192
Views
69
CrossRef citations to date
0
Altmetric
Review

Antitubulin agents for the treatment of cancer – a medicinal chemistry update

, , &
Pages 647-691 | Published online: 25 Apr 2006

Bibliography

  • AMOS LA: Focusing-in on microtubules. Curr. Opin. Struct. Biol. (2000) 10(2):236-241.
  • MARGOLIS RL, WILSON L: Microtubule treadmilling: what goes around comes around. Bioessays (1998) 20(10):830-836.
  • WANG LG, LIU XM, KREIS W, BUDMAN DR: The effect of antimicrotubule agents on signal transduction pathways of apoptosis: a review. Cancer Chemother. Pharmacol. (1999) 44(5):355-361.
  • JORDAN A, HADFIELD JA, LAWRENCE NJ, MCGOWN AT: Tubulin as a target for anticancer drugs: agents which interact with the mitotic spindle. Med. Res. Rev. (1998) 18(4):259-296.
  • SHI Q, CHEN K, MORRIS-NATSCHKE SL, LEE KH: Recent progress in the development of tubulin inhibitors as antimitotic antitumor agents. Curr. Pharm. Des. (1998) 4(3):219-248.
  • JORDAN MA, WILSON L: Microtubules as a target for anticancer drugs. Nat. Rev. Cancer (2004) 4(4):253-265.
  • DUFLOS A, KRUCZYNSKI A, BARRET JM: Novel aspects of natural and modified vinca alkaloids. Curr. Med. Chem. Anticancer Agents (2002) 2(1):55-70.
  • VON HOFF DD: The taxoids: same roots, different drugs. Semin. Oncol. (1997) 24(4, Suppl.13):S13-13-S13-10.
  • MARKMAN M: Managing taxane toxicities. Support. Care Cancer (2003) 11(3):144-147.
  • JORDAN MA: Mechanism of action of antitumor drugs that interact with microtubules and tubulin. Curr. Med. Chem. Anticancer Agents (2002) 2(1):1-17.
  • DENG L, TATEBE S, LIN-LEE YC, ISHIKAWA T, KUO MT: MDR and MRP gene families as cellular determinant factors for resistance to clinical anticancer agents. Cancer Treat. Res. (2002) 112:49-66.
  • GOTTESMAN MM, PASTAN I: Biochemistry of multidrug resistance mediated by the multidrug transporter. Ann. Rev. Biochem. (1993) 62:385-427.
  • SAMUELS BL, HOLLIS DR, ROSNER GL et al.: Modulation of vinblastine resistance in metastatic renal cell carcinoma with cyclosporine A or tamoxifen: a cancer and leukemia group B study. Clin. Cancer Res. (1997) 3(11):1977-1984.
  • ZHOU J, GIANNAKAKOU P: Targeting microtubules for cancer chemotherapy. Curr. Med. Chem. Anticancer Agents (2005) 5(1):65-71.
  • GIANNAKAKOU P, SACKETT DL, KANG YK et al.: Paclitaxel-resistant human ovarian cancer cells have mutant β-tubulins that exhibit impaired paclitaxel-driven polymerization. J. Biol.Chem. (1997) 272(27):17118-17125.
  • GONZALEZ-GARAY ML, CHANG L, BLADE K, MENICK DR, CABRAL F: A β-tubulin leucine cluster involved in microtubule assembly and paclitaxel resistance. J. Biol. Chem. (1999) 274(34):23875-23882.
  • KAVALLARIS M, KUO DY, BURKHART CA et al.: Taxol-resistant epithelial ovarian tumors are associated with altered expression of specific β-tubulin isotypes. J. Clin. Invest. (1997) 100(5):1282-1293.
  • KAVALLARIS M, TAIT AS, WALSH BJ et al.: Multiple microtubule alterations are associated with Vinca alkaloid resistance in human leukemia cells. Cancer Res. (2001) 61(15):5803-5809.
  • GONCALVES A, BRAGUER D, KAMATH K et al.: Resistance to Taxol in lung cancer cells associated with increased microtubule dynamics. Proc. Natl. Acad. Sci. USA (2001) 98(20):11737-11742.
  • ZHANG CC, YANG JM, WHITE E et al.: The role of MAP4 expression in the sensitivity to paclitaxel and resistance to Vinca alkaloids in p53 mutant cells. Oncogene (1998) 16(12):1617-1624.
  • ZHANG CC, YANG JM, BASH-BABULA J et al.: DNA damage increases sensitivity to vinca alkaloids and decreases sensitivity to taxanes through p53-dependent repression of microtubule-associated protein 4. Cancer Res. (1999) 59(15):3663-3670.
  • CAVALETTI G, CAVALLETTI E, MONTAGUTI P et al.: Effect on the peripheral nervous system of the short-term intravenous administration of paclitaxel in the rat. Neurotoxicology (1997) 18(1):137-145.
  • PELTIER AC, RUSSELL JW: Recent advances in drug-induced neuropathies. Curr. Opin. Neurol. (2002) 15(5):633-638.
  • VALE RD, FLETTERICK RJ: The design plan of kinesin motors. Ann. Rev. Cell Dev. Biol. (1997) 13:745-777.
  • SAKOWICZ R, FINER JT, BERAUD C et al.: Antitumor activity of a kinesin inhibitor. Cancer Res. (2004) 64(9):3276-3280.
  • DUHL DM, RENHOWE PA: Inhibitors of kinesin motor proteins-research and clinical progress. Curr. Opin. Drug Discov. Devel. (2005) 8(4):431-436.
  • LI Q, SHAM HL: Discovery and development of antimitotic agents that inhibit tubulin polymerisation for the treatment of cancer. Expert Opin. Ther. Patents (2002) 12(11):1663-1702.
  • NEWMAN JD, CRAGG GM, SNADER KM: Natural products as sources of new drugs over the period 1981 – 2002. J. Nat. Prod. (2003) 66(7):1022-1037.
  • SIMMONS TL, ANDRIANASOLO E, MCPHAIL K, FLATT P, GERWICK WH: Marine natural products as anticancer drugs. Mol. Cancer Ther. (2005) 4(2):333-342.
  • SASSE F, STEINMETZ H, HEIL J, HOFLE G, REICHENBACH H: Tubulysins, new cytostatic peptides from myxobacteria acting on microtubuli. Production, isolation, physico-chemical and biological properties. J. Antibiot. (2000) 53(9):879-885.
  • STEINMETZ H, GLASER N, HERDTWECK E et al.: Isolation, crystal and solution structure determination, and biosynthesis of tubulysins – powerful inhibitors of tubulin polymerization from myxobacteria. Angew. Chem. Int. Ed. Engl. (2004) 43(37):4888-4892.
  • TALPIR R, BENAYAHU Y, KASHMAN Y, PANNELL L, SCHLEYER M: Hemiasterlin and geodiamolide TA; two new cytotoxic peptides from the marine sponge Hemiasterella minor (Kirkpatrick). Tetrahedron Lett. (1994) 35(25):4453-4456.
  • COLEMAN JE, DE SILVA ED, KONG F, ANDERSEN RJ, ALLEN TM: Cytotoxic peptides from the marine sponge Cymbastela sp. Tetrahedron (1995) 51(39):10653-10662.
  • GAMBLE WR, DURSO NA, FULLER RW et al.: Cytotoxic and tubulin-interactive hemiasterlins from Auletta sp. and Siphonochalina spp. sponges. Bioorg. Med. Chem. (1999) 7(8):1611-1615.
  • CREWS P, FARIAS JJ, EMRICH R, KEIFER PA: Milnamide A, an unusual cytotoxic tripeptide from the marine sponge Auletta cf. constricta. J. Org. Chem. (1994) 59(11):2932-2934.
  • ANDERSON HJ, COLEMAN JE, ANDERSEN RJ, ROBERGE M: Cytotoxic peptides hemiasterlin, hemiasterlin A and hemiasterlin B induce mitotic arrest and abnormal spindle formation. Cancer Chemother. Pharmacol. (1997) 39(3):223-226.
  • BAI R, DURSO NA, SACKETT DL, HAMEL E: Interactions of the sponge-derived antimitotic tripeptide hemiasterlin with tubulin: comparison with dolastatin 10 and cryptophycin 1. Biochemistry (1999) 38(43):14302-14310.
  • NIEMAN JA, COLEMAN JE, WALLACE DJ et al.: Synthesis and antimitotic/cytotoxic activity of hemiasterlin analogues. J. Nat. Prod. (2003) 66(2):183-199.
  • ZASK A, BIRNBERG G, CHEUNG K et al.: Synthesis and biological activity of analogues of the antimicrotubule agent N,β,β-trimethyl-L-phenylalanyl-N(1)-[(1S,2E)-3-carboxy-1-isopropylbut-2-enyl]-N(1),3-dimethyl-L-valinamide (HTI-286). J. Med. Chem. (2004) 47(19):4774-4786.
  • LOGANZO F, DISCAFANI CM, ANNABLE T et al.: HTI-286, a synthetic analogue of the tripeptide hemiasterlin, is a potent antimicrotubule agent that circumvents P-glycoprotein-mediated resistance in vitro and in vivo. Cancer Res. (2003) 63(8):1838-1845.
  • YAMASHITA A, NORTON EB, KAPLAN JA et al.: Synthesis and activity of novel analogs of hemiasterlin as inhibitors of tubulin polymerization: modification of the A segment. Bioorg. Med. Chem. Lett. (2004) 14(21):5317-5322.
  • NIU C, SMITH D, ZASK A et al.: Tubulin inhibitors. Synthesis and biological activity of HTI-286 analogs with B-segment heterosubstituents. Bioorg. Med. Chem. Lett. (2004) 14(16):4329-4332.
  • ZASK A, BIRNBERG G, CHEUNG K et al.: D-piece modifications of the hemiasterlin analog HTI-286 produce potent tubulin inhibitors. Bioorg. Med. Chem. Lett. (2004) 14(16):4353-4358.
  • LI E, CLARK AM, HUFFORD CD: Antifungal evaluation of pseudolaric acid B, a major constituent of Pseudolarix kaempferi. J. Nat. Prod. (1995) 58(1):57-67.
  • WONG VK, CHIU P, CHUNG SS et al.: Pseudolaric acid B, a novel microtubule-destabilizing agent that circumvents multidrug resistance phenotype and exhibits antitumor activity in vivo. Clin. Cancer Res. (2005) 11(16):6002-6011.
  • JOSHI HC, ZHOU J: Noscapine and analogues as potential chemotherapeutic agents. Drug News Perspect. (2000) 13(9):543-546.
  • ZHOU J, LIU M, LUTHRA R et al.: EM012, a microtubule-interfering agent, inhibits the progression of multidrug-resistant human ovarian cancer both in cultured cells and in athymic nude mice. Cancer Chemother. Pharmacol. (2005) 55(5):461-465.
  • ZHOU J, LIU M, ANEJA R, CHANDRA R, JOSHI HC: Enhancement of paclitaxel-induced microtubule stabilization, mitotic arrest, and apoptosis by the microtubule-targeting agent EM012. Biochem. Pharmacol. (2004) 68(12):2435-2441.
  • ANDERSON JT, TING AE, BOOZER S et al.: Identification of novel and improved antimitotic agents derived from noscapine. J. Med. Chem. (2005) 48(23):7096-7098.
  • ZHOU J, LIU M, ANEJA R, CHANDRA R, JOSHI HC: Enhancement of paclitaxel-induced microtubule stabilization, mitotic arrest, and apoptosis by the microtubule-targeting agent EM012. Biochem. Pharmacol. (2004) 68(12):2435-2441.
  • TOZER GM, KANTHOU C, BAGULEY BC: Disrupting tumour blood vessels. Nat. Rev. Cancer (2005) 5(6):423-435.
  • DAVIS PD, DOUGHERTY GJ, BLAKEY DC et al.: ZD6126: a novel vascular-targeting agent that causes selective destruction of tumor vasculature. Cancer Res. (2002) 62(24):7247-7253.
  • BERGEMANN S, BRECHT R, BUTTNER F et al.: Novel B-ring modified allocolchicinoids of the NCME series: design, synthesis, antimicrotubule activity and cytotoxicity. Bioorg. Med. Chem. (2003) 11(7):1269-1281.
  • HSIEH HP, LIOU JP, MAHINDROO N: Pharmaceutical design of antimitotic agents based on combretastatins. Curr. Pharm. Des. (2005) 11(13):1655-1677.
  • NAM NH: Combretastatin A-4 analogues as antimitotic antitumor agents. Curr. Med. Chem. (2003) 10(17):1697-1722.
  • LAWRENCE NJ, HEPWORTH LA, RENNISON D, MCGOWN AT, HADFIELD JA: Synthesis and anticancer activity of fluorinated analogues of combretastatin A-4. J. Fluor. Chem. (2003) 123(1):101-108.
  • GAUKROGER K, HADFIELD JA, LAWRENCE NJ, NOLAN S, MCGOWN AT: Structural requirements for the interaction of combretastatins with tubulin: how important is the trimethoxy unit? Org. Biomol. Chem. (2003) 1(17):3033-3037.
  • KONG Y, GREMBECKA J, EDLER MC et al.: Structure-based discovery of a boronic acid bioisostere of combretastatin A-4. Chem. Biol. (2005) 12(9):1007-1014.
  • LIOU JP, CHANG JY, CHANG CW et al.: Synthesis and structure–activity relationships of 3-aminobenzophenones as antimitotic agents. J. Med. Chem. (2004) 47(11):2897-2905.
  • TRON GC, PAGLIAI F, DEL GROSSO E, GENAZZANI AA, SORBA G: Synthesis and cytotoxic evaluation of combretafurazans. J. Med. Chem. (2005) 48(9):3260-3268.
  • LIOU JP, CHANG YL, KUO FM et al.: Concise synthesis and structure–activity relationships of combretastatin A-4 analogues, 1-aroylindoles and 3-aroylindoles, as novel classes of potent antitubulin agents. J. Med. Chem. (2004) 47(17):4247-4257.
  • BERTRAND S, BARTHELEMY I, OLIVA MA et al.: Folding, stability and polymerization properties of FtsZ chimeras with inserted tubulin loops involved in the interaction with the cytosolic chaperonin CCT and in microtubule formation. J. Mol. Biol. (2005) 346(1):319-330.
  • KEMNITZER W, DREWE J, JIANG S et al.: Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 1. Structure–activity relationships of the 4-aryl group. J. Med. Chem. (2004) 47(25):6299-6310.
  • KEMNITZER W, KASIBHATLA S, JIANG S et al.: Discovery of 4-aryl-4H-chromenes as a new series of apoptosis inducers using a cell- and caspase-based high-throughput screening assay. 2. Structure–activity relationships of the 7- and 5-, 6-, 8-positions. Bioorg. Med. Chem. Lett. (2005) 15(21):4745-4751.
  • KASIBHATLA S, GOURDEAU H, MEEROVITCH K et al.: Discovery and mechanism of action of a novel series of apoptosis inducers with potential vascular targeting activity. Mol. Cancer Ther. (2004) 3(11):1365-1374.
  • DUCKI S, FORREST R, HADFIELD JA et al.: Potent antimitotic and cell growth inhibitory properties of substituted chalcones. Bioorg. Med. Chem. Lett. (1998) 8(9):1051-1056.
  • PRINZ H, ISHII Y, HIRANO T et al.: Novel benzylidene-9(10H)-anthracenones as highly active antimicrotubule agents. Synthesis, antiproliferative activity, and inhibition of tubulin polymerization. J. Med. Chem. (2003) 46(15):3382-3394.
  • GERWICK WH, PROTEAU PJ, NAGEL DG et al.: Structure of curacin A, a novel antimitotic, antiproliferative and brine shrimp toxic natural product from the marine Cyanobacterium Lyngbya majuscule. J. Org. Chem. (1994) 59(6):1243-1245.
  • VERDIER-PINARD P, LAI JY, YOO HD et al.: Structure–activity analysis of the interaction of curacin A, the potent colchicine site antimitotic agent, with tubulin and effects of analogs on the growth of MCF-7 breast cancer cells. Mol. Pharmacol. (1998) 53(1):62-76.
  • VERDIER-PINARD P, SITACHITTA N, ROSSI JV et al.: Biosynthesis of radiolabeled curacin A and its rapid and apparently irreversible binding to the colchicine site of tubulin. Arch. Biochem. Biophys. (1999) 370(1):51-58.
  • WIPF P, REEVES JT, DAY BW: Chemistry and biology of curacin A. Curr. Pharm. Des. (2004) 10(12):1417-1437.
  • JAN ST, MAO C, VASSILEV AO, NAVARA CS, UCKUN FM: COBRA-1, a rationally-designed epoxy-THF containing compound with potent tubulin depolymerizing activity as a novel anticancer agent. Bioorg. Med. Chem. Lett. (2000) 10(11):1193-1197.
  • NAITO H, OHSUKI S, ATSUMI R et al.: Synthesis and antitumor activity of novel pyrimidinyl pyrazole derivatives. III. Synthesis and antitumor activity of 3-phenylpiperazinyl-1-trans-propenes. Chem. Pharm. Bull. (2005) 53(2):153-163.
  • NAITO H, OHSUKI S, SUGIMORI M et al.: Synthesis and antitumor activity of novel pyrimidinyl pyrazole derivatives. II. Optimization of the phenylpiperazine moiety of 1-[5-methyl-1-(2-pyrimidinyl)-4-pyrazolyl]-3-phenylpiperazinyl-1-trans-pro penes. Chem. Pharm. Bull. (2002) 50(4):453-462.
  • HAO D, RIZZO JD, STRINGER S et al.: Preclinical antitumor activity and pharmacokinetics of methyl-2-benzimidazolecarbamate (FB642). Invest. New Drugs (2002) 20(3):261-270.
  • LISOWSKI V, LEONCE S, KRAUS-BERTHIER L et al.: Design, synthesis, and evaluation of novel thienopyrrolizinones as antitubulin agents. J. Med. Chem. (2004) 47(6):1448-1464.
  • SEGRETI JA, POLAKOWSKI JS, KOCH KA et al.: Tumor selective antivascular effects of the novel antimitotic compound ABT-751: an in vivo rat regional hemodynamic study. Cancer Chemother. Pharmacol. (2004) 54(3):273-281.
  • YOSHIMATSU K, YAMAGUCHI A, YOSHINO H, KOYANAGI N, KITOH K: Mechanism of action of E7010, an orally active sulfonamide antitumor agent: inhibition of mitosis by binding to the colchicine site of tubulin. Cancer Res. (1997) 57(15):3208-3213.
  • YOSHINO H, UEDA N, NIIJIMA J et al.: Novel sulfonamides as potential, systemically active antitumor agents. J. Med. Chem. (1992) 35(13):2496-2497.
  • SUPURAN CT: Indisulam: an anticancer sulfonamide in clinical development. Expert Opin. Investig. Drugs (2003) 12(2):283-287.
  • OWA T, YOSHINO H, OKAUCHI T et al.: Discovery of novel antitumor sulfonamides targeting G1 phase of the cell cycle. J. Med. Chem. (1999) 42(19):3789-3799.
  • TAKAGI M, HONMURA T, WATANABE S et al.: In vivo antitumor activity of a novel sulfonamide, HMN-214, against human tumor xenografts in mice and the spectrum of cytotoxicity of its active metabolite, HMN-176. Invest. New Drugs (2003) 21(4):387-399.
  • TANAKA H, OHSHIMA N, IKENOYA M et al.: HMN-176, an active metabolite of the synthetic antitumor agent HMN-214, restores chemosensitivity to multidrug-resistant cells by targeting the transcription factor NF-Y. Cancer Res. (2003) 63(20):6942-6947.
  • KIRBY S, GERTLER SZ, MASON W et al.: Phase II study of T138067-sodium in patients with malignant glioma: trial of the National Cancer Institute of Canada Clinical Trials Group. Neuro-oncology (2005) 7(2):183-188.
  • KIM S, PARK JH, KOO SY et al.: Novel diarylsulfonylurea derivatives as potent antimitotic agents. Bioorg. Med. Chem. Lett. (2004) 14(24):6075-6078.
  • CAI SX, NGUYEN B, JIA S et al.: Discovery of substituted N-phenyl nicotinamides as potent inducers of apoptosis using a cell- and caspase-based high throughput screening assay. J. Med. Chem. (2003) 46(12):2474-2481.
  • ZHANG HZ, DREWE J, TSENG B, KASIBHATLA S, CAI SX: Discovery and SAR of indole-2-carboxylic acid benzylidene-hydrazides as a new series of potent apoptosis inducers using a cell-based HTS assay. Bioorg. Med. Chem. (2004) 12(13):3649-3655.
  • MORITA H, KOYAMA K, SUGIMOTO Y, KOBAYASHI J: Antimitotic activity and reversal of breast cancer resistance protein-mediated drug resistance by stilbenoids from Bletilla striata. Bioorg. Med. Chem. Lett. (2005) 15(4):1051-1054.
  • EDSALL AB, MOHANAKRISHNAN AK, YANG D et al.: Effects of altering the electronics of 2-methoxyestradiol on cell proliferation, on cytotoxicity in human cancer cell cultures, and on tubulin polymerization. J. Med. Chem. (2004) 47(21):5126-5139.
  • TOWLE MJ, SALVATO KA, BUDROW J et al.: In vitro and in vivo anticancer activities of synthetic macrocyclic ketone analogues of halichondrin B. Cancer Res. (2001) 61(3):1013-1021.
  • KUZNETSOV G, TOWLE MJ, CHENG H et al.: Induction of morphological and biochemical apoptosis following prolonged mitotic blockage by halichondrin B macrocyclic ketone analog E7389. Cancer Res. (2004) 64(16):5760-5766.
  • JORDAN MA, KAMATH K, MANNA T et al.: The primary antimitotic mechanism of action of the synthetic halichondrin E7389 is suppression of microtubule growth. Mol. Cancer Ther. (2005) 4(7):1086-1095.
  • ZHENG W, SELETSKY BM, PALME MH et al.: Macrocyclic ketone analogues of halichondrin B. Bioorg. Med. Chem. Lett. (2004) 14(22):5551-5554.
  • WANG Y, HABGOOD GJ, CHRIST WJ et al.: Structure–activity relationships of halichondrin B analogues: modifications at C.30-C.38. Bioorg. Med. Chem. Lett. (2000) 10(10):1029-1032.
  • SELETSKY BM, WANG Y, HAWKINS LD et al.: Structurally simplified macrolactone analogues of halichondrin B. Bioorg. Med. Chem. Lett. (2004) 14(22):5547-5550.
  • EDLER MC, FERNANDEZ AM, LASSOTA P, IRELAND CM, BARROWS LR: Inhibition of tubulin polymerization by vitilevuamide, a bicyclic marine peptide, at a site distinct from colchicine, the vinca alkaloids, and dolastatin 10. Biochem. Pharmacol. (2002) 63(4):707-715.
  • SCHMIDT EW, RAVENTOS-SUAREZ C, BIFANO M et al.: Scleritodermin A, a cytotoxic cyclic peptide from the lithistid sponge Scleritoderma nodosum. J. Nat. Prod. (2004) 67(3):475-478.
  • ELNAKADY YA, SASSE F, LUNSDORF H, REICHENBACH H: Disorazol A1, a highly effective antimitotic agent acting on tubulin polymerization and inducing apoptosis in mammalian cells. Biochem. Pharmacol. (2004) 67(5):927-935.
  • KOIZUMI Y, ARAI M, TOMODA H, OMURA S: Oxaline, a fungal alkaloid, arrests the cell cycle in M phase by inhibition of tubulin polymerization. Biochim. Biophys. Acta. (2004) 1693(1):47-55.
  • SUNAZUKA T, SHIRAHATA T, TSUCHIYA S et al.: A concise stereoselective route to the indoline spiroaminal framework of neoxaline and oxaline. Org. Lett. (2005) 7(5):941-943.
  • CHANG JY, CHANG CY, KUO CC et al.: Salvinal, a novel microtubule inhibitor isolated from Salvia miltiorrhizae Bunge (Danshen), with antimitotic activity in multidrug-sensitive and -resistant human tumor cells. Mol. Pharmacol. (2004) 65(1):77-84.
  • MILLER ML, OJIMA I: Chemistry and chemical biology of taxane anticancer agents. Chem. Rec. (2001) 1(3):195-211.
  • FANG WS, LIANG XT: Recent progress in structure–activity relationship and mechanistic studies of taxol analogues. Mini Rev. Med. Chem. (2005) 5(1):1-12.
  • GUERITTE F: General and recent aspects of the chemistry and structure–activity relationships of taxoids. Curr. Pharm. Des. (2001) 7(13):1229-1249.
  • SAMPATH D, DISCAFANI CM, LOGANZO F et al.: MAC-321, a novel taxane with greater efficacy than paclitaxel and docetaxel in vitro and in vivo. Mol. Cancer Ther. (2003) 2(9):873-884.
  • FERLINI C, RASPAGLIO G, MOZZETTI S et al.: The seco-taxane IDN5390 is able to target class III β-tubulin and to overcome paclitaxel resistance. Cancer Res. (2005) 65(6):2397-2405.
  • TAKEDA Y, YOSHINO T, UOTO K et al.: New highly active taxoids from 9β-dihydrobaccatin-9,10-acetals. Part 3. Bioorg. Med. Chem. Lett. (2003) 13(2):185-190.
  • TAKEDA Y, UOTO K, CHIBA J et al.: New highly active taxoids from 9β-dihydrobaccatin-9,10-acetals. Part 4. Bioorg. Med. Chem. (2003) 11(20):4431-4447.
  • TARRANT JG, COOK D, FAIRCHILD C et al.: Synthesis and biological activity of macrocyclic taxane analogues. Bioorg. Med. Chem. Lett. (2004) 14(10):2555-2558.
  • GANESH T, GUZA RC, BANE S et al.: The bioactive taxol conformation on beta-tubulin: experimental evidence from highly active constrained analogs. Proc. Natl. Acad. Sci. USA (2004) 101(27):10006-10011.
  • GENEY R, SUN L, PERA P et al.: Use of the tubulin bound paclitaxel conformation for structure-based rational drug design. Chem. Biol. (2005) 12(3):339-348.
  • KE S, MILAS L, CHARNSANGAVEJ C, WALLACE S, LI C: Potentiation of radioresponse by polymer–drug conjugates. J. Control. Release (2001) 74(1-3):237-242.
  • MILAS L, MASON KA, HUNTER N, LI C, WALLACE S: Poly(L-glutamic acid)–paclitaxel conjugate is a potent enhancer of tumor radiocurability. Int. J. Radiat. Oncol. Biol. Phys. (2003) 55(3):707-712.
  • LANGER CJ: Dilemmas in management: the controversial role of chemotherapy in PS 2 advanced NSCLC and the potential role of CT-2103 (Xyotax™). Oncologist (2004) 9(4):398-405.
  • ALTMANN KH: Recent developments in the chemical biology of epothilones. Curr. Pharm. Des. (2005) 11(13):1595-1613.
  • ALTMANN KH: Epothilone B and its analogs – a new family of anticancer agents. Mini Rev. Med. Chem. (2003) 3(2):149-158.
  • WARTMANN M, ALTMANN KH: The biology and medicinal chemistry of epothilones. Curr. Med. Chem. Anticancer Agents (2002) 2(1):123-148.
  • WATKINS EB, CHITTIBOYINA AG, JUNG JC, AVERY MA: The epothilones and related analogues-a review of their syntheses and anti-cancer activities. Curr. Pharm. Des. (2005) 11(13):1615-1653.
  • CHOU TC, ZHANG XG, BALOG A et al.: Desoxyepothilone B: an efficacious microtubule-targeted antitumor agent with a promising in vivo profile relative to epothilone B. Proc. Natl. Acad. Sci. USA (1998) 95(16):9642-9647.
  • CHOU TC, ZHANG XG, HARRIS CR et al.: Desoxyepothilone B is curative against human tumor xenografts that are refractory to paclitaxel. Proc. Natl. Acad. Sci. USA (1998) 95(26):15798-15802.
  • CHOU TC, DONG H, RIVKIN A et al.: Design and total synthesis of a superior family of epothilone analogues, which eliminate xenograft tumors to a nonrelapsable state. Angew. Chem. Int. Ed. Engl. (2003) 42(39):4762-4767.
  • RIVKIN A, YOSHIMURA F, GABARDA AE et al.: Complex target-oriented total synthesis in the drug discovery process: the discovery of a highly promising family of second generation epothilones. J. Am. Chem. Soc. (2003) 125(10):2899-2901.
  • YOSHIMURA F, RIVKIN A, GABARDA AE et al.: Synthesis and conformational analysis of (E)-9,10-dehydroepothilone B: a suggestive link between the chemistry and biology of epothilones. Angew. Chem. Int. Ed. Engl. (2003) 42(22):2518-2521.
  • WU KD, CHO YS, KATZ J et al.: Investigation of antitumor effects of synthetic epothilone analogs in human myeloma models in vitro and in vivo. Proc. Natl. Acad. Sci. USA (2005) 102(30):10640-10645.
  • CHOU TC, DONG H, ZHANG X, TONG WP, DANISHEFSKY SJ: Therapeutic cure against human tumor xenografts in nude mice by a microtubule stabilization agent, fludelone, via parenteral or oral route. Cancer Res. (2005) 65(20):9445-9454.
  • RIVKIN A, CHOU TC, DANISHEFSKY SJ: On the remarkable antitumor properties of fludelone: how we got there. Angew. Chem. Int. Ed. Engl. (2005) 44(19):2838-2850.
  • NICOLAOU KC, NAMOTO K, LI J et al.: Synthesis and biological evaluation of 12,13-cyclopropyl and 12,13-cyclobutyl epothilones. Chembiochem (2001) 2(1):69-75.
  • REGUEIRO-REN A, LEAVITT K, KIM SH et al.: SAR and pH stability of cyano-substituted epothilones. Org. Lett. (2002) 4(22):3815-3818.
  • LOW JA, WEDAM SB, LEE JJ et al.: Phase II clinical trial of ixabepilone (BMS-247550), an epothilone B analog, in metastatic and locally advanced breast cancer. J. Clin. Oncol. (2005) 23(12):2726-2734.
  • KAMATH AV, CHANG M, LEE FY, ZHANG Y, MARATHE PH: Preclinical pharmacokinetics and oral bioavailability of BMS-310705, a novel epothilone B analog. Cancer Chemother. Pharmacol. (2005) 56(2):145-153.
  • BUEY RM, DIAZ JF, ANDREU JM et al.: Interaction of epothilone analogs with the paclitaxel binding site: relationship between binding affinity, microtubule stabilization, and cytotoxicity. Chem. Biol. (2004) 11(2):225-236.
  • SCHMID P, KIEWE P, KUEHNHARDT D et al.: A Phase I study of the novel, third generation epothilone ZK-EPO in patients with advanced solid tumors. J. Clin. Oncol. (2005) 23(Suppl.16):2051.
  • ISBRUCKER RA, CUMMINS J, POMPONI SA, LONGLEY RE, WRIGHT AE: Tubulin polymerizing activity of dictyostatin-1, a polyketide of marine sponge origin. Biochem. Pharmacol. (2003) 66(1):75-82.
  • MIGLIETTA A, GABRIEL L, APPENDINO G, BOCCA C: Biological properties of jatrophane polyesters, new microtubule-interacting agents. Cancer Chemother. Pharmacol. (2003) 51(1):67-74.
  • WEST LM, NORTHCOTE PT, BATTERSHILL CN: Peloruside A: a potent cytotoxic macrolide isolated from the New Zealand marine sponge Mycale sp. J. Org. Chem. (2000) 65(2):445-449.
  • HOOD KA, BACKSTROM BT, WEST LM et al.: The novel cytotoxic sponge metabolite peloruside A, structurally similar to bryostatin-1, has unique bioactivity independent of protein kinase C. Anticancer. Drug. Des. (2001) 16(2-3):155-166.
  • HOOD KA, WEST LM, ROUWE B et al.: Peloruside A, a novel antimitotic agent with paclitaxel-like microtubule-stabilizing activity. Cancer Res. (2002) 62(12):3356-3360.
  • GAITANOS TN, BUEY RM, DIAZ JF et al.: Peloruside A does not bind to the taxoid site on beta-tubulin and retains its activity in multidrug-resistant cell lines. Cancer Res. (2004) 64(15):5063-5067.
  • LIAO X, WU Y, DE BRABANDER JK: Total synthesis and absolute configuration of the novel microtubule-stabilizing agent peloruside A. Angew. Chem. Int. Ed. Engl. (2003) 42(14):1648-1652.
  • MORITA H, DOTA T, KOBAYASHI J: Antimitotic activity of glaupalol-related coumarins from Glaucidium palmatum. Bioorg. Med. Chem. Lett. (2004) 14(14):3665-3668.
  • KARJALA G, CHAN Q, MANZO E, ANDERSEN RJ, ROBERGE M: Ceratamines, structurally simple microtubule-stabilizing antimitotic agents with unusual cellular effects. Cancer Res. (2005) 65(8):3040-3043.
  • MANZO E, VAN SOEST R, MATAINAHO L, ROBERGE M, ANDERSEN RJ: Ceratamines A and B, antimitotic heterocyclic alkaloids isolated from the marine sponge Pseudoceratina sp. collected in Papua New Guinea. Org. Lett. (2003) 5(24):4591-4594.
  • HAMEL E, SACKETT DL, VOURLOUMIS D, NICOLAOU KC: The coral-derived natural products eleutherobin and sarcodictyins A and B: effects on the assembly of purified tubulin with and without microtubule-associated proteins and binding at the polymer taxoid site. Biochemistry (1999) 38(17):5490-5498.
  • NAKAO Y, YOSHIDA S, MATSUNAGA S, FUSETANI N: (Z)-Sarcodictyin A, a new highly cytotoxic diterpenoid from the soft coral Bellonella albiflora. J. Nat. Prod. (2003) 66(4):524-527.
  • CHOY N, SHIN Y, NGUYEN PQ et al.: Simplified discodermolide analogues: synthesis and biological evaluation of 4-epi-7-dehydroxy-14,16-didemethyl-(+)-discodermolides as microtubule-stabilizing agents. J. Med. Chem. (2003) 46(14):2846-2864.
  • LAI YY, HUANG LJ, LEE KH et al.: Synthesis and biological relationships of 3′,6-substituted 2-phenyl-4-quinolone-3-carboxylic acid derivatives as antimitotic agents. Bioorg. Med. Chem. (2005) 13(1):265-275.
  • CHEN Z, MERTA PJ, LIN NH et al.: A-432411, a novel indolinone compound that disrupts spindle pole formation and inhibits human cancer cell growth. Mol. Cancer Ther. (2005) 4(4):562-568.
  • TAO W, SOUTH VJ, ZHANG Y et al.: Induction of apoptosis by an inhibitor of the mitotic kinesin KSP requires both activation of the spindle assembly checkpoint and mitotic slippage. Cancer Cell (2005) 8(1):49-59.
  • BERGNES G, BREJC K, BELMONT L: Mitotic kinesins: prospects for antimitotic drug discovery. Curr. Top. Med. Chem. (2005) 5(2):127-145.
  • GARBER K: Divide and conquer: new generation of drugs targets mitosis. J. Natl. Cancer Inst. (2005) 97(12):874-876.
  • MAYER TU, KAPOOR TM, HAGGARTY SJ et al.: Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science (1999) 286(5441):971-974.
  • LUO L, CARSON JD, DHANAK D et al.: Mechanism of inhibition of human KSP by monastrol: insights from kinetic analysis and the effect of ionic strength on KSP inhibition. Biochemistry (2004) 43(48):15258-15266.
  • COCHRAN JC, GATIAL JE III, KAPOOR TM, GILBERT SP: Monastrol inhibition of the mitotic kinesin Eg5. J. Biol. Chem. (2005) 280(13):12658-12667.
  • GARTNER M, SUNDER-PLASSMANN N, SEILER J et al.: Development and biological evaluation of potent and specific inhibitors of mitotic Kinesin Eg5. Chembiochem (2005) 6(7):1173-1177.
  • SAKOWICZ R, BERDELIS MS, RAY K et al.: A marine natural product inhibitor of kinesin motors. Science (1998) 280(5361):292-295.
  • JACKSON JR, AUGER KR, GILMARTIN A et al.: A resistance mechanism for the KSP inhibitor ispinesib implicates point mutations in the compound binding site. AACR-NCI-EORTC. Dallas, TX, USA (13-16 November, 2005).
  • SUTTON D, ZHANG SY, DIAMOND M et al.: Relationship between the antitumor activity of ispinesib, a novel KSP inhibitor, and neutropenia in a human xenograft model. AACR-NCI-EORTC. Dallas, TX, USA (13-16 November, 2005).
  • MILLER K, NG C, ANG P et al.: Phase II, open label study of ispinesib in patients with locally advanced or metastatic breast cancer. San Antonio Breast Cancer Symposium (SABCS). San Antonio, USA (8-11 December, 2005).
  • BLAGDEN S, SEEBARAN G, MOLIFE R et al.: Phase I study of iIspinesib in combination with docetaxel in patients with advanced solid tumors. AACR-NCI-EORTC. Dallas, TX, USA (13-16 November, 2005).
  • SUTTON D, DIAMOND M, ONORI J et al.: Cisplatin enhances the activity of ospinesib, a novel KSP inhibitor, against murine P388 lymphocytic leukemia. AACR-NCI-EORTC. Dallas, TX, USA (13-16 November, 2005).
  • CALVO E, CHU Q, TILL E et al.: Phase I study of ispinesib in combination with capecitabine in patients with advanced solid tumors. AACR-NCI-EORTC. Dallas, TX, USA (13-16 November, 2005).
  • HOLEN KD, BELAN CP, WILDING G et al.: Phase I study to determine tolerability and pharmacokinetics (PK) of SB-743921, a novel kinesin spindle protein (KSP) inhibitor. American Society of Clinical Oncology (ASCO). Orlando,USA (13-17 May, 2005).
  • COX CD, BRESLIN MJ, MARIANO BJ et al.: Kinesin spindle protein (KSP) inhibitors. Part 1: The discovery of 3,5-diaryl-4,5-dihydropyrazoles as potent and selective inhibitors of the mitotic kinesin KSP. Bioorg. Med. Chem. Lett. (2005) 15(8):2041-2045.
  • HOTHA S, YARROW JC, YANG JG et al.: HR22C16: a potent small-molecule probe for the dynamics of cell division. Angew. Chem. Int. Ed. Engl. (2003) 42(21):2379-2382.
  • MARCUS AI, PETERS U, THOMAS SL et al.: Mitotic kinesin inhibitors induce mitotic arrest and cell death in Taxol-resistant and -sensitive cancer cells. J. Biol. Chem. (2005) 280(12):11569-11577.
  • SUNDER-PLASSMANN N, SARLI V, GARTNER M et al.: Synthesis and biological evaluation of new tetrahydro-beta-carbolines as inhibitors of the mitotic kinesin Eg5. Bioorg. Med. Chem. (2005) 13(22):6094-6111.
  • WANI MC, TAYLOR HL, WALL ME, COGGON P, MCPHAIL AT: Plant antitumor agents. VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia. J. Am. Chem. Soc. (1971) 93(9):2325-2327.
  • SCHIFF PB, FANT J, HORWITZ SB: Promotion of microtubule assembly in vitro by taxol. Nature (1979) 277(5698):665-667.

Patents

Websites

  • http://clinicaltrials.gov/ct/show/NCT00057382?order=1 T138067 versus doxorubicin in chemotherapy-naive, unresectable, hepatocellular carcinoma patients (2006).
  • http://www.cytokinetics.com/cyto/pipeline_about Cytokinetics pipeline (2006).
  • http://www.combinatorx.com/pipeline/oncology.html Combinator oncology program (2006).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.