110
Views
21
CrossRef citations to date
0
Altmetric
Review

NQO1-directed antitumour quinones

&
Pages 649-665 | Published online: 29 Jun 2007

Bibliography

  • BEALL HD, WINSKI SL: Mechanism of action of quinone containing alkylating agents: NQO1-directed drugs development. Front. Biosci. (2000) 5:639-648.
  • SARTORELLI AC: Therapeutic attack of hypoxic cells of solid tumors: presidential address. Cancer Res. (1988) 48:775-778.
  • GUTIERREZ PL: The role of NAD(P)H oxidoreductase (DT-diaphorase) in the bioactivation of quinone containing agents: a review. Free Radic. Biol. Med. (2000) 29:263-275.
  • JAISWAL AK: Regulation of genes encoding NAD(P)H:quinone oxidoreductases. Free Radic. Biol. Med. (2000) 29:254-262.
  • DEHN DL, SIEGEL D, SWANN E, MOODY CJ, ROSS D: Biochemical, cytotoxic, and genotoxic effects of ES936, a mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1 in cellular systems. Mol. Pharmacol. (2003) 64:714-720.
  • BIANCHET M, FAIG M, AMZEL LM: Structure and mechanism of NAD[P]H:quinone acceptor oxidoreductases (NQO). Methods Enzymol. (2004) 382:144-174.
  • LIND C, CADENAS E, HOCHSTEIN P, ERNSTER I: DT-diaphorase: purification, properties, and function. Methods Enzymol. (1990) 186:287-301.
  • LI R, BIANCHET MA, TALALAY P, AMZEL LM: The three-dimensional structure of NAD(P)H:quinone reductase, a flavoprotein involved in cancer chemoprotection and chemotherapy: mechanism of the two-electron reduction. Proc. Natl. Acad. Sci. USA (1995) 92:8846-8850.
  • CHEN S, KNOX R, LEWIS AD et al.: Catalytic properties of NAD(P)H:quinone acceptor oxidoreductase: study involving mouse, rat, human, and mouse-rat chimeric enzymes. Mol. Pharmacol. (1995) 47:934-939.
  • CHEN S, KNOX R, WU K et al.: Molecular basis of the catalytic differences among DT-diaphorase of human, rat, and mouse. J. Biol. Chem. (1997) 272:1437-1439.
  • FAIG M, BIANCHET MA, WINSKI S et al.: Structure-based development of anticancer drugs: complexes of NAD(P)H:quinone oxidoreductase 1 with chemotherapeutic quinones. Structure (2001) 8:659-667.
  • EDLUND C, ELHAMMER A, DALLNER G: Distribution of newly synthesized DT-diaphorase in rat liver. Biosci. Rep. (1982) 2:861-865.
  • ELIASSON M, BOSTRÖM M, DEPIERRE JW: Levels and subcellular distributions of detoxifying enzymes in the ovarian corpus luteum of the pregnant and non-pregnant pig. Biochem. Pharmacol. (1999) 58:1287-1292.
  • JAISWAL AK: Characterization and partial purification of microsomal NAD(P)H:quinone oxidoreductases. Arch. Biochem. Biophys. (2000) 375:62-68.
  • WINSKI SL, KOUTALOS Y, BENTLEY DL, ROSS D: Subcellular localization of NAD(P)H:quinone oxidoreductase 1 in human cancer cells. Cancer Res. (2002) 62:1420-1424.
  • SCHLAGER JJ, POWIS G: Cytosolic NAD(P)H:(quinone-acceptor) oxidoreductase in human normal and tumour tissue: effects of cigarette smoking and alcohol. Int. J. Cancer (1990) 45:403-409.
  • ROSS D, SIEGEL D, SCHATTENBERG DG, SUN XM, MORAN JL: Cell-specific activation and detoxification of benzene metabolites in mouse and human bone marrow: identification of target cells and a potential role for modulation of apoptosis in benzene toxicity. Environ. Health Perspect. (1996) 104:1177-1182.
  • MORAN JL, SIEGEL D, ROSS D: A potential mechanism underlying the increased susceptibility of individuals with a polymorphism in NAD(P)H:quinone oxidoreductase 1 (NQO1) to benzene toxicity. Proc. Natl. Acad. Sci. USA (1999) 96:8150-8155.
  • SIEGEL D, ROSS D: Immunodetection of NAD(P)H:quinone oxidoreductase 1 (NQO1) in human tissues. Free Radic. Biol. Med. (2000) 29:246-253.
  • JAISWAL AK, BELL DW, RADJENDIRANE V, TESTA JR: Localization of human NQO1 gene to chromosome 16q22 and NQO2-6p25 and associated polymorphism. Pharmacogenetics (1999) 9:413-418.
  • JAISWAL AK: Human NAD(P)H:quinone oxidoreductase (NQO1) gene structure and induction by dioxin. Biochemistry (1991) 30:10647-10653.
  • RADJENDIRANE V, JOSEPH P, JAISWALL AK: Gene expression of DT diaphorase (NQO1) in cancer cells. In: Oxidative Stress and Signal Transduction. Forman HJ, Cadenas E (Eds), Chapman and Hall, New York (1997):441-475.
  • WALEH NS, CALAOAGAN J, MURPHY BJ, KNAPP AM, SUTHERLAND RM, LADEROUTE KR: The redox-sensitive human antioxidant responsive element induces gene expression under low oxygen conditions. Carcinogenesis (1998) 19:1333-1337.
  • DHAKSHINAMOORTHY S, JAIN AK, BLOOM DA, JAISWAL AK: Bach1 competes with Nrf2 leading to negative regulation of the antioxidant response element (ARE)-mediated NAD(P)H:quinone oxidoreductase 1 gene expression and induction in response to antioxidants. J. Biol. Chem. (2005) 280:16891-16900.
  • BELLO RI, GóMEZ-DíAZ C, NAVARRO F, ALCAíN FJ, VILLALBA JM: Expression of NAD(P)H:quinone oxidoreductase 1 in HeLa cells. Role of hydrogen peroxide and growth phase. J. Biol. Chem. (2001) 276:44379-44384.
  • CÓRDOBA-PEDREGOSA MC, VILLALBA JM, GONZÁLEZ-ARAGÓN D, BELLO RI, ALCAÍN FJ: Cellular density and cell type are key factors in growth inhibition induced by 2,5bis[1-aziridinyl]-1,4 benzoquinone (DZQ). Anticancer Res. (2006) 26:3535-3540.
  • TADA M, YOKOSUKA O, FUKAI K et al.: Hypermethylation of NAD(P)H: quinone oxidoreductase 1 (NQO1) gene in human hepatocellular carcinoma. J. Hepatol. (2005) 42:511-519.
  • DANSON S, WARD TH, BUTLER J, RANSON M: DT-diaphorase: a target for new anticancer drug. Cancer Treat. Rev. (2004) 30:437-449.
  • DIGBY T, LEITH MK, THLIVERIS JA, BEGLEITER A: Effect of NQO1 induction on the antitumor activity of RH1 in human tumors in vitro and in vivo. Cancer Chemother. Pharmacol. (2005) 56:307-316.
  • WINSKI SL, SWANN E, HARGREAVES RHJ et al.: Relationship between NAD(P)H:quinone oxidoreductase 1 (NQO1) levels in a series of stably transfected cell lines and susceptibility to antitumor quinones. Biochem. Pharmacol. (2001) 61:1509-1516.
  • JAISWAL AK: Human NAD(P)H:quinone oxidoreductase. Gene structure, activity and tissue specific expression. J. Biol. Chem. (1994) 269:14502-14508.
  • TRAVER RD, HORIKOSHI T, DANENBERG KD et al.: NAD(P)H:quinone oxidoreductase gene expression in human colon carcinoma cells: characterization of a mutation which modulates DT-diaphorase activity and mitomycin sensitivity. Cancer Res. (1992) 52:797-802.
  • TRAVER RD, SIEGEL D, BEALL HD et al.: Characterization of a polymorphism in NAD(P)H:quinone oxidoreductase (DT-diaphorase). Br. J. Cancer. (1997) 75:69-75.
  • SIEGEL D, ANWAR A, WINSKI SL, KEPA JK, ZOLMAN K, ROSS D: Rapid polyubiquitination and proteasomal degradation of a mutant form of NAD(P)H:quinone oxidoreductase 1. Mol. Pharmacol. (2001) 59:263-268.
  • GAEDIGK A, TYNDALE RF, JURIMA-ROMET M, SELLERS EM, GRANT DM, LEEDER JS: NAD(P)H:quinone oxidoreductase: polymorphisms and allele frequencies in Caucasian, Chinese and Canadian Native Indian and Inuit populations. Pharmacogenetics (1998) 8:305-313.
  • PAN SS, FORREST GL, AKMAN SA, HU LT: NAD(P)H:quinone oxidoreductase expression and mitomycin C resistance developed by human colon cancer HCT 116 cells. Cancer Res. (1995) 55:330-335.
  • Lind C, Hochstein P, Ernster L: DT-diaphorase as a quinone reductase: a cellular control device against semiquinone and superoxide formation. Arch. Biochem. Biophys. (1982) 216:178-185.
  • ROSS D, SIEGEL D: NAD(P)H:quinone oxidoreductase 1 (NQO1, DT-diaphorase), functions and pharmacogenetics. Methods Enzymol. (2004) 382:115-144.
  • KELSEY KT, ROSS D, TRAVER RD et al.: Ethnic variation in the prevalence of a common NAD(P)H quinone oxidoreductase polymorphism and its implications for anti-cancer chemotherapy. Br. J. Cancer (1997) 76:852-854.
  • SHARP SY, KELLAND LR, VALENTI MR, BRUNTON MA, HOBBS S, WORKMAN P: Establishment of an iogenic human colon tumor model for NQO1 gene expression: application to investigate the role of DT-diaphorase in bioreductive drug activation in vitro and in vivo. Mol. Pharmacol. (2000) 58:1146-1155.
  • PINK JJ, PLANCHON SM, TAGLIARINO C, VARNES ME, SIEGEL D, BOOTHMAN DA: NAD(P)H:quinone oxidoreductase activity is the principal determinant of β-lapachone cytotoxicity. J. Biol. Chem. (2000) 275:5416-5424.
  • HASSANI M, CAI W, HOLLEY DC et al.: Novel lavendamycin analogues as antitumor agents: synthesis, in vitro cytotoxicity, structure-metabolism, and computational molecular modeling studies with NAD(P)H:quinone oxidoreductase. J. Med. Chem. (2005) 48:7733-7749.
  • GUO W, REIGAN P, SIEGEL D, ZIRROLLI J, GUSTAFSON D, ROSS D: Formation of 17-allylamino-demethoxygeldanamycin (17-AAG) hydroquinone by NAD(P)H:quinone oxidoreductase 1: role of 17-AAG hydroquinone in heat shock protein 90 inhibition. Cancer Res. (2005) 65:10006-10015.
  • SCHOR NA, MORRIS HP: The activity of the D-T diaphorase in experimental hepatomas. Cancer Biochem. Biophys. (1977) 2:5-9.
  • PICKETT CB, WILLIAMS JB, LU AY, CAMERON RG: Regulation of glutathione transferase and DT-diaphorase mRNAs in persistent hepatocyte nodules during chemical hepatocarcinogenesis. Proc. Natl. Acad. Sci. USA (1984) 81:5091-5095.
  • SCHOR NA: The use of the D-T diaphorase for the detection of foci of early neoplastic transformation in rat liver. Cancer Lett. (1978) 5:167-171.
  • SCHOR NA, CORNELISSE CJ: Biochemical and quantitative histochemical study of reduced pyridine nucleotide dehydrogenation by human colonic carcinomas. Cancer Res. (1983) 43:4850-4855.
  • BATIST K, COWAN KH, CURT G, KATKI AG, MAYER CE: Increased glutathione S-transferase activity (GST) in drug treated human breast cancer cells. Proc. Am. Assoc. Cancer Res. (1985) 26:A345.
  • EICKELMANN P, EBERT T, WARSKULAT U, SCHULZ WA, SIES H: Expression of NAD(P)H:quinone oxidoreductase and glutathione S-transferases a and p in human renal cell carcinoma and in kidney cancer-derived cell lines. Carcinogenesis (1994) 15:219-225.
  • FITZSIMMONS SA, WORKMAN P, REVER M, PAULL K, CAMALIER R, LEWIS AD: Reductase enzyme expression across the National Cancer Institute Tumor Cell Line Panel: correlation with sensitivity to mitomycin C and EO9. J. Natl. Cancer Inst. (1996) 88:259-269.
  • BASU S, BROWN JE, FLANNIGAN GM et al.: Immunohistochemical analysis of NAD(P)H:quinone reductase and NADPH cytochrome P450 reductase in human superficial bladder tumours: relationship between tumour enzymology and clinical outcome following intravesical mitomycin C therapy. Int. J. Cancer (2004) 109:703-709.
  • TANAKA T, TANIMOTO K, OTANI K et al.: Concise prediction models of anticancer efficacy of 8 drugs using expression data from 12 selected genes. Int. J. Cancer (2004) 111:617-626.
  • CULLEN JJ, HINKHOUSE MM, GRADY M et al.: Dicumarol inhibition of NADPH:quinone oxidoreductase induces growth inhibition of pancreatic cancer via a superoxide-mediated mechanism. Cancer Res. (2003) 63:5513-5520.
  • DU J, DANIELS DH, ASBURY C et al.: Mitochondrial production of reactive oxygen species mediate dicumarol-induced cytotoxicity in cancer cells. J. Biol. Chem. (2006) 281:37416-37426.
  • GONZALEZ-ARAGON D, ARIZA J, VILLALBA JM: Dicoumarol impairs mitochondrial electron transport and pyrimidine biosynthesis in human myeloid leukemia HL-60 cells. Biochem. Pharmacol. (2007) 73:427-439.
  • DEHN DL, SIEGEL D, ZAFAR KS et al.: 5-Methoxy-1,2-dimethyl-3-[(4-nitrophenoxy)-methyl]indole-4,7-dione, a mechanism-based inhibitor of NAD(P)H:quinone oxidoreductase 1, exhibits activity against human pancreatic cancer in vitro and in vivo. Mol. Cancer Ther. (2006) 5:1702-1709.
  • PHILLIPS RM: Prospect for bioreductive drug development. Expert Opin. Invest. Drugs (1998) 7:905-928.
  • ROSS D, KEPA JK, WINSKI SL, BEALL HD, ANWAR A, SIEGEL D: NAD(P)H:quinone oxidoreductase 1 (NQO1): chemoprotection, bioactivation, gene regulation and genetic polymorphisms. Chem. Biol. Inter. (2000) 129:77-97.
  • BEGLEITER A: Clinical applications of quinone-containing alkylating agents. Front. Biosci. (2000) 5:e153-e171.
  • GAN Y, MO Y, KALNS JE et al.: Expression of DT-diaphorase and cytochrome P450 reductase correlates with mitomycin C activity and human bladder tumors. Clin. Cancer Res. (2001) 7:1313-1319.
  • WANG X, DOHERTY G, LEITH M, CURPHEY T, BEGLEITER A: Enhanced cytotoxicity of mitomycin C in human tumour cells with inducers of DT-diaphorase. Br. J. Cancer (1999) 80:1223-1230.
  • FLEMING RA, DREES J, LOGGIE BW et al.: Clinical significance of a NAD(P)H:quinone oxidoreductase 1 polymorphism in patients with disseminated peritoneal cancer receiving intraperitoneal hyperthermic chemotherapy with mitomycin C. Pharmacogenetics (2002) 12:31-37.
  • SEOW HA, PENKETH PG, BELCOURT MF, TOMASZ M, ROCKWELL S, SARTORELLI AC: Nuclear overexpression of NAD(P)H:quinone oxidoreductase 1 in Chinese hamster ovary cells increases the cytotoxicity of mitomycin C under aerobic and hypoxic conditions. J. Biol. Chem. (2004) 279:31606-31612.
  • CUMMINGS J, SPANSWICK VJ, TOMASZ M, SMYTH JF: Enzymology of mitomycin C metabolic activation in tumour tissue. Biochem. Pharmacol. (1998) 56:405-414.
  • PHILLIPS RM, BURGER AM, FIEBIG HH, DOUBLE JA: Genotyping of NAD(P)H:quinone oxidoreductase (NQO1) in a panel of human tumor xenografts: relationship between genotype status, NQO1 activity and the response of xenografts to mitomycin C chemotherapy in vivo. Biochem. Pharmacol. (2001) 62:1371-1377.
  • HENDRIKS HR, PIZAO PE, BERGER DP et al.: EO9: a novel bioreductive alkylating indoloquinone with preferential solid tumour activity and lack of bone marrow toxicity in preclinical models. Eur. J. Cancer (1993) 29A:897-906.
  • SCHELLENS JH, PLANTING AS, van ACKER BA et al.: Phase I and pharmacologic study of the novel indoloquinone bioreductive alkylating cytotoxic drug E09. J. Natl. Cancer Inst. (1994) 86:906-912.
  • MCLEOD HL, GRAHAM MA, AAMDAL S, SETANOIANS A, GROOT Y, LUND B: Phase I pharmacokinetics and limited sampling strategies for the bioreductive alkylating drug EO9. EORTC early clinical trials group. Eur. J. Cancer (1996) 32A:1518-1522.
  • CUMMINGS J, SPANSWICK VJ, GARDINER J, RITCHIE A, SMYTH JF: Pharmacological and biochemical determinants of the antitumour activity of the indoloquinone EO9. Biochem. Pharmacol. (1998) 55:253-260.
  • DIRIX LY, TONNENSEN F, CASSIDY J et al.: EO9 Phase II study in advanced breast, gastric, pancreatic and colorectal carcinoma by the EORTC Early Clinical Studies Group. Eur. J. Cancer (1996) 32A:2019-2022.
  • PAVDILIS N, HANAUSKE AR, GAMUCCIT et al.: A randomized Phase II study with two schedules of the novel indoloquinone EO9 in non-small-cell lung cancer: a study of the EORTC Early Clinical Studies Group (ECSG). Anal. Oncol. (1996) 7:529-531.
  • LOADMAN P, BIBBY MC, PHILLIPS RM: Pharmacological approach towards the development of indolequinone bioreductive drugs based on the clinically inactive agent EO9. Br. J. Pharmacol. (2002) 137:701-709.
  • PURI R, PALITV, LOADMAN PM et al.: Phase I/II pilot study of intravesical apaziquone (EO9) for superficial bladder cancer. J. Urol. (2006) 176:1344-1348.
  • VAN DER HEIJDEN AG, MOONEN PM, CORNEL EB et al.: Phase II marker lesion study with intravesical instillation of apaziquone for superficial bladder cancer: toxicity and marker response. J. Urol. (2006) 176:1349-1353.
  • VAN DER SCHOOT SC, VAINCHTEIN LD, BEIJNEN JH et al.: EO-9 bladder instillations: formulation selection based on stability characteristics and in vitro simulation studies. Int. J. Pharm. (2007) 329:135-141.
  • ITO H: Experimental study and clinical application of a new combination chemotherapy with cis-platinum, adriamycin and carboquone in patients with advanced prostate cancer. Nippon Ika Daigaku Zasshi (1995) 62:456-468.
  • KONDO T, SAKAMOTO J, NAKAZATO H: Alternating immunochemotherapy of advanced gastric carcinoma: a randomized comparison of carbazilquinone and PSK to carbazilquinone in patients with curative gastric resection. Biotherapy (1991) 3:287-295.
  • TAKENAKA T, MARUYAMA K, KINOSHITA T et al.: A prospective study of surgery and adjuvant chemotherapy for primary gastric lymphoma Stage II. Br. J. Cancer (1997) 76:1484-1488.
  • SAKATA Y, KOMATSU Y, TAKAGI S et al.: Randomized controlled study of mitomycin C/carboquone/5-fluorouracil/OK-432 (MQ-F-OK) therapy and mitomycin C/5-fluorouracil/doxorubicin (FAM) therapy against advanced liver cancer. Cancer Chemother. Pharmacol. (1989) 23:S9-S12.
  • KOBAYASHI K, HINO M, KURANE S et al.: A comparative randomized Phase II study of CDDP, CDDP-carboquone (CQ) and CDDP-etoposide as second-line chemotherapy in small cell lung cancer (SCLC). Gan To Kagaku Ryoho (1989) 2:207-212.
  • MAENPAA JU, HEINONEN E, HINKKA et al.: The subrenal capsule assay in selecting chemotherapy for ovarian cancer: a prospective randomized trial. Gynecol. Oncol. (1995) 57:294-298.
  • QIU X, FORMAN J, SCHÖNTHAL AH, CADENAS E: Induction of p21 mediated by reactive oxygen species formed during metabolism of aziridinylbenzoquinones by HCT116 cells. J. Biol. Chem. (1996) 271:31915-31921.
  • QIU X, CADENAS E: The role of NAD(P)H:quinone oxidoreductase in quinone-mediated p21 induction in human colon carcinoma cells. Arch. Biochem. Biophys. (1997) 346:241-251.
  • BAI J, CEDERBAUM AI: Catalase protects HepG2 cells from apoptosis induced DNA-damaging agents by accelerating the degradation of p53. J. Biol. Chem. (2003) 278:4660-4667.
  • GIBSON NW, HARTLEY JA, BUTLER J, SIEGEL D, ROSS D: Relationship between DT-diaphorase-mediated metabolism of a series of aziridinylbenzoquinones and DNA damage and cytotoxicity. Mol. Pharmacol. (1992) 42:531-536.
  • WINSKI SL, HARGREAVES RHJ, BUTLER J, ROSS D: A new screening system for NAD(P)H:quinone oxidoreductase (NQO1)-directed antitumor quinones: identification of a new aziridinylbenzoquinone, RH1, as a NQO1-directed. Antitumor Agent Clin. Cancer Res. (1998) 4:3083-3088.
  • DEHN DL, INAYAT-HUSSAIN SH, ROSS D: RH1 induces cellular damage in an NAD(P)H:quinone oxidoreductase 1-dependent manner: relationship between DNA cross-linking, cell cycle perturbations, and apoptosis. J. Pharmacol. Exp. Ther. (2005) 313:771-779.
  • NEMEIKAITĖ-CČĖNIENĖ A, DRINGELIENĖ A, ŠARLAUSKAS J, CČĖNAS N: Role of NAD(P)H:quinone oxidoreductase (NQO1) in apoptosis induction by aziridinylbenzoquinones RH1 and MeDZQ. Acta Biochim. Pol. (2005) 52:937-941.
  • DEHN DL, WINSKI SL, ROSS D: Development of a new isogenic cell-xenograft system for evaluation of NAD(P)H:quinone oxidoreductase-directed antitumor quinones: evaluation of the activity of RH1. Clin. Cancer Res. (2004) 10:3147-3155.
  • KIM JY, PATTERSON AV, STRATFORD IJ, HENDRY JH: The importance of DT-diaphorase and hypoxia in the cytotoxicity of RH1 in human breast and non-small cell lung cancer cell lines. Anticancer Drugs (2004) 15:71-77.
  • NEMEIKAITĖ-CČĖNIENĖ A, SARLAUSKAS J, ANUSEVICČIUS Z, NIVINSKAS H, CČĖNAS N: Cytotoxicity of RH1 and related aziridinylbenzoquinones: involvement of activation by NAD(P)H:quinone oxidoreductase (NQO1) and oxidative stress. Arch. Biochem. Biophys. (2003) 416:110-118.
  • HASINOFF BB, BEGLEITER A: The reductive activation of the antitumor drug RH1 to its semiquinone free radical by NADPH cytochrome P450 reductase and by HCT116 human colon cancer cells. Free Rad. Res. (2006) 40:947-978.
  • TUDOR G, ALLEY M, NELSON CM, et al.: Cytotoxicity of RH1: NAD(P)H:quinone acceptor oxidoreductase (NQO1)-independent oxidative stress and apoptosis induction. Anticancer Drugs (2005) 16:381-391.
  • DI FRANCESCO AM, WARD TH, BUTLER J: Diaziridinylbenzoquinones. Methods Enzymol. (2004) 382:174-193.
  • ELLIOTT MA, FORD SJ, WALKER AA, HALBERT GW, HARGREAVES RH: Development of a lyophilised RH1 formulation: a novel DT diaphorase activated alkylating agent. J. Pharm. Pharmacol. (2002) 54:487-492.
  • WARD TH, DANSON S, MCGOWN AT et al.: Preclinical evaluation of the pharmacodynamic properties of 2,5-diaziridinyl-3-hydroxymethyl-6-methyl-1,4-benzoquinone. Clin. Cancer Res. (2005) 11:2695-2701.
  • PARDEE AB, LI YZ, LI CJ: Cancer therapy with b-lapachone. Curr. Cancer Drug Targets (2002) 2:227-242.
  • LI CJ, AVERBOUKH L, PARDEE AB: β-lapachone, a novel DNA topoisomerase I inhibitor with a mode of action different from camptothecin. J. Biol. Chem. (1993) 268:22463-22468.
  • LI CJ, WANG C, PARDEE AB: Induction of apoptosis by b-lapachone in human prostate cancer cells. Cancer Res. (1995) 55:3712-3715.
  • Li CJ, Li YZ, Pinto AV, Pardee AB: Potent inhibition of tumor survival in vivo by b-lapachone plus taxol: combining drugs imposes different artificial checkpoints. Proc. Natl. Acad. Sci. USA (1999) 96:13369-13374.
  • REINICKE KE, BEY EA, BENTLE MS et al.: Development of b-lapachone prodrugs for therapy against human cancer cells with elevated NAD(P)H:quinone oxidoreductase 1 levels. Clin. Cancer Res. (2005) 11:3055-3064.
  • LI Y, LI CJ, YU D, PARDEE AB: Potent induction of apoptosis by b-lapachone in human multiple myeloma cell lines and patient cells. Mol. Med. (2000) 12:1008-1015.
  • PLANCHON SM, PINK JJ, TAGLIARINO C, BORNMANN WG, VARNES ME, BOOTHMAN DA: β-Lapachone-induced apoptosis in human prostate cancer cells: involvement of NQO1/xip3. Exp. Cell Res. (2001) 267:95-106.
  • PARK HJ, CHOI EK, CHOI J et al.: Heat-induced up-regulation of NAD(P)H:quinone oxidoreductase potentiates anticancer effects of b-lapachone. Clin. Cancer Res. (2005) 11:8866-8871.
  • BOOTHMAN DA, GREER S, PARDEE AB: Potentiation of halogenated pyrimidine radiosensitizers in human carcinoma cells by b-lapachone (3,4-dihydro-2,2-dimethyl-2H-naphtho[1,2-b]pyran-5,6-dione), a novel DNA repair inhibitor. Cancer Res. (1987) 47:5361-5366.
  • SUZUKI M, AMANO M, CHOI J et al.: Synergistic effects of radiation and b-lapachone in DU-145 human prostate cancer cells in vitro. Radiat Res. (2006) 165:525-531.
  • BEY EA, WUERZBERGER-DAVIS SM, PINK JJ et al.: Mornings with art, lessons learned: feedback regulation, restriction threshold biology, and redundancy govern molecular stress responses. J. Cell Physiol. (2006) 209:604-610.
  • LI Y, SUN X, LAMONT JT, PARDEE AB, LI CJ: Selective killing of cancer cells by b-lapachone: direct checkpoint activation as a strategy against cancer. Proc. Natl. Acad. Sci. USA (2003) 100:2674-2678.
  • BENTLE MS, REINICKE KE, BEY EA, SPITZ DR, BOOTHMAN DA: Calcium-dependent modulation of poly(ADP-ribose) polymerase-1 alters cellular metabolism and DNA repair. J. Biol. Chem. (2006) 281:33684-33696.
  • TAGLIARINO C, PINK JJ, REINICKE KE, SIMMERS SM, WUERZBERGER-DAVIS SM, BOOTHMAN DA: m-calpain activation in b-lapachone-mediated apoptosis. Cancer Biol. Ther. (2003) 2:141-152.
  • TAGLIARINO C, PINK JJ, DUBYAK GR, NIEMINENI AL, BOOTHMAN DA: Calcium is a key signaling molecule in β-lapachone-mediated cell death. J. Biol. Chem. (2001) 276:19150-19159.
  • OUGH M, LEWIS A, BEY EA et al.: Efficacy of b-lapachone in pancreatic cancer treatment: exploiting the novel, therapeutic target NQO1. Cancer Biol. Ther. (2005) 4:95-102.
  • WANG F, BLANCO E, AI H, BOOTHMAN DA, GAO J: Modulating b-lapachone release from polymer millirods through cyclodextrin complexation. J. Pharm. Sci. (2006) 95:2309-2319.
  • SHAPIRO GI, SUPKO JG, RYAN DP et al.: Phase I trial of ARQ 501, an Activated Checkpoint Therapy (ACT) agent, in patients with advanced solid tumors. ASCO Annual Meeting Proceedings. J. Clin. Oncol. (2005) 23(16S):3042.
  • LI CJ: Therapeutic biology: checkpoint pathway activation therapy, HIV tat, and transkingdom RNA interference. J. Cell. Physiol. (2006) 209:695-700.
  • GOETZ MP, TOFT DO, AMES MM, ERLICHMAN C: The Hsp90 chaperone complex as a novel target for cancer therapy. Ann. Oncol. (2003) 14:1169-1176.
  • EGORIN, MJ, ROSEN MC, WOLFF JH, GALLERY PS, MUSSER SM, EISEMAN JM: Metabolism of 17-(allylamino)-17-demethoxygeldanamycin (NSC 330507) by murine and human hepatic preparations. Cancer Res. (1998) 58:2385-2396.
  • KELLAND LR, SHARP SY, ROGERS PM,MYERS TG, WORKMAN P: DT-diaphorase expression and tumor cell sensitivity to 17-allylamino,17-demethoxygeldanamycin, an inhibitor of heat shock protein 90. J. Natl. Cancer Inst. (1999) 91:1940-1949.
  • GOETZ MP, TOFT D, REID J et al.: Phase I trial of 17-allylamino-17-demethoxygeldanamycin in patients with advanced cancer. J. Clin. Oncol. (2005) 23:1078-1087.
  • RAMANATHAN R, TRUMP DL, EISEMAN JL et al.: Phase I pharmacokinetic-pharmacodynamic study of 17-(allylamino)-17-demethoxygeldanamycin (17AAG, NSC 330507), a novel inhibitor of heat shock protein 90, in patients with refractory advanced cancers. Clin. Cancer Res. (2005) 11:3385-3391.
  • GREM JL, MORRISON G, GUO XD et al.: Phase I and pharmacologic study of 17-(allylamino)-17-demethoxy-geldanamycin in adult patients with solid tumors. J. Clin. Oncol. (2005) 23:1885-1893.
  • BANERJI U, O'DONNELL A, SCURR M et al.: Phase I pharmacokinetic and pharmacodynamic study of 17-allylamino, 17-demethoxygeldanamycin in patients with advanced malignancies. J. Clin. Oncol. (2005) 23:4152-4161.
  • NOWAKOWSKI GS, MCCOLLUM AK, AMES MM et al.: A Phase I trial of twice-weekly 17-allylamino-demethoxy-geldanamycin in patients with advanced cancer. Clin. Cancer Res. (2006) 12:6087-6093.
  • BURGER AM, FIEBIG HH, STINSON SF, SAUSVILLE EA: 17-(Allylamino)-17-demethoxygeldanamycin activity in human melanoma models. Anticancer Drugs (2004) 15:377-387.
  • DRYSDALE MJ, BROUGH PA, MASSEY A, JENSEN MR, SCHOEPFER R: Targeting Hsp90 for the treatment of cancer. Curr. Opin. Drug Discov. Develop. (2006) 9:483-495.
  • SHARP S, WORKMAN P: Inhibitors of the HSP90 molecular chaperone: Curr. Status Adv. Cancer Res. (2006) 95:323-348.
  • RONNEN EA, Kondagunta GV, Ishill N et al.: A Phase II trial of 17-(allylamino)-17-demethoxygeldanamycin in patients with papillary and clear cell renal cell carcinoma. Invest. New Drugs (2006) 24:543-546.
  • EISEMAN JL, LAN J, LAGATTUTA TF et al.: Pharmacokinetics and pharmacodynamics of 17-demethoxy 17-[[(2-dimethylamino)ethyl]amino]geldanamycin (17DMAG, NSC 707545) in C.B-17 SCID mice bearing MDA-MB-231 human breast cancer xenografts. Cancer Chemother. Pharmacol. (2005) 55:21-32.
  • KAUR G, BELOTTI D, BURGER AM et al.: Antiangiogenic properties of 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin: an orally bioavailable heat shock protein 90 modulator. Clin. Cancer Res. (2004) 10:4813-4821.
  • GLAZE ER, LAMBERT AM, SMITH AC et al.: Preclinical toxicity of a geldanamycin analog, 17-(dimethylaminoethylamino)-17-demethoxygeldanamycin (17-DMAG), in rats and dogs: potential clinical relevance. Cancer Chemother. Pharmacol. (2005) 56:637-647.
  • HOLLINGSHEAD M, ALLEY M, BURGER AM et al.: In vivo antitumor efficacy of 17-DMAG (17-dimethylaminoethylamino-17-demethoxygeldanamycin hydrochloride), a water-soluble geldanamycin derivative. Cancer Chemother. Pharmacol. (2005) 56:115-125.
  • GOSSETT DR, BRADLEY MS, JIN X, LIN J: 17-Allyamino-17-demethoxygeldanamycin and 17-NN-dimethyl ethylene diamine-geldanamycin have cytotoxic activity against multiple gynecologic cancer cell types. Gynecol. Oncol. (2005) 96:381-388.
  • SMITH V, SAUSVILLE EA, CAMALIER RF, FIEBIG HH, BURGER AM: Comparison of 17-dimethylaminoethylamino-17-demethoxy-geldanamycin (17DMAG) and 17-allylamino-17-demethoxygeldanamycin (17AAG) in vitro: effects on Hsp90 and client proteins in melanoma models. Cancer Chemother. Pharmacol. (2005) 56:126-137.
  • CARTWRIGHT EP, KUMMAR S, MUIR CA et al.: Interim analysis of Phase I trial of 17-DMAG. ASCO Annual Meeting Proceedings. J. Clin. Oncol. (2006) 24(18S):13148.
  • BOGER DL, YASUDA M, MITSCHER LA, DRAKE SD, KITOS PA, THOMPSON SC: Streptonigrin and lavendamycin partial structures. Probes for the minimum, potent pharmacophore of streptonigrin, lavendamycin, and synthetic quinoline-5,8-diones. J. Med. Chem. (1987) 30:1918-1928.
  • FANG Y, LINARDIC CM, RICHARDSON DA, CAI W, BEHFOROUZ M, ABRAHAM RT: Characterization of the cytotoxic activities of novel analogues of the antitumour agent, lavendamycin. Mol. Cancer Ther. (2003) 2:517-526.
  • BEHFOROUZ M, CAI W, MOHAMMADI F et al.: Synthesis and evaluation of antitumor activity of novel N-acyllavendamycin analogues and quinoline-5,8-diones. Bioorg. Med. Chem. (2007) 15:495-510.
  • PITILLO RF, WOOLLEY C: Biological assay of streptonigrin (NSC 45383) in body fluids and tissues of mice. Antimicrob. Agents Chemother. (1974) 5:82-85.
  • YAMASHITA Y, KAWADA S, FUJII N, NAKANO U: Induction of mammalian DNA topoisomerase II dependent DNA cleavage by antitumor antibiotic streptonigrin. Cancer Res. (1990) 50:5841-5844.
  • WANG H, YEO SL, XU J et al.: Isolation of streptonigrin and its novel derivative from Micromonospora as inducing agents of p53-dependent cell apoptosis J. Nat. Prod. (2002) 65:721-724.
  • LEWIS AM, OUGHM, HINKHOUSE MM, TSAO MS, OBERLEY LW, CULLEN JJ: Targeting NAD(P)H:quinone oxidoreductase (NQO1) in pancreatic cancer. Mol. Carcinogenesis (2006) 43:215-224.
  • BEALL HD, MURPHY AM, SIEGEL D, HARGREAVES RH, BUTLER J, ROSS D: Nicotinamide adenine dinucleotide (phosphate): quinone oxidoreductase (DT-diaphorase) as a target for bioreductive antitumor quinones: quinone cytotoxicity and selectivity in human lung and breast cancer cell lines. Mol. Pharmacol. (1995) 48:499-504.

Patents

Websites

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.