GL, LENNERNAS H, SHAH VP, CRISON JR: A theoretical basis for a biopharmaceutical classification: the correlation of M vitro drug prodruct dissolution and in vivo bioavalability. Pharm. Res. (1995) 12:413–420.
  • ALBERT A: Chemical aspects of selective toxicity. Nature (1958) 182:421–423.
  • FRIEDRICHSEN GM, JAKOBSEN P, TAUB M, BEGTRUP M: Application of enzymatically stable dipeptides for enhancement of intestinal permeability. Synthesis and M vitro evaluation of dipeptide-coupled compounds. Bioorg. Med. Chem. (2001) 9:2625–2632.
  • TAUB ME, LARSEN BD, STEFFANSEN B, FROKJAER S: 13-carboxylic acid esterified D-Asp-Ala retains a high affinity for the oligopeptide transporter in Caco-2 monolayers. hat. Flamm. (1997) 146:205–212.
  • TAUB ME, MOSS BA, STEFFANSEN B, FROKJAER S: Ofigopeptide transporter mediated uptake and transport of D-Asp(OBzfi-Ala, D-Glu(OBz1)-Ala, and D-Ser(Bzfi-Ala in filter-grown Caco-2 monolayers. Intl Pharm. (1998) 174:223–232.
  • STEFFANSEN B, LEPIST El, TAUB ME, LARSEN BD, FROKJAER S, LENNERNAS H: Stability, metabolism and transport of D-Asp(OBz1)-Ala - a model prodrug with affinity for the oligopeptide transporter. Eur. I Amin. Sci. (1999) 8:67–73.
  • LEPIST El, KUSK T, LARSEN DH et al.: Stability and in vitro metabolism of dipeptide model prodrugs with affinity for the oligopeptide transporter. Eur. I Amin. Sci. (2000) 11:43–50.
  • NIELSEN CU, ANDERSEN R, BRODIN B, FROKJAER S, STEFFANSEN B: Model prodrugs for the intestinal oligopeptide transporter: model drug release in aqueous solution and in various biological media.' Control. Release (2001) 73:21–30.
  • THOMSEN AE, FRIEDRICHSEN GM, SORENSEN AH et al.: Prodrugs of purine and pyrimidine analogues for the intestinal di/ tri-peptide transporter hPepTl: Drug release in aqueous media and in vitro metabolism.' Control Release (2002) (In Press).
  • BAT JP: pG1u-L-Dopa-Pro: a tripeptide prodrug targeting the intestinal peptide transporter for absorption and tissue enzymes for conversion. Flamm. Res. (1995) 12:1101–1104.
  • TAMAI I, NAKANISHIT, NAKAHARA H et al.: Improvement of L-dopa absorption by dipeptidyl derivation, utilizing peptide transporter PepTl. Flamm. Sci. (1998) 87:1542–1546.
  • TANAKA M, HOHMURA M, NISHI T, SATO K, HAYAKAWA I: Antimicrobial activity of DU-6681a, a parent compound of novel oral carbapenem DZ-2640. Antimicrob. Agents Chen-tot/7er. (1997) 41:1260–1268.
  • DE MIRANDA P, BURNETTE TC: Metabolic fate and pharmacokinetics of the acyclovir prodrug valaciclovir in cynomolgus monkeys. Drug Metab. Dispos. (1994) 22:55–59.
  • JUNG D, DORR A: Single-dose pharmacokinetics of valganciclovir in HIV-and CMV- seropositive subjects. Clin. Phannacol. (1999) 39:800–804.
  • WELLER S, BLUM MR, DOUCETTE M et al.: Pharmacokinetics of the acyclovir pro-drug valaciclovir after escalating single- and multiple-dose administration to normal volunteers. Clin. Pharinacol. Ther. (1993) 54:595–605.
  • JAKOBSEN MA, DE MIRANDA P, CEDERBERG DM et al.: Human pharmacokinetics and tolerance of oral ganciclovir. Antimicrob. Agents Cheinother. (1987) 31:1251–1254.
  • SOUL-LAWTON J, SEABER E, ON N, WOOTTON R, ROLAN P, POSNER J: Absolute bioavailability and metabolic disposition of valaciclovir, the L-valyl ester of acyclovir, following oral administration to humans. Antimicrob. Agents Cheinother. (1995) 39:2759–2764.
  • GANAPATHY ME, HUANG W, WANG H, GANAPATHY V, LEIBACH FH: Valacyclovir: a substrate for the intestinal and renal peptide transporters PEPT1 and PEPT2. Biochein. Biophys. Res. Commun. (1998) 246:470–475.
  • FORBES B, WILSON CG, GUMBLETON M: Temporal dependence of ectopeptidase expression in alveolar epithelial cell culture: implications for study of peptide absorption. Int. j Pharm.(1999) 180:225–234.
  • NOVOTNY A, XIANG J, STUMMER W, TEUSCHER NS, SMITH DE, KEEP RF: Mechanisms of 5-aminolevulinic acid uptake at the choroid plexus. JNeurochem. (2000) 75:321–328.
  • TEUSCHER NS, NOVOTNY A, KEEP RF, SMITH DE: Functional evidence for presence of PepT2 in rat choroid plexus: Studies with glycylsarcosine. j Pharmacol. Exp. Ther. (2000) 294:494–499.
  • TEUSCHER NS, KEEP RF, SMITH DE: PEPT2-mediated uptake of neuropeptides in rat choroid plexus. Pharm. Res. (2001) 18:807–813.
  • NEALE JH, BZDEGA T, WROBLEWSKA B: N-Acetylaspartylglutamate: the most abundant peptide neurotransmitter in the mammalian central nervous system. .1 Neurochem. (2000) 75:443–452.
  • SHAVE E, PUSS L, LAWRANCE ML, FITZGIBBON T, STASTNY F, BALCARVJ: Regional distribution and pharmacological characteristics of MN- acetyl-aspartyl-glutamate (NAAG) binding sites in rat brain. Neurochem. hat. (2001) 38:53–62.
  • BASU SK, HAWORTH IS, BOLGER MB, LEE VH: Proton-driven dipeptide uptake in primary cultured rabbit conjunctival epithelial cells. Invest. Ophthalmol. Vis. Sci. (1998) 39:2365–2373.
  • YANG JJ, UEDA H, KIM K, LEE VH: Meeting future challenges in topical ocular drug delivery: development of an air-interfaced primary culture of rabbit conjunctival epithelial cells on a permeable support for drug transport studies. J. Control Release (2001) 65:1–11.
  • TAK RV, PAL D, GAO H, DEY S, MITRA AK: Transport of acyclovir ester prodrugs through rabbit cornea and SIRC-rabbit corneal epithelial cell line. j Pharm. Sci. (2001) 90:1505–1515.
  • GONZALEZ DE, COVITZ KM, SADEE W, MRSNY RJ: An oligopeptide transporter is expressed at high levels in the pancreatic carcinoma cell lines AsPc-1 and Capan-2. Cancer Res. (1998) 58:519–525.
  • •A description of cancer cell lines with high expression of peptide transporters.
  • NAKANISHI T, TAMAI I, TAKAKI A, TSUJI A: Cancer cell-targeted drug delivery utilizing oligopeptide transport activity. Int. Cancer (2000) 88:274–280.
  • BOYD CA, WARD MR: A micro-electrode study of oligopeptide absorption by the small intestinal epithelium of Necturus maculosus.J. Physiol Lond. (1982) 324:411–428.
  • FERRARIS RP, DIAMOND J, KWAN WW: Dietary regulation of intestinal transport of the dipeptide carnosine. Am. Physiol (1988) 255:G143–G150.
  • RAJENDRAN VM, BERTELOOT A, ISHIKAWA Y, KHAN AH, RAMASWAMY K: Transport of carnosine by mouse intestinal brush-border membrane vesicles. Biochim. Biophys. Acta (1984) 778:443–448.
  • SUPURAN CT, BRIGANTI F, TILLI S, CHEGWIDDEN WR, SCOZZAFAVA A: Carbonic anhydrase inhibitors: sulfonamides as antitumor agents? Bioorg. Med. Chem. (2001) 9:703–714.
  • SUPURAN CT, SCOZZAFAVA A: Carbonic anhydrase inhibitors: aromatic sulfonamides and disulfonamides act as efficient tumor growth inhibitors. .1 Enzyme Inhib. (2000) 15:597–610.
  • MASTROLORENZO A, SCOZZAFAVA A, SUPURAN CT: 4- Toluenesulfonylureido derivatives of amines, amino acid and dipeptides: a novel class of potential antitumor agents. Ear. Phann. Sci. (2000) 11:325–332.
  • NIELSEN CU, SUPURAN CT, SCOZZAFAVA A, FROKJAER S, STEFFANSEN B, BRODIN B: Transport characteristics of L-carnosine and the anticancer derivative 4-toluenesulfonylureido-carnosine in a human epithelial cell line. Pliant]. Res. (2002) (In Press).
  • KUPCZYK-SUBOTKOWSKA L, TAMURA K, PAL D et al.: Derivatives of melphalan designed to enhance drug accumulation in cancer cells. j. Drug Target. (1997) 4:359–370.
  • LEE VH, SPORTY JL, FANDY TE: Pharmacogenomics of drug transporters: the next drug delivery challenge. Adv. Drug Deify. Rey (2001) 50\(Suppl. 1):S33–S40.
  • SAITO H, TERADA T, OKUDA M, SASAKI S, INUI K: Molecular cloning and tissue distribution of rat peptide transporter PEPT2. Biochlin. Biophys. Acta (1996) 1280:173–177.
  • EDDY EP, WOOD C, MILLER J, WILSON G, HIDALGO IJ: A comparison of the affinities of dipeptides and antibiotics for the di-hripeptide transporter in Caco-2 cells. Int. J. Pitapat. (1995) 115:79–86.
  • HAN HK, RHIE JK, OH DM et al: CHO/hPEPT1 cells overexpressing the human peptide transporter (hPEPT1) as an alternative in vitromodel for peptidomimetic drugs. I Phann. Sci. (1999) 88:347–350.
  • TAKAHASHI K, NAKAMURA N, TERADA T et al.: Interaction of P-lactam antibiotics with HE/peptide cotransporters in rat renal brush-border membranes. Phannacol. Exp. The]: (1998) 286:1037–1042.
  • GANAPATHY ME, PRASAD PD, MACKENZIE B, GANAPATHY V, LEIBACH FH: Interaction of anionic cephalosporins with the intestinal and renal peptide transporters PEPT 1 and PEPT 2. Broclutn. Biophys. Acta (1997) 1324:296–308.
  • MATSUMOTO S, SAITO H, INUI K: Transport characteristics of ceftibuten, a new cephaloporin antibiotic, via the apical H+/dipeptide cotransport system in human intestinal cell line Caco-2: regulation by cell growth. Phann. Res. (1995) 12:1483–1487.
  • KRAMER W, GIRBIG F, GUTJAHR U, KOWALEWSKI S, ADAM F, SCHIEBLER W: Intestinal absorption ofl3-lactam antibiotics and oligopeptides. Functional and stereospecific reconstitution of the oligopeptide transport system from rabbit small intestine. Eur:j. Bloc:hem (1992) 204:923–930.
  • DANTZIG AH, BERGIN L: Uptake of the cephalosporin, cephalexin, by a dipeptide transport carrier in the human intestinal cell line, caco-2. Biochlin. Biophys. Acta (1990) 1027:211-217. BRANDSCH M, BRANDSCH C, GANAPATHY ME, CHEW CS, GANAPATHY V, LEIBACH FH: Influence of proton and essential histidyl residues on the transport kinetics of the HE/peptide cotransport systems in intestine (PEPT 1) and kidney (PEPT 2). Biochlin .Biophys. Acta (1997) 1324:251–262.
  • DANTZIG AH, DUCKWORTH DC, TABAS LB: Transport mechanisms responsible for the absorption of loracarbef, cefixime, and cefuroxime axetil into human intestinal Caco-2 cells. Biochlin. Biophys. Acta (1994) 1191:7–13.
  • TEMPLE CS, BOYD CA: Proton-coupled oligopeptide transport by rat renal cortical brush border membrane vesicles: a functional analysis using ACE inhibitors to determine the isoform of the transporter. Biochim. Biophys. Acta (1998) 1373:277–281.

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.